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Abstract. Motivated by practical constraints in online advertising, we
investigate single-parameter auction design for bidders with constraints
on their Return On Investment (ROI) – a targeted minimum ratio be-
tween the obtained value and the payment. We focus on ex post ROI
constraints, which require the ROI condition to be satisfied for every
realized value profile. With ROI-constrained bidders, we first provide a
full characterization of the allocation and payment rules of dominant-
strategy incentive compatible (DSIC) auctions. In particular, we show
that given any monotone allocation rule, the corresponding DSIC pay-
ment should be the Myerson payment with a rebate for each bidder to
meet their ROI constraints. Furthermore, we also determine the opti-
mal auction structure when the item is sold to a single bidder under a
mild regularity condition. This structure entails a randomized allocation
scheme and a first-price payment rule, which differs from the determin-
istic Myerson auction and previous works on ex ante ROI constraints.

Keywords: Return on investment (ROI) · Mechanism design · Myerson
auction.

1 Introduction

Online advertising auctions are a vital source of revenue for many IT companies,
generating billions of dollars of revenue annually. In recent years, with tens of
millions of ad auctions being conducted in real-time each day, this large-scale and
complex market has prompted modern online advertising platforms to develop
auto-bidding services, which allow the advertisers to set up high-level marketing
goals for their ad campaigns and then bid on behalf of the advertisers.

⋆ Z. Zheng is the corresponding author.
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In these auto-bidding scenarios, advertisers’ financial constraints such as bud-
get and return on investment (ROI) constraints have become critical in auction
design. While auctions for budget-constrained bidders have been extensively
studied in the literature [22; 8; 19], research on auction design for bidders with
ROI constraints is still in its nascent stage. The ROI constraints of advertisers
require that the payment cannot be more than a certain fraction of the obtained
advertising value. In other words, there is a targeted minimum ratio between
the obtained value and the payment for an ROI-constrained bidder. Unlike bud-
get constraints which set a hard limit on payment, ROI constraints establish
a payment limit that is linearly related to the allocated value. Previous stud-
ies [16; 2] have demonstrated that ROI constraints align better with real-world
empirical evidence than budget constraints, and it is the aim of this paper to
explore how to design auctions with good incentive and revenue guarantees for
ROI-constrained bidders.

The existing literature on auction design for ROI-constrained bidders pri-
marily focuses on ex ante ROI constraints, which requires an expected ROI with
respect to the prior value distributions of bidders [16; 6]. This approach is suit-
able for advertisers who participate in a large number of auctions daily and are
only concerned with their average spend per unit of value. However, in reality,
most ad campaigns experience the “long-tail phenomenon” [9], which means they
only receive dozens of or fewer clicks per day. Under these conditions, an auction
with ex ante ROI guarantees may have a non-negligible probability of violating
the ROI constraints of these ad campaigns over a day. Due to these reasons,
in this work, we focus on the ex post or hard ROI constraints, which ensures
that the auction respects the ROI constraints of bidders for any realized value
profile. This is a stronger requirement compared to ex ante ROI constraints and
addresses the limitation of current auction design methods.

1.1 Our Results

In this work, we examine the design of truthful and optimal auction design for
ex post ROI-constrained bidders. We inherit the setting from the classic single-
parameter mechanism design and consider the values of bidders as private infor-
mation and the targeted ROIs as public information. In this single-parameter en-
vironment, the ROI constraints can be integrated into the objective function (see
Section 2 for details), resulting in a transformed utility model: ui =Mivixi−pi,
where ui represents the utility of bidder i, vi is the value, xi is the allocation
quantity, and pi is the payment. Here Mi > 1 is the targeted ROI ratio, which
differentiates this model from the classical quasilinear utility model.

We first study the characterizations of truthful auctions with ROI-constrained
bidders. Compared to Myerson’s characterization of truthful auctions in the
single-parameter environment, we show that the monotonicity requirement of the
allocation rule remains true for ex post ROI-constrained bidders, but the unique
payment rule in [24] should be modified by subtracting a max term, which can be
interpreted as a “rebate” equal to the largest “violation” of the Myerson payment
to the ROI constraint for all lower valuations. This is a full characterization that
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completely describes all truthful auctions with ROI-constrained bidders. This re-
sult can be proved using similar techniques from Myerson’s analysis. It can also
be derived from the following alternative interpretation of the payment rule: note
that the ROI-constrained bidder assigns a weight Mi > 1 to her obtained value
vixi from the allocation, but not to her payment. To not violate the individual
rationality (IR) condition, instead of applying a naive approach that charges
the bidder Mi times the Myerson payment, we must iteratively apply the Myer-
son payment increment (multiplied by Mi) in small intervals and truncate the
payment at the obtained value whenever necessary.

