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ABSTRACT
In online advertising, auto-bidding has become an essential tool for

advertisers to optimize their preferred ad performance metrics by

simply expressing high-level campaign objectives and constraints.

Previous works designed auto-bidding tools from the view of single-

agent, without modeling the mutual influence between agents. In

this paper, we instead consider this problem from a distributed

multi-agent perspective, and propose a general Multi-Agent rein-

forcement learning framework for Auto-Bidding, namely MAAB,

to learn the auto-bidding strategies. First, we investigate the com-

petition and cooperation relation among auto-bidding agents, and

propose a temperature-regularized credit assignment to establish a

mixed cooperative-competitive paradigm. By carefully making a

competition and cooperation trade-off among agents, we can reach

an equilibrium state that guarantees not only individual advertiser’s

utility but also the system performance (i.e., social welfare). Second,

to avoid the potential collusion behaviors of bidding low prices

underlying the cooperation, we further propose bar agents to set a

personalized bidding bar for each agent, and then alleviate the rev-

enue degradation due to the cooperation. Third, to deploy MAAB

in the large-scale advertising system with millions of advertisers,

we propose a mean-field approach. By grouping advertisers with

the same objective as a mean auto-bidding agent, the interactions

among the large-scale advertisers are greatly simplified, making it

practical to train MAAB efficiently. Extensive experiments on the
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offline industrial dataset and Alibaba advertising platform demon-

strate that our approach outperforms several baseline methods in

terms of social welfare and revenue.
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1 INTRODUCTION
In recent years, online advertising has become ubiquitous inmodern

advertising markets, and generates hundreds of billions of dollars

every year [7]. Online advertising allows advertisers to increase

the exposure opportunities of their products to potential audiences.

Traditionally, advertisers need to manually adjust a bid in each ad

auction to optimize the overall ad campaign performance. However,

this fine-grained bidding process requires domain knowledge and

comprehensive information about advertising environments [32].

To reduce the burden on bid optimization for advertisers, online

platforms have deployed various types of auto-bidding services,

such as Google’s AdWords campaign management tool [10] and

Facebook’s automated bidding services [8]. These services allow

advertisers to simply express high-level campaign objectives and

constraints, and the auto-bidding agents would calculate the bids

for each auction on behalf of advertisers to optimize their preferred

ad performance metrics [3].

We illustrate the procedure of auto-bidding services for online ad-

vertising in Figure 1. The advertising platform designs auto-bidding

agents, each of which learns a bidding strategy for the advertiser

to optimize her desired objective under certain constraints. For

example, in Alibaba advertising platform, there exist three typi-

cal types of auto-bidding agents: CLICK Agent, CONV Agent, and

https://doi.org/10.1145/3488560.3498373
https://doi.org/10.1145/3488560.3498373


Figure 1: An Overview of Auto-bidding Services.

CART Agent, which optimize the number of clicks, purchase con-

versions and add-to-carts under budget constraints, respectively.

These auto-bidding agents compete with each other by bidding

for each ad display opportunity (impression opportunity). After re-
ceiving an impression opportunity, the platform launches an ad

auction for the participating auto-bidding agents, each of which

places a bid according to the advertiser’s objective and constraint,

as well as the predicted value (e.g., pCTR, pCVR or pCART) of this

impression opportunity. After collecting bids from all the agents,

the auction mechanism determines the winning advertisers and the

corresponding payments.

To learn the bidding strategies for auto-bidding agents, a natu-

ral option, also widely adopted in real-time-bidding (RTB) litera-

ture [1, 31], is to solve an isolated optimization problem for each

auto-bidding agent, and the effects of other agents are implicitly

encoded within the auction environment. However, this formula-

tion ignores the fact that the ad auction mechanism is inherently a

distributed multi-agent system in nature – the outcome of an ad

auction depends heavily on the bidding behaviors of all the involved

auto-bidding agents [14]. Without appropriate coordination, the

auto-bidding agents would lead to an anarchy state with signifi-

cantly degraded system performance, such as the tragedy of the
commons [12]. Thus, we leverage a distributed multi-agent frame-

work associated with a carefully designed coordinated scheme to

steer the behaviors of auto-bidding agents towards an equilibrium

state with good system performance.

There are still several challenges in designing the bidding strate-

gies for auto-bidding agents under this framework [3, 32]. First, the

complex competition and cooperation relations among auto-bidding

agents hinder the platform to jointly optimize the individual agent’s

utility and the overall system performance. On the one side, in a

fully competitivemulti-agent paradigm, each individual advertiser’s

utility can be extremely optimized. For example, the auto-bidding

agents with adequate budgets would bid aggressively and dominate

a large number of ad auctions, for their own interests. However, the

winning advertisers may contribute low social welfare, due to an

inefficient ad allocation in a system-level view. On the other hand, a

fully cooperative multi-agent scheme can resolve this issue as all the

auto-bidding agents aim at maximizing the social welfare together,

as in the centralized optimization. However, this method may sac-

rifice some advertisers’ utilities for a large social welfare, which is

not healthy for the long-term prosperity of online advertising. We

need to resolve the conflict between individual advertiser’s utility

and the system performance (social welfare). A more proper way is

to establish a mixed cooperative-competitive (MCC) framework, en-

abling the platform to make a flexible trade-off between individual

utility and the system performance. Existing approaches to achieve

this are through either manually modifying reward functions [27]

or changing environment-related factors [16, 19]. However, there

is still no specific reward function for auto-bidding agents in the

context of ad auctions, and the environmental factors are only

controllable in a simulator but not in the real-world online setting.

Second, the cooperation in the MCC framework would inevitably

reduce the platform’s revenue. This is because cooperative auto-

bidding agents may collude with each other to bid low prices [20].

We can leverage the reserve price [22, 34], a classical method de-

rived from the optimal auction theory [23], to boost the revenue of

auction. However, the optimal reserve price is usually calculated

in the non-cooperative auction setting with simple bidders/agents,

and how to set the optimal reserve prices in the MCC framework

that guarantees platform’s revenue without reducing social welfare

is still unclear.

The last but not least, the industrial deployment of a MCC multi-

agent framework for auto-bidding services is quite challenging. In

a practical advertising platform, there are millions of advertisers

competing for billions of impressions every day, thus it is difficult

to formulate each advertiser as a single agent and train millions of

agents simultaneously with limited computational resources and

time. Besides, the sparsity of the rewards for each agent cannot

properly direct the policy learning due to the limited impression

opportunities with respective to the huge number of advertisers.

By jointly considering the above design challenges, we pro-

pose a cooperative-competitive multi-agent reinforcement learn-

ing (MARL) framework for auto-bidding in online advertising,

namely MAAB. First, to handle the trade-off between the coopera-

tive and competitive relation among auto-bidding agents, we pro-

pose a temperature-regularized credit assignment scheme, which

distributes the total reward from the auction among the partici-

pating agents in proportion to the weights captured by a softmax

function. The temperature parameter in the softmax function could

work as a controller to adjust the degree of the trade-off. Second,

to reduce the loss of revenue, we design bar agents for learning a

personalized bidding bar for each auto-bidding agent. Intuitively,

the bar agent’s goal is to increase the bidding bar for a high revenue

for the platform, while the auto-bidding agent has an opposite goal

— reducing the bidding bar for a low payment. The bar agent’s

training is implemented through an adversarial interaction with

the training for auto-bidding agents until reaching some equilib-

rium point. Third, we propose a mean-field style approach [15, 33]

to tackle the challenge from the industrial large-scale multi-agent

system. By grouping the advertisers with the same objective as

a mean auto-bidding agent, the complex interactions among mil-

lions of advertisers are significantly reduced to the interactions

within a limited number of super auto-bidding agents, making it

practical to train and deploy the large-scale multi-agent system

for auto-bidding services. Extensive offline and online experiments

demonstrate the effectiveness of our MAAB in terms of both social

welfare and platform’s revenue.
1

The contributions in this paper can be summarized as follows:

1
Code is available at https://github.com/chaovven/maab.
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(1) We investigated auto-bidding problem from the perspective

ofmulti-agent systems, and proposed temperature-regularized

credit assignment to properly model the mixed cooperative-

competitive relation among auto-bidding agents.

(2) We designed the bar agents to solve themultiple objectives in

the cooperative-competitive auto-bidding framework, where

platform’s revenue can be improved without reducing social

welfare by adaptively setting the bidding bars.

(3) We proposed a mean-field style approach for handling the

scalability of large-scale multi-agent system for auto-bidding.

The evaluation results show the effectiveness of our method

in terms of both social welfare and platform’s revenue.

2 PRELIMINARIES
2.1 Auto-bidding Model
We consider the budget-constrained auto-bidding services, where

advertisers hope to maximize the total value of winning impres-

sions under a budget constraint [31]. The auto-bidding process is

described as follows. During a period (e.g., one day) with 𝑇 impres-

sion opportunities arriving sequentially, the auto-bidding agent

gives the bid 𝑏𝑡
𝑖
on behalf of advertiser 𝑖 for the impression oppor-

tunity arriving at timestep 𝑡 . If 𝑏𝑡
𝑖
is the highest bid in the auction,

advertiser 𝑖 displays her ad, obtains the impression value 𝑣𝑡
𝑖
, and

makes the payment 𝑝𝑡 , which is the second-highest bid in the

second price auction. This bidding process terminates if the total

payment reaches the budget limit or there are no impression oppor-

tunities left. The goal of auto-bidding agent that bids on behalf of

advertiser 𝑖 is to maximize the total value of winning impressions

under the budget constraint:

max

𝑇∑︁
𝑡=1

𝑣𝑡𝑖 × 𝑥
𝑡
𝑖 (1)

𝑠 .𝑡 .

𝑇∑︁
𝑡=1

𝑝𝑡 × 𝑥𝑡𝑖 ≤ 𝐵𝑖 , (2)

where 𝑥𝑡
𝑖
∈ {0, 1} denotes whether advertiser 𝑖 wins the impression

𝑡 . In the following discussion, we also use 𝑖 to denote the auto-

bidding agent of the advertiser 𝑖 .

2.2 Markov Games
The previous subsection describes auto-bidding services from the

view of single-agent, we next use Markov Game [17] to model the

interaction among multiple auto-bidding agents. We briefly recall

the notations of Markov game. A partially observable Markov Game

of 𝑛 agents is a tuple consisting of < S, 𝑃, {𝑍𝑖 ,O𝑖 ,A𝑖 , 𝑟𝑖 }𝑛𝑖=1
, 𝛾 >.

We use 𝑠 ∈ S to denote the state of the environment. At each

timestep, each agent takes an action 𝑎𝑖 = 𝜋𝑖 (𝑜𝑖 ) ∈ A𝑖 according to

its policy 𝜋𝑖 and an observation 𝑜𝑖 , drawing from the observation

function 𝑍𝑖 : S → 𝑂𝑖 . After all the agents taking the joint action

a = (𝑎1, · · · , 𝑎𝑛), each agent 𝑖 obtains a scalar reward 𝑟𝑖 : S ×
A1 × · · · × A𝑛 → R, and environment transits to the next state 𝑠 ′

according to the transition function 𝑃 (𝑠 ′ |𝑠, a) : S×A1×· · ·×A𝑛 →
S. 𝛾 ∈ (0, 1] is a discount factor for future rewards. Each agent aims

to learn its policy in order to maximize its expected accumulated

reward 𝑅𝑖 = E[
∑𝑇
𝑡=1

𝛾𝑡−1𝑟𝑡
𝑖
] over the period.

We describe the above Markov Game in the context of auto-

bidding services. At each timestep 𝑡 , an auto-bidding agent 𝑖 decides

the bid price 𝑏𝑡
𝑖
= 𝜋𝑖 (𝑜𝑡𝑖 ) according to the received observation

𝑜𝑡
𝑖
= (𝐵𝑡

𝑖
, 𝑣𝑡
𝑖
, 𝑡𝑠𝑡

𝑖
), where 𝐵𝑡

𝑖
is the remaining budget (the bid price is

forced to be 0 when the remaining budget is 0), 𝑣𝑡
𝑖
is the impression

value and 𝑡𝑠𝑡
𝑖
= 𝑇−𝑡 is the timesteps left. The reward for thewinning

auto-bidding agent is 𝑟𝑡
𝑖
= 𝑣𝑡

𝑖
and the payment 𝑝𝑡 is determined

by the second-highest bid. After that, the environment transits to

the next state, and the new observation for each agent is 𝑜𝑡+1
𝑖

=

(𝐵𝑡
𝑖
− 𝑝𝑡 × 𝑥𝑡

𝑖
, 𝑣𝑡+1
𝑖

, 𝑡𝑠𝑡
𝑖
− 1). The objective of auto-bidding agent

is to maximize its expected total value of winning impressions:

max𝜋𝑖 E[
∑𝑇
𝑡=1

𝛾𝑡−1𝑟𝑡
𝑖
].

2.3 Independent Learner
The classical multi-agent reinforcement learning (MARL) algo-

rithm for solving Markov Games is to directly learn decentralized

value functions or policies simultaneously [27, 28]. Independent

𝑄-learning [27, 28] trains individual𝑄 function for each agent, with

all agents sharing the same environment. We refer to independent

𝑄-learning as independent learner (IL). We represent each agent’s

action-value function 𝑄𝑖 (𝑜𝑖 , 𝑏𝑖 ) that conditions on its observations

and bids with a deep neural network parameterized by 𝜃𝑖 ’s. A replay

buffer D stores the transition tuple of all agents {(𝑜𝑖 , 𝑏𝑖 , 𝑟𝑖 , 𝑜 ′𝑖 )}
𝑛
𝑖=1

,

where 𝑜 ′
𝑖
is observed by agent 𝑖 after submitting the bid 𝑏𝑖 based

on its observation 𝑜𝑖 and receiving reward 𝑟𝑖 . The training process

of 𝑄𝑖 (𝑜𝑖 , 𝑏𝑖 ) is similar to DQN [21], where the parameters 𝜃𝑖 ’s are

learned by sampling batches of transitions from the replay memory,

and minimizing the following loss function:

L(𝜃𝑖 ) = E(𝑜𝑖 ,𝑏𝑖 ,𝑟𝑖 ,𝑜′𝑖 )∼D
[
(𝑦𝑖 −𝑄𝑖 (𝑜𝑖 , 𝑏𝑖 ;𝜃𝑖 ))2

]
, (3)

where the target 𝑦𝑖 = 𝑟 train
𝑖
+ 𝛾 max𝑏′

𝑖
𝑄 (𝑜 ′

𝑖
, 𝑏 ′

𝑖
;

ˆ𝜃𝑖 ), and the tempo-

rary parameters
ˆ𝜃𝑖 ’s are periodically updated to the new 𝜃𝑖 after a

fixed number of timesteps. We use 𝑟 train
𝑖

to denote the reward that

is used to learn 𝜃𝑖 . We can tune this training reward 𝑟 train
𝑖

to capture

different types of relations among the agents: 1) we can set 𝑟 train
𝑖

as the individual reward 𝑟𝑖 of each agent to model the competition

among agents, and the resulting IL is called competitive IL (CM-IL);
and 2) we can also set 𝑟 train

𝑖
as the total reward 𝑟 tot =

∑𝑛
𝑖=1

𝑟𝑖 of all

agents, the social welfare of the multi-agent system, under which

all the agents jointly optimize the performance of the whole system.

We refer to the corresponding IL as cooperative IL (CO-IL).
We also interpret the cooperative and competitive relations of

agents in the context of ad auctions. Consider a one-round auction

with two agents, the impression values of which are 𝑣1 and 𝑣2, re-

spectively (assume 𝑣1 > 𝑣2 without loss of generality). The relation

is cooperative if their bids satisfy 𝑏1 > 𝑏2, otherwise is competi-
tive. This interpretation accords with the intuition that cooperation

contributes to better social welfare.

3 BEHAVIORS OF INDEPENDENT LEARNERS
In this section, we demonstrate the interaction results of CM-IL and

CO-IL agents in the context of auto-bidding, through numerical

experiments in a simplified two-agent bidding environment. We

find that for CM-IL agents, the phenomena of oligarch emerges,

leading to fierce competition and worse social welfare, while CO-IL



(a) Agent 1’s winning values for CM-IL (b) Agent 1’s winning values for CO-IL

(c) Social welfare for CM-IL (d) Social welfare for CO-IL

(e) Revenue for CM-IL (f) Revenue for CO-IL

Figure 2: Converged performance of CM-IL and CO-IL.

agents achieve better social welfare, however, at the cost of reducing

the platform’s revenue.