Next, we turn our focus to the optimal (i.e. revenue-maximizing) auction de-
sign. The additional max term in our payment rule poses a significant challenge
to the optimal auction design, since it is unclear how this term can be incorpo-
rated into a modified virtual valuation function as seen in previous literature.
Instead, we concentrate on the case of selling a single item to a single bidder.
Our main result suggests that under a mild regularity assumption known as de-
creasing marginal revenue (DMR)1, the optimal auction for selling to a single ex
post ROI-constrained bidder employs a randomized scheme. More specifically,
the allocation rule x(·) starts with a first-price interval, where the payment al-
ways matches the obtained value, until it reaches the highest allocation and x(·)
becomes constant thereafter. This finding is in contrast to the classic Myerson
auction [24] and previous results for bidders with ex ante ROI constraints, where
the optimal auctions are always deterministic. It implies that similar to much
literature on optimal mechanism design for multi-parameter settings, a slight
generalization, such as the inclusion of the Mi term, in the single-parameter
setting can lead to randomized optimal auctions.

1.2 Related work

There are two main threads of studies of auctions with ROI-constrained bidders.
The first thread investigates how the bidding strategies of the bidders are affected
by the ROI constraints in classic VCG or generalized second price (GSP) auc-
tions [26; 7; 15; 27; 1; 18; 3]. The second thread, which our paper follows, focuses
on the design of auctions with ROI-constrained bidders, which is of practical in-
terest to many online advertising platforms [16; 6; 15; 20; 10; 28; 21; 5; 23]. In this
line of study, the most related work to ours is [16], which showed empirically that
a fraction of the buyers in online advertising are indeed ROI-constrained. They
also took the first step towards revenue-maximizing auction design for bidders
with ex ante ROI constraints. Note that ex ante ROI constraints only require
the ROI conditions to be met in expectation and are strictly weaker than ex post
ROI constraints. Another recent work [6] considered the scenario where either
the value or the ROI constraint is private information of the bidder. They used

1 DMR requires the marginal revenue, vf(v) + F (v) − 1 to be non-decreasing in the
value space. This is different from the usual definition of regularity which requires
the same monotonicity but in the quantile space. Please see the related work section
for a more detailed discussion of their differences and more related works.
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a similar utility function as ours, but still focus on the concept of ex ante ROI.
Unlike these works, we concentrate on ex post ROI constraints, which provide
a hard ROI guarantee for bidders in every possible value realization. In [12; 4],
the authors considered ex post ROI constraints in multiple stages, and assumed
that each bidder maintains a fixed bid multiplier among stages, which leads to
completely different problems from ours.

One particular line of research focuses on requirements of truthfulness for ex
post ROI constraints. Cavallo et al. studied the same utility function as ours
in [10, Appendix A], and investigated the corresponding payment rules. The
main difference is that, they limited their focus on deterministic mechanisms
for bidders with identical ROI constraints, while we consider a more general
single-parameter setting in the randomized mechanism domain. Li et al. [20]
proposed a condition on truthfulness of the ROI information, based on which
they provided a mechanism framework using tools from control theory. They
took the ROI constraints as private information, instead of the value, which
leads to a substantially different problem from ours.

The DMR assumption used in our optimal auction characterization has been
widely discussed in the literature. It means that the function ψ(v) , vf(v) +
F (v)− 1 is non-decreasing, or equivalently v · (1− F (v)), which is the expected
revenue of selling the item at price p, is concave, and this is where the name of this
condition comes from. Intuitively, many commonly used distribution functions
satisfy this assumption, e.g., uniform distributions, and any distribution of finite
support and monotone non-decreasing density. The DMR condition was first
proposed in [11] for bidders with budget constraints. In [14], the authors found
that the DMR condition is more natural in their setting than the traditionally
used notion of regularity [24], since DMR precisely removes the requirement of
ironing in the value space, instead of in the quantile space as in [24]. In [13],
DMR was discussed comprehensively, and the authors showed that the optimal
mechanism is deterministic under the DMR condition in a multi-unit setting
with private demands. We refer the reader to their work for concrete examples
and more discussion.

2 Preliminaries

We consider a general single-parameter auction environment, which consists of
a seller and n bidders N = {1, 2, ..., n}. Each bidder i has a private valuation
ti per unit of the good. We represent xi as the quantity of the allocated good
to bidder i and pi as the payment of bidder i. Without loss of generality, we
assume the maximum possible allocation is xmax

i = 1 and the good is indivisible,
that is, xi denotes the probability of bidder i receiving the good. Besides the
allocated value, each bidder also has a return on investment (ROI) constraint
Mi, as public information2, which specifies the minimum targeted ratio between
her obtained value and the payment. We assume 1 < Mi < +∞ in this work.

2 This setting is practical and prevalent in practice, e.g., in online advertising, the
targeted ROI typically remains the same over a certain period.



Auction Design for Bidders with Ex Post ROI Constraints 5

We note that the ROI constraint is considered in an ex post measure, i.e., it
requires that tixi

pi

≥ Mi strictly holds in the outcome of every auction instance.

Note that the same model is also adopted in [10, appendix A].
With the above definitions, the utility of bidder i is given by

ui =

{
tixi − pi if tixi

pi

≥Mi

−∞ otherwise.
(1)

It is worth noting that this is the standard quasilinear utility model with the
addition of the ROI constraint. We can further define

vi =
ti
Mi

,

which could be interpreted as the maximum willingness-to-pay of the bidder i
per unit of the good. Then, we can rewrite the utility function as

ui =

{
Mivixi − pi if vixi ≥ pi
−∞ otherwise.

(2)

One can observe that, as Mi is a public constant, vi and ti are completely inter-
changeable. To avoid confusion, we use the term value to represent vi, and initial
value to represent ti in the following discussion. Each value vi is independently
drawn from a probability distribution Fi : [0, vmax] → [0, 1], with a continuous
probability density function fi. While the distributions Fi’s are common knowl-
edge, the exact value vi is known only to the bidder i. We denote v as the value
profile of all bidders, and v−i as that of all bidders except bidder i.

In an auction, each bidder reports her value as bi, which is not necessarily
equal to vi. We define b and b−i similarly as the notations of v and v−i. Based on
the reported bids, an auction mechanism consists of an allocation rule xi(bi,b−i),
mapping the bid profile to the allocated quantity to each bidder i, and a payment
rule pi(bi,b−i), mapping the bid profile to the payment for each bidder. When
clear from context, we will omit b−i in the mappings. We also use ui(bi, vi) to
represent the utility of bidder i who has value vi and bid bi. In the following
discussion, we assume that the allocation rule xi(·) is always right-differentiable,
and there are finite non-differentiable points. When xi(·) is non-continuous at v,
let xi(v) = limz→v+ xi(z).

We are interested in auctions that are dominant-strategy incentive compatible
(DSIC) and individually rational (IR).

Definition 1 (Dominant-Strategy Incentive Compatibility, DSIC). A mecha-
nism is dominant-strategy incentive compatible if and only if

ui(vi, vi) ≥ ui(bi, vi), ∀bi,b−i, i ∈ N .

Definition 2 (Individual Rationality, IR). A mechanism is individually rational
if and only if

ui(vi, vi) ≥ 0, ∀vi,b−i, i ∈ N .
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For ease of notation, we use truthfulness to represent the properties of both
DSIC and IR in the following sections. In addition, for truthful auctions, we do
not distinguish vi and bi hereinafter.

The revenue of a truthful auction is defined as

rev = Ev

[
∑

i∈N

pi(vi)

]
.

The aim of this work is to characterize both truthful and revenue-maximizing
(optimal) auctions with ex post ROI-constrained bidders.

3 Characterize the Structure of DSIC Auctions

In this section, we present characterizations of the DSIC auctions with ex post
ROI constraints. These results generalize the classical Myerson’s Lemma [24]
for the traditional utility model (i.e., Mi = 1), which states that in the single-
parameter environment, a mechanism is DSIC if and only if its allocation rule
is monotone and the payment scheme follows a unique rule.

Lemma 1 (Myerson’s Lemma [24]). For traditional bidders with Mi = 1, a
single-parameter mechanism is DSIC if and only if:

– [Monotone Allocation Rule] the allocation rule is monotonically non-decreasing,
i.e., xi(v) ≤ xi(v

′) for all v < v′ and bidder i;
– [Unique Payment Rule] for each monotonically non-decreasing allocation rule
xi(·), and pi(0) = 0, the payments are given by

pi(v) = vxi(v) −

∫ v

0

xi(z) dz. (3)

Clearly, these results cannot be directly applied to the ROI-constrained bid-
ders, because the payment derived from Myerson’s Lemma may violate the ROI
constraints. The main result in this section is a complete characterization of the
DSIC mechanisms with ROI-constrained bidders. We will see that the mono-
tonicity condition for the allocation remains the same, but the payment rule
needs to be modified appropriately to accommodate the ROI constraints.