We devise an auction environment with two bidding agents,

which can be implemented with either the paradigm of competitive

CM-IL or cooperative CO-IL. We vary the experimental settings

with different total budget 𝐵0 (normalized) in each episode and the

budget ratio 𝑟 , which controls the percentage of the total budget to

agent 1. Thus the budgets for the two agents are 𝐵1 = 𝐵0 × 𝑟 and
𝐵2 = 𝐵0 × (1 − 𝑟 ), respectively. Both agents’ impression values are

sampled from the normal distribution with mean 0.5 and variance 1.

We train CM-IL and CO-IL for 50𝑘 episodes, following the training

principles discussed above. We examine their final performance

in terms of three metrics: 1) agent 1’s total winning values, 2)

social welfare of the auction and 3) revenue of the auction. Social

welfare is the sum of two agents’ winning values, and revenue is

the total payment calculated with Generalized Second Price (GSP)

mechanism [6]. We omit the total winning values for agent 2, as

it can be derived by subtracting agent 1’s winning value from the

corresponding social welfare, e.g., we can derive that for 𝑟 = 0.7,

agent 2’s winning values are (19, 19, 16, 21) under different values

of 𝐵0. We plot the experimental results in Figure 2. Each number in

the cell denotes agent 1’s obtained winning values, social welfare

or revenue with specific experimental parameters (i.e., 𝐵0 and 𝑟 ).

Figure 2(a) shows the total winning values of agent 1. Given

an unbalanced budget setting 𝑟 = 0.7, we observe that agent 1’s

total winning values (39, 38, 41, 36) under different total budget
𝐵0, are significantly larger than those of agent 2 (19, 19, 16, 21).

Figure 3: The architecture of MAAB.

This indicates that agent 1 dominates most impressions by bidding

aggressively, leading to a phenomenon of oligarch [4]. The emergent

oligarch worsens the social welfare. As shown in Figure 2(c) and

Figure 2(d), CM-IL achieves the less social welfare than CO-IL,

especially in enough budget settings, e.g., when 𝐵0 = 1, CO-IL’s

social welfare (64, 64, 64) are larger than those of CM-IL (57, 56, 58).
A proper cooperation improves the social welfare by prevent-

ing the emergent oligarch. This can be seen by comparing Fig-

ure 2(a) with 2(b): agent 1’s total winning values decrease from

(39, 38, 41, 36) to (35, 38, 33, 33) with more budget (𝑟 = 0.7), and

increase from (20, 16, 17, 22) to (20, 25, 28, 30) with less budget (𝑟 =

0.3). This suggests that CO-IL assigns the impression opportunity

mostly according to the value of impression instead of the budget,

which turns out to be a better equilibrium in terms of social welfare

in these settings.

However, the above assign-by-value rule taken by CO-IL agents

may sacrifice some advertisers’ profits to achieve better social wel-

fare. Besides, Figure 2(e) and Figure 2(f) also show that cooperation

also lowers the platform’s revenue. For example, when 𝐵0 = 1, the

revenues achieved by CO-IL agents (28, 26, 30) are significantly

lower than those of CM-IL agents (69, 85, 71). This is because CO-IL

agents have learned a collusion behavior of bidding low prices to

reserve more budget.

The opposite behaviors of the competitive approach and its co-

operative counterpart come to two extremes: oligarch arises in the

former approach under unbalanced budget settings, which causes

worse social welfare. In contrast, the cooperative approach achieves

better social welfare, however, at the cost of reducing the platform’s

revenue and may potentially sacrifice some advertisers’ profits for

achieving better social welfare.

4 METHODS
In this section, we present our multi-agent framework MAAB, aim-

ing to achieve good social welfare while guaranteeing the platform’s

revenue. The architecture of MAAB is shown in Figure 3, and the

training procedure is provided in Appendix A.

4.1 Mixing Cooperation and Competition
Motivated by the extreme behaviors of CM-IL and CO-IL, we pro-

pose a reward assignment scheme, called temperature regular-

ized credit assignment (TRCA), to establish a mixed cooperative-

competitive (MCC) [27] relation among agents.



The main idea is to set a parameter 𝛼𝑖 weighting each agent’s

contribution to the total reward. The reward for each agent 𝑖 can

be written as

𝑟TRCA𝑖 = 𝛼𝑖 × 𝑟 tot, (4)

where 𝛼𝑖 =
exp{𝑏𝑖/𝜏 }∑𝑛
𝑗=1

exp{𝑏 𝑗 /𝜏 } is a softmax-style weighting parameter

that satisfies 𝛼𝑖 ∈ [0, 1] and
∑𝑛
𝑖=1

𝛼𝑖 = 1. The 𝜏 is a temperature

parameter balancing the extent of competition and cooperation.

The intuition behind Eq. 4 is that the highest bid dominates the

value of 𝑟 tot, while a lower bid has little influence on it. Thus, the

assigned reward 𝑟TRCA
𝑖

for each agent should increase with her bid,

which is achieved by setting 𝛼𝑖 in proportion to 𝑏𝑖 by a softmax

function.

Our designed reward function also encodes both social welfare

and revenue. The social welfare, measured by 𝑟𝑡𝑜𝑡 , appears in Eq. 4

directly, while the revenue contributed by each agent is implicitly

expressed by her bid, as higher bids collected from all agents usually

leads to higher revenue under the GSP auction.

In addition, the temperature parameter 𝜏 in Eq. 4 enables the

co-existence of competition and cooperation, and works as a con-

venient tool to make a trade-off between these two relations. To

illustrate this, we theoretically investigate how the value of 𝜏 af-

fects the bidding behaviors and the relations between agents in the

simplified case of two agents.

Theorem 4.1. Consider a two-agent bidding case with impres-
sion values satisfying 𝑣1 > 𝑣2 in one round auction. Let 𝑏1, 𝑏2 ∈
[𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥 ] denote two agents’ bids, where 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥 are the
minimum and maximum allowable bids respectively. If 𝑣1 ≥ 2𝑣2 or

𝜏 ≥ log (2𝑣2/𝑣1 − 1)
𝑏𝑚𝑖𝑛 − 𝑏𝑚𝑎𝑥

when 𝑣1 < 2𝑣2, (5)

then 𝑏1 ≥ 𝑏2, i.e., the relation between the two agents is cooperative,
otherwise is competitive.

The proof could be found in Appendix B. The above theorem

indicates that when 𝜏 is larger than a threshold, agent 2 would prefer

to cooperate; otherwise, she would behave competitively. Note that

if the impression value 𝑣1 is sufficiently large, i.e., 𝑣1 ≥ 2𝑣2, then

agent 2 would always cooperate
2
, regardless of the value of 𝜏 . We

can safely conclude that a mixed cooperative-competitive relation

among agents arises from setting 𝜏 > 0, and the relation tends to be

more cooperative by setting a large 𝜏 , while more competitive by

setting a small 𝜏 . The hyper-parameter 𝜏 works as a proxy, through

which the trade-off between competition and cooperation can be

carefully controlled.

4.2 Improving Revenue with Bar Agents
Although the cooperative approach contributes to a better social

welfare, it leads to the aforementioned collusion behaviors which

hurts the platform’s revenue. In this subsection, we introduce bar

agents with different versions to avoid this.

The simplest way to improve the revenue is to set a fixed bid-
ding bar ¯𝑏. If the auto-bidding agent’s bid satisfies 𝑏𝑖 ≥ ¯𝑏, the

2
In practice, even when 𝑣1 ≥ 2𝑣2 , agent 2 may not cooperate when 𝜏 → 0, which

is slightly different from the derived result in theorem. This is because when 𝜏 → 0,

softmax function would consistently output 𝛼1 = 𝛼2 = 0.5 if 𝑏1 = 𝑏2 , but 𝛼1 = 1 and

𝛼2 = 0 if 𝑏1 > 𝑏2 . However, in reality, their bids are hardly to be exactly the same,

enabling our TRCA to establish a fully competitive case by setting 𝜏 → 0.

assigned reward for her is set to 𝑟 train
𝑖

= 𝑟TRCA
𝑖

, otherwise 𝑟 train
𝑖

= 0.

However, the fixed bidding bar needs to be tuned elaborately to

obtain satisfactory performance. A large value may badly reduce

the advertisers’ utilities, while an excessively small one may not

effectively boost the revenue.

A more advanced method is setting an adaptive bidding bar
for each impression opportunity to optimize the revenue. One can

introduce a bar agent implemented by reinforcement learning (RL)

to achieve this, with bidding bar as bar agent’s action and available

information of the impression opportunity as observation. However,

the reward function for the bar agent is not trivial to define. Simply

defining the payment of each auction as the reward for bar agent

would lead to an extremely large bidding bar that may reduce social

welfare. Besides, this method also ignores the fact that different

auto-bidding agents usually have different budgets and values when

competing for the same impression opportunity, implying that the

same bidding bar may not be a good choice.

Based on the above analysis, we propose personalized bidding

bar agents to improve the revenue. In Figure 3, MAAB introduces

multiple bar agents {𝜋𝑖 }𝑛𝑖=1
, with each bar agent 𝜋𝑖 aiming at

setting a personalized bar
¯𝑏𝑖 for the corresponding auto-bidding

agent 𝜋𝑖 . Each bar agent shares the same observation as its cor-

responding auto-bidding agent. At each timestep, bar agents and

the auto-bidding agents give their bidding bars { ¯𝑏𝑖 }𝑛𝑖=1
and bids

{𝑏𝑖 }𝑛𝑖=1
, respectively. But only {𝑏𝑖 }𝑛𝑖=1

are submitted to the auc-

tion. Then the auction environment returns the payment 𝑝 and

the rewards {𝑟𝑖 }𝑛𝑖=1
. The rewards {𝑟𝑖 }𝑛𝑖=1

are re-assigned by TRCA,

obtaining {𝑟TRCA
𝑖

}𝑛
𝑖=1

. However, using the payment 𝑝 as the reward

for bar agents may lead to extremely large bidding bars accord-

ing to the previous discussion. To circumvent this, we propose

a reward scheme called bar gate. The bar gate outputs a scalar

𝑧𝑖 = 𝑧 ( ¯𝑏𝑖 , 𝑏𝑖 ) ∈ {0, 1} for each pair of auto-bidding agent and bar

agent, indicating whether each auto-bidding agent’s bid exceeds

the bidding bar. The rule underlying the bar gate is given by

𝑧 (𝑏𝑖 , ¯𝑏𝑖 ) =
{

1 if 𝑏𝑖 ≥ ¯𝑏𝑖 ,

0 otherwise .
(6)

With the bar gate, the rewards for optimizing 𝜋𝑖 and 𝜋𝑖 are 𝑟
train

𝑖
=

𝑧𝑖 × 𝑟TRCA𝑖
and 𝑟 train

𝑖
= 𝑧𝑖 × 𝑝 , respectively. It is worth to note that

bar agents are introduced during the training phase but removed

during the execution time.

The bar agents and auto-bidding agents are trained simultane-

ously via an adversarial manner. The training procedure for 𝜋𝑖 is

to optimize the bidding bar
¯𝑏𝑖 , maximizing the revenue, while the

auto-bidding agent 𝜋𝑖 wants to lower her bid to reserve more bud-

get due to the cooperation relation. The bar gate connects these

two different goals by enforcing the bar agent’s bidding bar to be a

maximum lower bound of auto-bidding agents’ bid.

The proposed multiple bar agents and the reward scheme un-

derlying the bar gate allow us to improve revenue by raising the

auto-bidding agents’ bids to an appropriate level. It is worth to note

that the bidding bar is similar to the reserve prices [22, 24], but

differs in that the bidding bar requires no modification to the GSP

mechanism [6] as it is only introduced during the training phase.



Figure 4: Modeling with mean agent approach.

4.3 Modeling Large-Scale Multi-Agent System
In practical system, there may be millions of advertisers competing

for billions of impressions every day, making it hard to train so

many agents simultaneously by formulating each fine-grained ad-

vertiser as an agent, due to both the sparsity of the rewards and the

limited resources (e.g., computational resources, time). We intro-

duce our mean agent approach, which aims at providing a feasible

and general method for the training of the large-scale multi-agent

system for auto-bidding.

One can take a high-level perspective such as grouping [14]. By

grouping advertisers by a certain principle, the rewards are no

longer sparse at the group-level, and we only need to simultane-

ously train a separate policy for each high-level group instead of

for each fine-grained advertiser. Our proposed mean agent first

group advertisers by the objective, as the main difference between

advertisers lies in their optimizing objectives. Other principles may

be possible depending on the specific situation. The grouping by

objective results in a set of groups {𝐺1,𝐺2, · · · ,𝐺𝑛}, where 𝐺𝑖 is a

set containing all the advertisers belonging to this group. However,

it is not a trivial work to train such a policy 𝜋𝑖 for group𝐺𝑖 that can

be properly shared by all advertisers 𝑘 ∈ 𝐺𝑖 to generate their bids.

This is due to the following two reasons: 1) the𝑄-learning updating

rule requires calculating the maximum action value for the next

state, but the next state on the group-level is not clear; 2) advertisers

usually have different budgets and values when competing for the

same impression opportunity, making the policy sharing across

different advertisers within the same group difficult.

To handle the above issues, our mean agent approach considers

the mean effects from a high-level perspective. The diagram of our

mean agent approach is shown in Figure 4. The main idea is that,

for each group, we train a mean policy 𝜋𝑖 that calculates the mean

bid based on the mean value and budget, and let each advertiser

within the group derive her bid based on her value’s advantage over
the mean value.

Before giving the full details of our modeling, we first introduce

some notations. We consider a timestep as a period of time (e.g., 15

minutes), during which a number of impression opportunities ar-

riving sequentially. We denote 𝑒 ∈ 𝐸𝑡 as an impression opportunity,

where 𝐸𝑡 is a set containing all opportunities within timestep 𝑡 . The

𝑣𝑒
𝑖,𝑘

is the value of advertiser 𝑘 ∈ 𝐺𝑖 for impression opportunity 𝑒 .

The 𝑥𝑒
𝑘
∈ {0, 1} indicates whether advertiser 𝑘 wins the impression

opportunity 𝑒 . Advertiser 𝑘 wins the impression if she has the max-

imum effective cost-per-mille (eCPM) ranking score 𝑝𝐶𝑇𝑅𝑒
𝑘
× 𝑏𝑒

𝑘
.

The specific modeling under the framework of Markov Games [17]

is explained as follows.

Observation space: the observation of mean agent 𝑖 at timestep

𝑡 is defined as 𝑜𝑡
𝑖
= (𝐵𝑡

𝑖
, 𝑣𝑡
𝑖
, 𝑡𝑠𝑡

𝑖
). The 𝐵𝑡

𝑖
is mean agent’s remain-

ing budget at this timestep, and the initial budget of mean agent

is set to 𝐵1

𝑖
= 1

|𝐺𝑖 |
∑
𝑘∈𝐺𝑖

𝐵𝑘 . The mean value 𝑣𝑡
𝑖

= E[𝑣𝑒
𝑖,𝑘
] ≈

1

|𝐺𝑖 |× |𝐸𝑡 |
∑
𝑒∈𝐸𝑡 ,𝑘∈𝐺𝑖

𝑣𝑒
𝑖,𝑘

. The 𝑡𝑠𝑡
𝑖
is timesteps left along the episode.

Action space: each mean agent takes mean bid 𝑏𝑡
𝑖
∈ A𝑖 as its

action. The bid of advertiser 𝑘 ∈ 𝐺𝑖 for impression opportunity

𝑒 is 𝑏𝑒
𝑖,𝑘

= 𝑏𝑡
𝑖
× 𝑐𝑙𝑖𝑝 (𝐴𝑒

𝑖,𝑘
), where 𝐴𝑒

𝑖,𝑘
= 𝑣𝑒

𝑖,𝑘
/𝑣𝑖 is defined as the

advantage of 𝑣𝑒
𝑖,𝑘

over the mean value. The advantages are clipped

for preventing advertisers having excessively large values.