Theorem 2 (Characterization). For ex post ROI-constrained bidders, a single-
parameter mechanism is DSIC if and only if:

– [Monotone Allocation Rule] the allocation rule is monotonically non-decreasing,
i.e., xi(v) ≤ xi(v

′) for all v < v′ and bidder i;
– [Unique Payment Rule] for each monotonically non-decreasing allocation rule
xi(·), and pi(0) = 0, the payments are given by

pi(v) =Mip̃i(v) − max
0≤z≤v

{Mip̃i(z)− zxi(z)}, (4)

where p̃i is the Myerson payment given in (3).
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We can interpret this characterization from two perspectives: First, from
the perspective of the initial value ti of bidder i, it suggests that compared to
the classic Myerson auction, an ROI-constrained bidder with value v will need
to pay the initial Myerson payment Mip̃i(v) (recall that ti = Mivi), minus a
“rebate” which equals to the largest “violation” of the Myerson payment to the
ROI requirement when the bidder’s valuation is no more than v.

Second, from the perspective of the value vi, since the ROI-constrained bidder
assigns a weightMi > 1 to her obtained value from the allocation, but not to her
payment, a naive application that charges the bidder Mi times of the Myerson
payment may violate the IR constraint. Therefore, we need to iteratively apply
the Myerson payment increment (multiplied by Mi) in small intervals and trun-
cate the payment at the value whenever necessary. These two perspectives are
mathematically equivalent, and we adopt the second perspective in the following
for exposition convenience.

Next, before proving this theorem, some observations are immediate from
this characterization. We defer the proof of these observations to Appendix A.

Proposition 1.

1. We always have pi(v) ≤ vxi(v) and pi(v) ≤ Mip̃i(v) for any bidder i and
value v in DSIC mechanisms.

2. The payment function pi(·) is monotonically non-decreasing for any bidder
i in DSIC mechanisms.

Now we proceed to prove Theorem 2. The proof consists of showing the
following claims in sequence. It is not difficult to see that these three claims
together imply Theorem 2.

1. For ex post ROI-constrainted bidders, if a mechanism is DSIC, then the
allocation rule must be monotonically non-decreasing.

2. Any monotonically non-decreasing allocation rule xi(·) with the payment
rule given in (4) produces a DSIC mechanism.

3. Given any monotone allocation rule x(·), the payment rule p(·) such that
(x, p) is DSIC, if exists, must be unique.

The analyses of steps (1) and (3) are very similar to the proof of the original
Myerson’s Lemma, and we defer the details to Appendix B and C. Next, we prove
step (2). When clear from context, we will drop the subscript i in xi(·), pi(·), ui(·)
and Mi as shorthand in the following proofs.

Proof of Step (2). Consider a bidder i with private valuation v and fix the other
bids b−i. We examine the utilities of bidder i when she bids her true valuation
and when she bids some different value v′ 6= v. Consider two cases.

– When v′ < v, we have max0≤z≤v{Mp̃(z) − zx(z)} ≥ max0≤z≤v′{Mp̃(z) −
zx(z)}, which implies

p(v)− p(v′) ≤M(p̃(v)− p̃(v′)).
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This inequality effectively removes the max term in the payment formula (4)
and reduces the problem to that with the Myerson payment. This allows us
to apply the standard argument for the Myerson auction to show the DSIC
property of our mechanism. We show the analysis below for completeness.
We can compute the utility difference of bidder i when she bids v and v′,
and get

u(v, v)− u(v′, v) = (Mvx(v) − p(v))− (Mvx(v′)− p(v′))

≥M(vx(v) − p̃(v))−M(vx(v′)− p̃(v′))

=M

∫ v

0

x(z) dz −M

(
vx(v′)− v′x(v′) +

∫ v′

0

x(z) dz

)

=M

(∫ v

v′

x(z) dz − (v − v′)x(v′)

)

≥M

(∫ v

v′

x(v′) dz − (v − v′)x(v′)

)
= 0,

where the second equality is by plugging in the Myerson payment formula (3).
This means bidder i has no incentive to misreport her valuation v as v′ in
this case.

– When v′ > v, we examine max0≤z≤v{Mp̃(z)−zx(z)} and max0≤z≤v′{Mp̃(z)−
zx(z)}. There are two possibilities:
• If these two terms are equal, then we can apply the same argument as in
the previous case (and also as in the Myerson auction analysis) to prove
the DSIC property. We omit the details here.

• If max0≤z≤v{Mp̃(z)− zx(z)} < max0≤z≤v′{Mp̃(z)− zx(z)}, this means
argmax0≤z≤v′{Mp̃(z) − zx(z)} = v∗ > v. Then at valuation v′, we
should have

p(v′) =Mp̃(v′)− (Mp̃(v∗)− v∗x(v∗))

=M

(
v′x(v′)− v∗x(v∗)−

∫ v′

v∗

x(z) dz

)
+ v∗x(v∗)

(replace M by 1) ≥ v′x(v′)−

∫ v′

v∗

x(z) dz

≥ v′x(v′)−

∫ v′

v∗

x(v′) dz

= v′x(v′)− (v′ − v∗)x(v′)

= v∗x(v′) > vx(v′).