Reward function: reward function is defined at the group-level

[31] due to the large number of impressions and advertisers. Mean

agent 𝑖’s reward is defined as 𝑟𝑡
𝑖
= 1

|𝐸𝑡 |
∑
𝑒∈𝐸𝑡 ,𝑘∈𝐺𝑖

𝑣𝑒
𝑖,𝑘
× 𝑥𝑒

𝑘
.

Transition function: The impression-level payment for winning

impression 𝑒 is 𝑝𝑒 = 𝑝𝐶𝑇𝑅𝑒
𝑗
× 𝑏𝑒

𝑗
in expectation, where 𝑗 is the

index of the next ranked advertiser according to maximum eCPM

ranking score. The payment for the mean agent is also defined at

the group-level: 𝑝𝑡
𝑖
=
∑
𝑒∈𝐸𝑡 ,𝑘∈𝐺𝑖

𝑝𝑒 × 𝑥𝑒
𝑘
. Thus each mean agent’s

next observation 𝑜𝑡+1
𝑖

= (𝐵𝑡
𝑖
−𝑝𝑡

𝑖
, 𝑣𝑡+1
𝑖

, 𝑡𝑠𝑡
𝑖
− 1). Mean agent’s action

is forced to 0 when its budget is below 0.

Note that, for online deployment, the mean policy for a group

is shared by all advertisers within the group to generate their bids

separately without calculating advantages. The mean agent model-

ing can also be easily generalized to our proposed TRCA and bar

agents approaches by replacing the bids and bidding bars with the

corresponding mean ones.

5 EXPERIMENTS
We evaluate our method in an offline industrial dataset and perform

an online A/B test on the Alibaba e-commerce advertising platform.

5.1 Offline Dataset Simulation
We perform the offline evaluation on a real offline dataset from

Alibaba’s advertising system where on average 10 billion auctions

are covered per day. See Appendix C for the environmental setup

and implementation details.

Offline Dataset. The offline dataset is extracted from the six-hour

search auction log of November 18, 2020, including 705,140 impres-

sion opportunities. In each impression opportunity, nearly 400 ads

are recalled to compete for displaying. Each recalled ad is associ-

ated with an advertiser’s id, timestamp, objective, impression value,

manually set bid, etc. The objectives are mainly of three types – the

number of clicks (pCTR), conversions (pCVR × pCTR), and add-to-

carts (pCART × pCTR), which corresponds to three groups (CLICK,

CONV, CART) in our experiments. A similar preprocessing as [14]

is adopted: we randomly sample 1/150 of the logged impressions

from the whole dataset for training, and the dataset for testing is

sampled in the same way.

Evaluation Metrics.We adopt the following evaluation metrics: 1)

social welfare, which is calculated by adding up the normalized total

values won by three groups ; 2) platform’s revenue, which is defined

as the cumulative payments along the episode. The payment at each

timestep is calculated by GSP-based expected Cost-Per-Click (CPC).

The evaluation procedure is provided in Appendix C.1.



Table 1: Mean and standard deviation of different groups’
values (CLICK, CONV, CART), platform’s revenue, and social
welfare in offline dataset simulation.

Setting 1 CLICK CONV CART Revenue Social Welfare

MSB 24.7±0 21.8±0 18.0±0 16.9±0 64.5±0
DQN-S 29.3±2.7 35.8±5.1 36.0±2.3 68.3±6.7 101.0±2.5
CM-IL 27.8±0.9 41.3±0.7 35.0±0.8 86.8±1.2 104.1±0.8
CO-IL 27.3±1.5 41.3±2.0 35.6±1.7 66.9±10.2 104.3±2.3
MAAB 28.0±0.8 41.8±1.3 35.5±1.4 80.6±3.2 105.3±1.3
Setting 2 CLICK CONV CART Revenue Social Welfare

MSB 24.7± 0 21.8±0 18.0±0 16.9±0 64.5±0
DQN-S 37.1±2.1 25.1±3.1 34.8±1.8 75.5±5.2 97.0±2.3
CM-IL 35.3±1.3 29.2±1.0 35.1±0.8 85.0±2.9 99.6±0.6
CO-IL 30.7±3.3 35.3±3.2 37.0±2.7 52.9±12.4 103.0±2.4
MAAB 31.3±1.2 33.5±1.7 38.6±1.4 69.0±3.6 103.4±0.7

Budget Constraints. For the offline experiments, we first calcu-

late the total payment of an episode by enforcing all mean agents

using their maximum mean bids, and accumulate the total pay-

ment 𝑃 =
∑
𝑡

∑
𝑒∈𝐸𝑡 𝑝

𝑒
. Then the budget of advertiser 𝑘 ∈ 𝐺𝑖 and

mean agent 𝑖 are set as a fraction of the episode’s total payment:

𝐵𝑖 = 𝐵𝑘 = 𝑃 × 𝐵0 × 𝑟 [𝑖]. We run the evaluation with 𝐵0 = 1/4 and

𝑟 = [1, 1, 1], [1.5, 0.5, 1].
Compared Methods. With the same settings, the following meth-

ods are selected for comparisons: 1)MSB uses advertisers’ manually

set bids for bidding. 2) DQN-S can be seen as the single-agent ver-

sion of IL. Specifically, we train a mean policy for each group using

DQN [21] by assuming other advertisers use their manually set

bids. However, all mean agents use their trained policies for auction

during testing rather than considering other advertisers’ bids as

the manually set ones. 3) CM-IL [28]. 4) CO-IL. 5)MAAB is our

proposed method, which is the mixed cooperation-competitive IL

augmented with bar agents.

Experimental Results. We test the performance under the fol-

lowing two settings: 1) 𝐵0 = 1/4 and 𝑟 = [1, 1, 1], in which case all

auto-bidding agents have equal budget constraints; 2) 𝐵0 = 1/4 and

𝑟 = [1.5, 1, 0.5], which is an unbalanced budget setting. The main

results are shown in Table 1. The reported performance is averaged

over 3 independent runs after training for 3.5 million timesteps.

We find that traditional way of manually setting bids (MSB) fails

to achieve good performance – social welfare is 64.5 and platform’s

revenue is 16.9, which is consistently the worst among all methods.

By comparison, DQN-S is superior in terms of the three groups’

values (29.3, 35.8, 36.0), social welfare (101.0) and platform’s revenue

(68.3), due to the budget spending controlled by RL.

However, the performance of DQN-S is still limited by the unre-

liable assumption that other agents’ bids are fixed. This assumption

can be further removed by adopting a multi-agent learning para-

digm. The benefits of multi-agent learning can be demonstrated by

CM-IL’s superior performance over DQN-S both in terms of social

welfare (e.g., 104.1 > 101.0 in setting 1) and platform’s revenue (e.g.,

86.8 > 68.3 in setting 1). CM-IL learns auto-bidding policies simul-

taneously, making it possible to model the interactions between

agents explicitly. However, the competitive relation may not help

Table 2: Mean of different groups’ values (CLICK, CONV,
CART), platform’s revenue and social welfare in the online
production environment.

CLICK CONV CART Revenue Social Welfare

CM-IL 31.4 48.2 20.4 100.0 100.0

MAAB 32.9 50.3 21.4 96.1 104.6

achieve better social welfare, which can be seen by comparing CM-

IL with CO-IL. CO-IL models the relations between auto-bidding

agents in a cooperative way and is slightly better than CM-IL in

social welfare (104.3 > 104.1 in setting 1 and 103.0 > 99.6 in setting

2), however, at the cost of reducing the platform’s revenue (66.9 <

86.8 in setting 1 and 52.9 < 85.0 in setting 2).

In between these two extremes, MAAB uses TRCA and mod-

els the relation between agents in the MCC way, which achieves

a better equilibrium between social welfare and the revenue. As

shown in Table 1, MAAB achieves better social welfare compared

with CM-IL (105.3 > 104.1 in setting 1 and 103.4 > 99.6 in setting 2)

and significantly outperforms CO-IL in terms of the revenue (80.6

> 66.9 in setting 1 and 69.0 > 52.9 in setting 2).

5.2 Online Experiments
To further verify our MAAB method’s validity, we have launched

it to the online real production environment (Taobao display ad-

vertising system) and compared it with the baseline method CM-IL.