That is to say, when reporting v′, the payment of bidder i will be greater
than the value she obtains (which is vx(v′)), therefore violating the IR
condition. So bidder i has no incentive to misreport as v′ in this case.
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4 Optimal Auction Design for a Single Bidder

Having obtained the precise characterization of the allocation rule and payment
function in the setting with ROI constraints, we now turn to the revenue max-
imization auction design. Recall that in the Myerson auction [24] and previous
works in the ex ante ROI constraints setting [6; 16], the revenue maximization
problem is reduced to the problem of maximizing (modified) virtual welfare.
Unfortunately, with ex post ROI constraints, the payment function characteri-
zation (4) involves an additional max term compared to the Myerson payment,
and it is unclear how to incorporate this term into a modified virtual valuation
formulation. We present the following simple example with a single bidder to
demonstrate that, unlike the Myerson auction, the allocation that maximizes
the virtual welfare may no longer be optimal with ROI-constrained bidders.

x(v)

v

p(v) = 1
2

1
2

1

1

0

(a) The Myerson auction

x(v)

v

p(v) = 3
4

p(v) = vx(v)

3
4

1

1

0

(b) The optimal auction for ROI-
constrained bidders

Fig. 1: The Myerson auction and the optimal auction for one bidder with uniform
value distribution over [0, 1] and M = 2.

Example 1. Consider selling a single item to a single bidder with ROI con-
straint M = 2 and valuation for the item v following a uniform distribution
U [0, 1]. If we disregard the ROI constraint ( i.e., let M = 1), the virtual valua-
tion of this bidder is φ(v) = 2v− 1, and the optimal Myerson auction, as shown
in Fig. 1a, sells the item at price p = 1

2 with the expected revenue of 1
2 · 1

2 = 1
4 .

However, with the ROI constraint M = 2 in presence, this allocation rule
(x(v) = 0 when v < 1/2 and x(v) = 1 otherwise) is no longer optimal. As shown
in Fig. 1b, the optimal auction, which will be proved in Theorem 5 later in this
section, is a randomized auction with the allocation rule given by

x(v) =

{
4
3v if v ≤ 3

4
1 if v > 3

4 .

This allocation rule would generate an expected revenue of 3
8 , which is higher

than 1
4 .
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This example already highlights an important feature of the optimal auction
with ROI constraints: the allocation and payment may be randomized, even in
the simple setting with a single bidder and uniform value distribution. It also
suggests that it is difficult to follow the Myerson auction regime and reduce the
revenue maximization problem to a welfare maximization problem with some
modified virtual valuation. It seems a very challenging problem to obtain a char-
acterization for the optimal auction in this setting. Instead, in this section we
focus on the special case when the item is sold to a single bidder. As we will show
in the following analysis, this is already a nontrivial and interesting problem to
design an optimal auction for a single bidder.

First, we show that with a single ROI-constrained bidder, the max term in
the payment formula (4) would be always 0, reducing the payment rule (4) to
the standard Myerson payment (multiplied by a factor ofM). We defer the proof
to Appendix D.

Lemma 3. In the optimal auction with a single ROI-constrained bidder, let
(x, p) be the revenue-maximizing auction, then we have Mp̃(v) ≤ v · x(v) for
any value v ∈ [0, vmax]. In other words, max0≤z≤v{Mp̃(z) − zx(z)} = 0 (which
is achieved at z = 0) for all v ∈ [0, vmax], and the payment rule reduces to
p(v) =Mp̃(v).

With Lemma 3 at hand, it seems with a single bidder, we are back to the
classic Myerson regime, where the revenue maximization problem can be con-
verted to a welfare maximization problem with respect to the virtual valuation.
That is, recall from the Myerson’s theorem [24], we have

rev =

∫ vmax

0

φ(v)x(v)f(v) dv,

where φ(v) =
(
v − 1−F (v)

f(v)

)
is the virtual valuation. However, we still have the

additional constraint that Mp̃(v) ≤ v · x(v) for every v. This restricts our al-
location space and turns the problem into a constrained welfare maximization
problem.

In the following, we provide some further characterizations on the structure
of the optimal auction with a single ROI-constrained bidder. We defer the proof
to Appendix E.

Lemma 4. With a single ROI-constrained bidder, there always exists a revenue-
maximizing auction such that for any valuation v, at least one of the following
statements holds:

– the derivative of allocation rule at the valuation v exists, and x′(v) = 0;
– the payment follows the first-price rule, i.e., p(v) = vx(v).