The deployment has the following details: 1) 𝑄 networks in both

methods are trained on a Tensorflow-based distributed training

framework and updated every 2 hours. 2) More features (such as

pCTR, pCVR, etc.) are encoded into the observation in both meth-

ods for better modeling the dynamic environment. 3) As mentioned

in subsection 4.3, during online deployment, the bid for each ad

is generated by feeding each ad’s encoded observation into the

corresponding mean policy.

The main results of the online A/B test with 1% of whole pro-

duction traffic from January 30, 2021 to February 3, 2021 are shown

in Table 2. Since real online data needs to be kept confidential, we

normalized the baseline method’s performance to 100. Similar to

the results of offline experiments, compared with CM-IL, MAAB

achieves better social welfare, but with a lower revenue (96.1 < 100).

5.3 Ablation Study
This section investigates the effectiveness of TRCA and the neces-

sity of bar agents for improving platform’s revenue.

5.3.1 Effectiveness of TRCA. To investigate the effectiveness of

the proposed TRCA for modeling the cooperative and competitive

relation, we remove the bar agents in MAAB and call the resulting

method MIX-IL. Then we adjust the parameter 𝜏 in MIX-IL and

perform experiments with our offline dataset, where a larger 𝜏

corresponds to more cooperative whereas a smaller 𝜏 corresponds

to more competitive. Especially, 𝜏 = 0 is equivalent to CM-IL; 𝜏 = ∞
is equivalent to CO-IL. We set 𝐵0 = 1/4 and 𝑟 = [1.5, 0.5, 1].

As shown in Figure 5(a), after training for 2million timesteps, CO-

IL and MIX-IL achieve nearly the same social welfare (101.2, 103.1



(a) Social welfare (b) Platform’s revenue

Figure 5: Social welfare and platform’s revenue for methods
with different parameter 𝜏 . The mean and 95% confidence
interval are shown across 3 independent runs.

and 101.9 for 𝜏 = 2, 4 and∞ respectively), and they consistently out-

perform CM-IL (99.6), which suggests cooperation can help achieve

better social welfare. However, Figure 5(b) illustrates the side effect

of cooperation. A fully cooperative approach would significantly

reduce the platform’s revenue (57.5), while a competitive approach

guarantees a higher platform’s revenue (79.3) due to the compe-

tition. In between these two extremes, MIX-IL (𝜏 = 2) seemingly

achieves a better equilibrium that guarantees good social welfare

(101.2) comparable with the fully cooperative one (101.8) and im-

proves platform’s revenue (74.8 > 57.5). In summary, to achieve a

win-win situation for advertisers and the platform, it seems nec-

essary to balance the competition and cooperation in multi-agent

auto-bidding problem, and 𝜏 could serve as a convenient tool to

achieve such a balance.

5.3.2 Influence of Bar Agents. We investigate necessity of bar

agents for improving platform’s revenue and the effectiveness of

adaptive bidding bars. To this end, we compare MAAB against the

following two methods in offline dataset simulation: 1) MIX-IL:

this method is derived from MAAB by removing bar agents; 2)

MAAB-fix: we fix bar agents’ actions to be a heuristic value (
¯𝑏 = 1

and
¯𝑏 = 4) in MAAB, which can be seen as the fixed bidding bar

introduced in subsection 4.2. All methods are trained for 2 million

timesteps, and we set 𝐵0 = 1/2 and 𝑟 = [1.5, 0.5, 1]. Here we use
a larger 𝐵0, which corresponds to more budget in total and can

help better illustrate the bar agents’ effectiveness in improving the

platform’s revenue.

As shown in Table 3, by comparingMIX-IL withMAAB-fix (
¯𝑏 = 1

or
¯𝑏 = 4), we can see that the idea of setting a bidding bar could

improve the platform’s revenue. For example, platform’s revenue in-

creases from 99.6 to 114.3 by using bidding bar
¯𝑏 = 1 in MIX-IL, and

further increases to 164.9 by raising the bidding bar to
¯𝑏 = 4. How-

ever, a large bidding bar (i.e.,
¯𝑏 = 4) would hurt the social welfare,

while a small bidding bar (i.e.,
¯𝑏 = 1) still leaves room for further

improvement of platform’s revenue. The benefit of the adaptive bid-

ding bar can be seen by comparing MAAB with MAAB-fix (
¯𝑏 = 1).

MAAB achieves comparable social welfare (103.9 ≈ 104.5) with

MAAB-fix (
¯𝑏=1) and further improves platform’s revenue (134.6 >

114.3). Our adaptive bidding bar and the bar gate enable MAAB to

improve the revenue without reducing the social welfare, which

presents a clear benefit over the fixed one. See Appendix C.4 for

additional analysis of the bar agents.

Table 3: Mean and standard deviation of social welfare and
platform’s revenue.

Social Welfare Platform’s Revenue

MIX-IL 104.0±3.3 99.6±18.2
MAAB-fix (

¯𝑏 = 1) 104.5±1.4 114.3±17.1
MAAB-fix (

¯𝑏 = 4) 99.3±0.4 164.9±1.3
MAAB 103.9±1.2 134.6±8.2

6 RELATEDWORK
Multi-Agent Reinforcement Learning. Recent works have ex-
plored RL beyond single-agent scenarios and have considered multi-

agent case [19, 25, 28, 30]. In MARL literature, some works focus on

learning cooperation [25, 26, 28], in which a team of agents takes

actions to achieve a common goal. One of the challenges in learning

cooperation is the credit assignment problem [9, 25, 26], i.e., the

agents should deduce their contributions to the global rewards [13].

Our TRCA instead considers the credit assignment for establishing

a MCC relation among agents, which differs from previous works

in terms of both motivation and the problem settings.

Bid Optimization. Bidding optimization is one of the key prob-

lems in real-time bidding. Several lines of work consult RL to learn

the bidding strategies under constraints [2, 14, 31]. However, these

works adopt a single-agent setting – they optimize the bid strat-

egy under the assumption that the market price is stationary. A

few studies also consider bid optimization from the multi-agent

perspective. Jin et al. [14] formulate bid optimization with coop-

erative MARL and use a clustering method for dealing with the

huge number of advertisers. However, the cooperative game may

result in collusion behaviors that reduce the platform’s revenue.

Concurrently to our work, Guan et al. [11] try to avoid the col-

lusion behaviors by introducing an extra revenue constraint. We

instead avoid collusion by modeling the MCC relation [27] among

agents and design bar agents to improve the revenue further in

an adversarial manner. To optimize revenue, most works focus on

the reserve prices [22, 29] and designing revenue-maximizing auc-

tions [5, 18], which is a different setting from ours as we consider

the joint optimization of the advertiser’s bidding strategies and

platform’s revenue without changing the GSP mechanism.

7 CONCLUSIONS
In this work, we proposed a MARL framework, called MAAB, for

the auto-bidding in online advertising through three contributions:

1) proposing TRCA for establishing a mixed cooperation and com-

petition relation among agents, 2) using bar agents and a reward

scheme, called bar gate, for improving the platform’s revenue with

an adversarial trainingmanner, 3) proposing amean agent approach

for the deployment of our methods on the large-scale advertising

platform. Extensive offline and online experiments demonstrate the

effectiveness of MAAB in achieving social welfare and guarantee-

ing the platform’s revenue. Our future work includes extending

TRCA by dynamically tuning the temperature parameter based on

real-time information. Besides, further investigation on the reward

scheme underlying the bar gate is needed for the fast convergence

of bar agents.



REFERENCES
[1] Gagan Aggarwal, Ashwinkumar Badanidiyuru, and Aranyak Mehta. 2019. Auto-

bidding with constraints. In WINE. Springer, 17–30.
[2] Han Cai, Kan Ren, Weinan Zhang, Kleanthis Malialis, Jun Wang, Yong Yu, and

Defeng Guo. 2017. Real-time bidding by reinforcement learning in display adver-

tising. In WSDM. 661–670.

[3] Google Ads Help Center. 2021. About automated bidding. https://support.google.

com/google-ads/answer/2979071. Accessed: January 24, 2021.

[4] Carl Davidson and Raymond Deneckere. 1986. Long-run competition in capacity,

short-run competition in price, and the Cournot model. The Rand Journal of
Economics (1986), 404–415.

[5] Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Srivatsa

Ravindranath. 2019. Optimal auctions through deep learning. In ICML. PMLR,

1706–1715.

[6] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. 2007. Internet

advertising and the generalized second-price auction: Selling billions of dollars

worth of keywords. American economic review 97, 1 (2007), 242–259.

[7] eMarketer. 2015. Worldwide retail ecommerce sales: eMarketer’s updated esti-

mates and forecast through 2019. (2015).

[8] Facebook. 2021. Facebook. https://www.facebook.com/business/m/one-sheeters/

facebook-bid-strategy-guide. Accessed: January 24, 2021.

[9] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In AAAI,
Vol. 32.

[10] Google. 2021. Google AdWords API. https://developers.google.com/adwords/

api/docs/guides/start. Accessed: January 24, 2021.

[11] Ziyu Guan, Hongchang Wu, Qingyu Cao, Hao Liu, Wei Zhao, Sheng Li, Cai Xu,

Guang Qiu, Jian Xu, and Bo Zheng. 2021. Multi-Agent Cooperative Bidding

Games for Multi-Objective Optimization in e-Commercial Sponsored Search.

arXiv preprint arXiv:2106.04075 (2021).
[12] Garrett Hardin. 2009. The tragedy of the commons. Journal of Natural Resources

Policy Research 1, 3 (2009), 243–253.

[13] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. 2019. A survey and

critique of multiagent deep reinforcement learning. 33, 6 (2019), 750–797.

[14] Junqi Jin, Chengru Song, Han Li, Kun Gai, Jun Wang, and Weinan Zhang. 2018.

Real-time bidding with multi-agent reinforcement learning in display advertising.

In CIKM. 2193–2201.

[15] Jean-Michel Lasry and Pierre-Louis Lions. 2007. Mean field games. Japanese
journal of mathematics 2, 1 (2007), 229–260.

[16] Joel Z Leibo and Marc Lanctot. 2017. Multi-agent Reinforcement Learning in

Sequential Social Dilemmas. (2017). arXiv:arXiv:1702.03037v1

[17] Michael L Littman. 1994. Markov games as a framework for multi-agent rein-

forcement learning. In Machine learning proceedings 1994. Elsevier, 157–163.
[18] Xiangyu Liu, Chuan Yu, Zhilin Zhang, Zhenzhe Zheng, Yu Rong, Hongtao Lv, Da

Huo, Yiqing Wang, Dagui Chen, Jian Xu, Fan Wu, Guihai Chen, and Xiaoqiang

Zhu. 2021. Neural Auction: End-to-End Learning of Auction Mechanisms for

E-Commerce Advertising. In SIGKDD. 3354–3364.
[19] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor

Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive

environments. In NIPS. 6379–6390.
[20] Robert C Marshall and Leslie MMarx. 2007. Bidder collusion. Journal of Economic

Theory 133, 1 (2007), 374–402.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

nature 518, 7540 (2015), 529–533.
[22] MehryarMohri and AndresMunozMedina. 2014. Learning theory and algorithms

for revenue optimization in second price auctions with reserve. In ICML. PMLR,

262–270.

[23] Roger B Myerson. 1981. Optimal auction design. Mathematics of operations
research 6, 1 (1981), 58–73.

[24] Michael Ostrovsky and Michael Schwarz. 2011. Reserve prices in internet adver-

tising auctions: A field experiment. In EC. 59–60.
[25] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function Factori-

sation for Deep Multi-Agent Reinforcement Learning. In ICML. 4295–4304.
[26] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Viní-

cius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z

Leibo, Karl Tuyls, et al. 2018. Value-Decomposition Networks For Cooperative

Multi-Agent Learning Based On Team Reward.. In AAMAS. 2085–2087.
[27] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Kor-

jus, Juhan Aru, Jaan Aru, and Raul Vicente. 2017. Multiagent cooperation and

competition with deep reinforcement learning. PloS one 12, 4 (2017), e0172395.
[28] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In ICML. 330–337.
[29] David RM Thompson and Kevin Leyton-Brown. 2013. Revenue optimization in

the generalized second-price auction. In EC. 837–852.
[30] Chao Wen, Xinghu Yao, Yuhui Wang, and Xiaoyang Tan. 2020. SMIX (𝜆): Enhanc-

ing Centralized Value Functions for Cooperative Multi-Agent Reinforcement

Learning.. In AAAI. 7301–7308.
[31] Di Wu, Xiujun Chen, Xun Yang, Hao Wang, Qing Tan, Xiaoxun Zhang, Jian Xu,

and Kun Gai. 2018. Budget constrained bidding by model-free reinforcement

learning in display advertising. In CIKM. 1443–1451.

[32] Xiao Yang, Daren Sun, Ruiwei Zhu, Tao Deng, Zhi Guo, Zongyao Ding, Shouke

Qin, and Yanfeng Zhu. 2019. Aiads: Automated and intelligent advertising system

for sponsored search. In SIGKDD. 1881–1890.
[33] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.

2018. Mean field multi-agent reinforcement learning. In ICML. PMLR, 5571–5580.

[34] Shuai Yuan, Jun Wang, Bowei Chen, Peter Mason, and Sam Seljan. 2014. An

empirical study of reserve price optimisation in real-time bidding. In SIGKDD.
1897–1906.

https://support.google.com/google-ads/answer/2979071 
https://support.google.com/google-ads/answer/2979071 
https://www.facebook.com/business/m/one-sheeters/facebook-bid-strategy-guide
https://www.facebook.com/business/m/one-sheeters/facebook-bid-strategy-guide
https://developers.google.com/adwords/api/docs/guides/start
https://developers.google.com/adwords/api/docs/guides/start
https://arxiv.org/abs/arXiv:1702.03037v1


A ALGORITHM

Algorithm 1: Training Procedure for MAAB

Set the empty replay buffer D to capacity 𝑁D , 𝑠𝑡𝑒𝑝 = 0, training

batch size 𝑏;

Initialize Q-networks𝑄𝑖 and 𝑄̄𝑖 with random parameters 𝜃𝑖 and ˆ𝜃𝑖 ,

and the corresponding target networks with parameters
ˆ𝜃𝑖 ← 𝜃𝑖

and
ˆ̄𝜃𝑖 ← ¯𝜃𝑖 , for 𝑖 = 1, · · · , 𝑛;

while 𝑠𝑡𝑒𝑝 <𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 do
for 𝑡 = 1 to𝑇 do

for each agent i do
Obtain the observation 𝑜𝑖 for agent 𝑖 and bar agent 𝑖;

Select 𝑏𝑖 according to 𝜖-greedy policy w.r.t𝑄𝑖 ;

Select
¯𝑏𝑖 according to 𝜖-greedy policy w.r.t 𝑄̄𝑖 ;

end
Submit {𝑏1, · · · , 𝑏𝑛 } to the auction environment;

Get rewards {𝑟1, · · · , 𝑟𝑛 } and the payment 𝑝 ;

Calculate 𝑟TRCA
𝑖

according to Eq. 4;

Get 𝑧𝑖 = 𝑧 (𝑏𝑖 , ¯𝑏𝑖 ) according to Eq. 6;

Calculate 𝑟 train
𝑖

= 𝑧𝑖 × 𝑟TRCA𝑖
and 𝑟 train

𝑖
= 𝑧𝑖 × 𝑝 ;

𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝 + 1

end
Store the episode in D, replacing the oldest episode if

|𝐷 | > 𝑁D ;

Sample a batch of b episodes ∼ Uniform(D) ;
for each agent i do

Set 𝑦𝑖 = 𝑟 train
𝑖
+ 𝛾 max𝑏′

𝑖
𝑄𝑖 (𝑜′𝑖 , 𝑏′𝑖 ; ˆ𝜃 ) ;

Set 𝑦𝑖 = 𝑟 train
𝑖
+ 𝛾 max ¯𝑏′

𝑖
𝑄̄𝑖 (𝑜′𝑖 , ¯𝑏′

𝑖
;

ˆ̄𝜃 ) ;
Update 𝜃𝑖 by minimizing

∑
𝑏,𝑡

[
(𝑦𝑖 −𝑄𝑖 (𝑜𝑖 , 𝑏𝑖 ;𝜃𝑖 ))2

]
;

Update
¯𝜃𝑖 by minimizing

∑
𝑏,𝑡

[ (
𝑦𝑖 − 𝑄̄𝑖

(
𝑜𝑖 , ¯𝑏𝑖 ; ¯𝜃𝑖

) )
2

]
twice;

Replace target parameters
ˆ𝜃𝑖 ← 𝜃𝑖 every C episodes;

Replace target parameters
ˆ̄𝜃𝑖 ← ¯𝜃𝑖 every C episodes;

end
end

B PROOF OF THEOREM 4.1
Theorem 4.1. Consider a two-agent bidding case with impres-

sion values satisfying 𝑣1 > 𝑣2 in one round auction. Let 𝑏1, 𝑏2 ∈
[𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥 ] denote two agents’ bids, where 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥 are the
minimum and maximum allowable bids respectively. If 𝑣1 ≥ 2𝑣2 or

𝜏 ≥ log (2𝑣2/𝑣1 − 1)
𝑏𝑚𝑖𝑛 − 𝑏𝑚𝑎𝑥

when 𝑣1 < 2𝑣2,

then 𝑏1 ≥ 𝑏2, i.e., the relation between the two agents is cooperative,
otherwise is competitive.