Lemma 4 allows us to focus on auctions with a very specific structure: as
long as the allocation is not constant, it always follows the first-price payment
rule. In particular, combining with Lemma 3, it implies whenever x′(v) exists
and x′(v) > 0, we always have p = vx(v) =Mp̃(v).
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Next, we want to obtain a further characterization of the optimal auction with
a single bidder. However, to do this would require us to make a mild assump-
tion on the value distribution of the bidder, which is known as the Decreasing
Marginal Revenue (DMR) condition by [13].

Definition 3 (Decreasing Marginal Revenue, DMR). The value distribution of
a bidder satisfies the condition of decreasing marginal revenue if and only if the
function

ψ(v) , φ(v)f(v) = vf(v) + F (v)− 1

is monotonically non-decreasing.

Note that ψ(v) being non-decreasing is equivalent to the fact that v·(1−F (v)),
which is the expected revenue of selling the item at price p, being concave, and
this is where the name of this condition comes from. Intuitively, many commonly
used distribution functions satisfy this assumption, e.g., uniform distributions,
and any distribution of finite support and monotone non-decreasing density. The
DMR condition is closely related to the regularity condition but they are incom-
patible3. We refer the reader to [13] for concrete examples and more discussion.

With the assumption of DMR, the optimal auction exhibits an even simpler
structure than what is described in Lemma 4, namely that there exist only two
intervals in the optimal auction: interval of (0, D) with x′(v) > 0 and interval
of (D, vmax) with x′(v) = 0, where D is a threshold valuation between them.
This leads to our main theorem in this section, which characterizes the optimal
allocation rule and payment rule for a single ROI-constrained bidder.

Theorem 5. The optimal auction for a single ex post ROI-constrained bidder
with a DMR value distribution over [0, vmax] is as follows:

– when v < D, the allocation is given by

x(v) =
( v
D

) 1
M−1

,

and the payment follows the first-price rule, i.e., p(v) = vx(v);
– when v ≥ D, the allocation rule is x(v) = 1, and the payment is given by
p(v) = D.

Here D is a threshold valuation given as follows:

– if
∫ vmax

0 ψ(v)v
1

M−1 dv > 0, then D = D∗ such that
∫D∗

0 ψ(v)v
1

M−1 dv = 0;

– if
∫ vmax

0
ψ(v)v

1
M−1 dv ≤ 0, then D = vmax.

This theorem provides an important insight that the optimal auction in the
ROI-constrained setting is a randomized mechanism. Note that Myerson’s opti-
mal auction in the single-parameter setting is deterministic, but a decent body

3 The regularity condition is equivalent to the expected revenue being concave in the
quantile space, while the DMR condition means the expected revenue is concave in
the value space.
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of works has shown that many generalizations to multi-parameter settings will
lead to randomized optimal auctions [25; 17]. Theorem 5 indicates that, even in
the single-parameter environment, a slight generalization with an ROI constraint
to the bidder will also lead to a randomized optimal auction.

We prove the theorem via the following steps. First, we derive the allocation
of an optimal auction in an interval (0, v∗) when x′(v) is always positive in that
interval. Then, we show in Lemma 6 that there exist only two intervals in the
optimal auction: interval of (0, D) with x′(v) > 0 and interval of (D, vmax) with
x′(v) = 0. Finally, we will compute the optimal threshold valuation D between
these two intervals.

Proposition 2. If for some v∗ ∈ (0, vmax], we have x′(v) > 0 for all v ∈ (0, v∗)
in an optimal auction, then x(·) is continuous at v∗, and the allocation rule x(v)
for all v ∈ [0, v∗] is given as:

x(v) =
( v
v∗

) 1
M−1

x(v∗).

Proof. We first assume x(·) is continuous at v∗, and we will prove later that,
if it is discontinuous, we can improve the revenue without violating the DSIC
property. By Lemma 3 and Lemma 4, we get that for all valuations v ∈ [0, v∗],
Mp̃(v) − vx(v) = 0 always holds, that is,

M

(
vx(v) −

∫ v

0

x(z) dz

)
− vx(v) = 0.

After transposition and derivation, this translates to

x(v)− (M − 1)vx′(v) = 0.

By solving this differential equation with the value of x(v∗) at valuation v∗, we
can get

x(v) =
( v
v∗

) 1
M−1

x(v∗), ∀v ∈ [0, v∗]. (5)

Next, if x(·) is discontinuous at v∗, we need to replace x(v∗) in (5) with x(v∗−),
i.e., the left limit of x(·) at v∗ (recall that we denote x(v∗) as the right limit
when it is discontinuous). Since x(v∗−) < x(v∗), we can observe that directly
using (5) as the allocation rule will increase the revenue without violating the
DSIC property, which also makes x(·) continuous at v∗. This concludes the proof.

Lemma 6. For a single ROI-constrained bidder with DMR value distribution,
if there exist intervals with x′(v) = 0 in an optimal auction, then there is exactly
one such interval, and it appears in the highest value region.

Proof. Assume by contradiction that there exist multiple intervals with x′(v) = 0
in an optimal auction. Pick (v, v̄) to be the first such interval. That is, we have
x′(v) > 0 for all v ∈ (0, v), x′(v) = 0 for all v ∈ (v, v̄), and v̄ < vmax.
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First, we must have v > 0. That is, the allocation rule cannot start with a
flat interval. To see why this is true, assume otherwise that v = 0. We focus
on a point v′ = v̄ + δ in the next interval for a sufficiently small δ > 0 such
that v′ < Mv̄. Then there are two cases: (1) x′(v′) = 0 and (2) x′(v′) is strictly
positive. In the first case, we will have x(v̄) > 0, and the Myerson price at v̄
will be p̃(v̄) = v̄ · x(v̄) < Mp̃(v̄), which directly contradicts Lemma 3. In the
second case, we look at the payment p(v′) at point v′. Note that since x′(v) > 0,
by Lemma 3 and Lemma 4, we should have Mp̃(v′) = v′x(v′). But this cannot
happen because

Mp̃(v′) =M

(
v′x(v′)−

∫ v′

0

x(z) dz

)
=M

(
v′x(v′)−

∫ v′

v̄

x(z) dz

)

> M (v′x(v′)− (v′ − v̄)x(v′)) =Mv̄x(v′) > v′x(v′).

Knowing v > 0, by Proposition 2, we know x(·) is continuous at v, and the
allocation in [0, v] is given as:

x(v) =

(
v

v

) 1
M−1

x(v), ∀v ∈ [0, v].

Next, combined with p(v̄) = v̄x(v̄), we have Mp̃(v̄) − v̄x(v̄) = Mp̃(v) − vx(v),
that is,

x(v̄) =
Mv̄ − v

(M − 1)v̄
· x(v). (6)

In order to argue that allocation rule x(·) is not revenue-maximizing, we
construct a new allocation rule as

x̄(v) =




x(v) if v ≥ v̄
(v
v̄

) 1
M−1

x(v̄) if v ∈ [0, v̄).
(7)

That is, we replace the first price interval [0, v] and the flat interval [v, v̄] in x(·)
with a single first-price interval [0, v̄] in x̄(·). Comparing the two allocation rules
x(·) and x̄(·), we first note from Lemma 3 and Lemma 4 that p(v̄) = Mp̃(v̄) =
v̄x(v̄) = v̄x̄(v̄), which indicates that

∫ v̄

0

x(z) dz =

∫ v̄

0

x̄(z) dz, (8)

because both sides equal to v̄x(v̄)(M − 1)/M . Next, we have for v ∈ [0, v],

x̄(v)− x(v) =
(v
v̄

) 1
M−1

x(v̄)−

(
v

v

) 1
M−1

x(v)

= v
1

M−1 · x(v) ·

((
1

v

) 1
M−1

−

(
1

v̄

) 1
M−1

·
Mv̄ − v

(M − 1)v̄

)
.
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Since v only appears in the first term, x̄(v)−x(v) must be constantly positive or
negative in (0, v], determined by the last term. Combined with (8) and x′(v) =
0, ∀v ∈ (v, v̄), we know it is constantly negative, i.e., x̄(v) < x(v) for all v ∈ (0, v].
Therefore, there exists a threshold v∗ ∈ (v, v̄) such that x(v) > x̄(v) for all
v ∈ [0, v∗) and x(v) ≤ x̄(v) for all v ∈ [v∗, v̄). Combining this with Equation (8),
we have ∫ v∗

0

(x(z)− x̄(z)) dz =

∫ v̄

v∗

(x̄(z)− x(z)) dz > 0. (9)

Next, for any allocation rule x(·), we denote

rev
x(·)
[0,v̄] =M

∫ v̄

0

ψ(z)x(z) dz,

and we can compare the revenue generated from x(·) and x̄(·) in the interval
[0, v̄]:

rev
x(·)
[0,v̄] − rev

x̄(·)
[0,v̄] =M

(∫ v∗

0

ψ(z)(x(z)− x̄(z)) dz −

∫ v̄

v∗

ψ(z)(x̄(z)− x(z)) dz

)
.