Proof. Let b = (𝑏1, 𝑏2). For agent 2, the objective is
max

𝑏2

𝛼2 (b) ·
[
𝐼 (𝑏1 ≥ 𝑏2) · 𝑣1 +

(
1 − 𝐼 (𝑏1 ≥ 𝑏2)

)
· 𝑣2

]
, (7)

where 𝛼2 (b) = exp{𝑏2/𝜏 }∑
2

𝑗=1
exp{𝑏 𝑗 /𝜏 }

and 𝐼 (·) is the indicator function. We

define the the solution set of case L and H: 𝐿 = {(𝑏1, 𝑏2) |𝑏𝑚𝑎𝑥 ≥
𝑏1 ≥ 𝑏2 ≥ 𝑏𝑚𝑖𝑛}, 𝐻 = {(𝑏1, 𝑏2) |𝑏𝑚𝑎𝑥 ≥ 𝑏2 > 𝑏1 ≥ 𝑏𝑚𝑖𝑛}. Our goal

is to find the condition that the optimal solution of Eq. 7 always lies

in the case L, which can be transformed into the following target:

max

b𝐿 ∈𝐿
𝛼2 (b𝐿) · 𝑣1 ≥ max

b𝐻 ∈𝐻
𝛼2 (b𝐻 ) · 𝑣2 . (8)

Eq. 8 can be rewritten as

𝑔(𝜏) =
maxb𝐿 ∈𝐿 𝛼2 (b𝐿) · 𝑣1

maxb𝐻 ∈𝐻 𝛼2 (b𝐻 ) · 𝑣2

=
𝑣1

2𝑣2

1

maxb𝐻 ∈𝐻 𝛼2 (b𝐻 )

=
𝑣1

2𝑣2

min

b𝐻 ∈𝐻

exp{𝑏𝐻
1
/𝜏} + exp{𝑏𝐻

2
/𝜏}

exp{𝑏𝐻
2
/𝜏}

=
𝑣1

2𝑣2

min

b𝐻 ∈𝐻

(
exp{(𝑏𝐻

1
− 𝑏𝐻

2
)/𝜏} + 1

)
=

𝑣1

2𝑣2

(exp{(𝑏𝑚𝑖𝑛 − 𝑏𝑚𝑎𝑥 )/𝜏} + 1) ≥ 1 (9)

Solving Eq. 9, we obtain the value of 𝜏 for a cooperative relation

between the two agents (i.e., 𝑏1 ≥ 𝑏2) in Theorem 4.1. □

C OFFLINE DATASET SIMULATION
C.1 Environmental Setup
We adopt the modeling in subsection 4.3. We consider each hour as

an episode of length 60, with each minute in an hour as a timestep.

In implementation, the individual reward for each mean agent is

normalized for the sake of calculating social welfare: for mean agent

𝑖 at timestep 𝑡 , we normalized the individual reward 𝑟𝑡
𝑖
by dividing

it by the maximum total value (𝑉max

𝑖
=
∑
𝑡,𝑒∈𝐸𝑡 ,𝑘∈𝐺𝑖

𝑣𝑒
𝑖,𝑘

) that mean

agent 𝑖 could achieve along the episode.

C.2 Evaluation Procedure
The evaluation procedure is similar to the training process. We

evaluate the performance by pausing training after every 10,000

timesteps and running 5 independent test episodes with bar agents

removed and each agent performing greedy action selection in a

decentralized way. The reported performance is also normalized for

better comparisons: for calculating the performance of each group,

we first calculate the total value obtained by each group (𝑉𝑖 =∑
𝑡,𝑒∈𝐸𝑡 ,𝑘∈𝐺𝑖

𝑣𝑒
𝑖,𝑘
× 𝑥𝑒

𝑘
) and divide it by the maximum total value

𝑉max

𝑖
that this group could achieve along the episode. 𝑉𝑖/𝑉max

𝑖
is

adopted as the performance of the group. Social welfare is therefore

calculated as the sum of group performance.

C.3 Implementation Details
Each agent’s 𝑄 or 𝑄 network is a fully connected neural network

with 3 hidden layers and 64 nodes for each layer. Each 𝑄 or 𝑄

network takes as input the observation that includes the remaining

budget, mean value and the timesteps left along the episode, and

outputs the state-action 𝑄 or 𝑄 value for each candidate action.

Each agent selects actions from the interval [0, 5] that is discretized
into 21 equally spaced values, according to its 𝑄 or 𝑄 network.

During training, each agent explores the environment by fol-

lowing an 𝜖-greedy policy with linear 𝜖-annealing over 50k steps

from 1.0 to 0.05. We uniformly sample 32 episodes from the replay

buffer that contains the most recent 5000 episodes and perform a

single training step on 𝑄 networks after every episode. However,



(a) Agents’ bids for MAAB (b) Payments for three methods

Figure 6: Agents’ bids for MAAB and the payments for three
methods across each timestep of a selected episode. The
curves are smoothed over a sliding window of size 3.

for faster convergence, 𝑄 networks are updated twice after every

episode. The target networks for both 𝑄 and 𝑄 are updated every

200 training episodes.

To speed up the learning, mean agents and bar agents share

the parameters of the 𝑄 and 𝑄 network, respectively. Thus a one-

hot encoding of the agent id is concatenated onto each agent’s

observations. All neural networks are trained using RMSprop with

a learning rate 0.0005. We set 𝛾 = 0.99 and 𝜏 = 4. The advantages

are clipped to the range [0, 3].

C.4 Additional Analysis of the Bar Agents
To further illustrate the effectiveness of bar agents for improving

the platform’s revenue, we select an episode and plot the bids of

two agents across each timestep. The episode is selected in the

two-agent bidding environment for the simplicity of illustration.

We set 𝐵0 = 1 and 𝑟 = 0.5.

As shown in Figure 6(a), by comparing the solid line with the

dotted line in the same color, we find that bar agents’ bids are

strictly lower than those of their counterparts. This demonstrates

the effectiveness of bar gate as the violation of rule 𝑏𝑖 ≥ ¯𝑏𝑖 in

the bar gate prohibits both agents from receiving their rewards.

Interestingly, our results also reveal that bar agents’ bids have a

similar pattern as their counterparts. For example, both agent 1

(blue line) and bar agent 1 (blue dotted line) have a bidding peak

at timestep 19 and a bidding valley at timestep 60. For agent 2 (red

line) and its counterpart (red dotted line), similar patterns can also

be found at timestep 40 and 62. These patterns demonstrate that

bar agents, along with the bar gate, can adaptively set the bidding

bar by utilizing additional information such as impression value

and budget, which presents a clear benefit over MAAB-fix that does

not utilize extra information when determining the bidding bar.

In Figure 6(b), we also plot the payments for MAAB, MAAB-fix

(
¯𝑏 = 1) and MIX-IL across each timestep. We find that approaches

with bidding bar (MAAB, MAAB-fix) outperform the one without

it (MIX-IL) in terms of the payments, which implies that the bid-

ding bar could improve the revenue. Besides, payments of MAAB

are higher than MAAB-fix, which suggests adaptively setting the

bidding bar is superior to a static one.
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