Finally, we can see that this difference is always negative due to Equation (9)
and the fact that ψ(·) is non-decreasing.4 Fig. 2 demonstrates the idea of this
argument.

v

x̄(v)

x(v)

v v̄v∗0

Fig. 2: An illustration for the proof of Lemma 6 with M = 3. The blue line
denotes an allocation rule x(·) with x′(v) = 0 in (v, v̄) where v̄ < vmax, and x(v)
for v ∈ [0, v) is computed by Proposition 2. The red line denotes our constructed
allocation rule x̄(·) as given in (7). The point v∗ denotes the intersection of x(·)
and x̄(·). By Equation (9) we have the areas of the two shadowed regions are the
same. Furthermore, as ψ(·) is non-decreasing, we can conclude that x̄(·) leads to
a higher revenue than x(·).

Therefore, we conclude that x̄(·) generates a higher revenue than x(·), contra-
dicting the fact that (x, p) is an optimal auction. This completes the proof.

4 We omit an ill-defined special case where ψ(v) = 0, ∀v ∈ [0, v̄], since in such case
ψ(v) will be infinity when v → 0.
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We now proceed to complete the proof of Theorem 5.

Proof of Theorem 5. By Lemma 6, we know x′(v) > 0 for all valuations v ∈
(0, D) and x′(v) = 0 for all valuations v ∈ (D, vmax). First, we have x(D) = 1,
since otherwise, the revenue could be improved by setting x(v) = 1 for all v ∈
[D, vmax]. Next, we find the optimal threshold D∗ that maximizes the overall
revenue. By Proposition 2, the allocation rule for valuations v ∈ [0, D] is

x(v) =
( v
D

) 1
M−1

· x(D) =
( v
D

) 1
M−1

, ∀v ∈ [0, D].

And the overall revenue is

rev =

∫ D

0

ψ(v)
( v
D

) 1
M−1

dv +

∫ vmax

D

ψ(v) dv.

In order to maximize this revenue, we compute its derivative

drev

dD
= −

1

M − 1
·D− M

M−1 ·

∫ D

0

ψ(v)v
1

M−1 dv. (10)

Looking at this derivative, we see that the term − 1
M−1 ·D− M

M−1 is always neg-

ative and v
1

M−1 is always positive. Furthermore, we have ψ(0) = −1 < 0 and
ψ(vmax) > 0. By the DMR condition, ψ(·) is non-decreasing. Therefore, we have
the following two cases:

– If
∫ vmax

0 ψ(v)v
1

M−1 dv > 0, then by letting
∫D∗

0 ψ(v)v
1

M−1 dv = 0, the revenue
will increase with D until D∗ and then decrease. Therefore, the optimal
solution is achieved at D = D∗.

– If
∫ vmax

0
ψ(v)v

1
M−1 dv ≤ 0, then the revenue will always increase with D until

vmax. Therefore, the optimal solution is achieved at D = vmax.

This completes the proof.

5 Conclusion

In this paper we discuss optimal auction design for bidders who have ex post
ROI constraints. We provide characterizations for DSIC auctions and optimal
auctions with a single bidder in this setting. We show that the optimal auc-
tion may entail a randomized allocation scheme even in the simple single-bidder
setting.

There are several important open questions left in this model. The first and
foremost one is to characterize the optimal auction with a single item and mul-
tiple ROI-constrained bidders. As we have discussed in the paper, this would
require us to go beyond the virtual welfare maximization regime in the Myerson
auction setting. We believe such characterization could shed light on the mecha-
nism design for bidders with non-quasilinear utility functions and provide useful
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insights for practical applications such as online advertising. Another direction is
to study ex post ROI constraints when the target ratio Mi is also private infor-
mation of bidder i. This brings the problem to the domain of multidimensional
mechanism design, which is often challenging in the mechanism design literature.
Here one possible approach is to identify conditions under which some “simple”
and deterministic auctions are optimal or close to optimal.
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A Proof of Proposition 1

Proof. First, we haveMip̃i(0)−0 ·xi(0) = 0 since xi(0) = 0 and pi(0) = 0. Then
we can observe that

max
0≤z≤v

{Mip̃i(z)− zxi(z)} ≥Mip̃i(0)− 0 · xi(0) = 0.

Therefore, pi(v) ≤Mip̃i(v). Similarly, we have

max
0≤z≤v

{Mip̃i(z)− zxi(z)} ≥Mip̃i(v)− vxi(v),

hence

pi(v) ≤Mip̃i(v) − (Mip̃i(v)− vxi(v)) = vxi(v).

For the second statement, we prove that for any values v < v′ ∈ [0, vmax],
pi(v) ≤ pi(v

′). we consider the following two cases:

– When

max
0≤z≤v

{Mip̃i(z)− zxi(z)} = max
0≤z≤v′

{Mip̃i(z)− zxi(z)},

we have

pi(v
′)− pi(v) =Mi(p̃i(v

′)− p̃i(v)) ≥ 0.

– When

max
0≤z≤v

{Mip̃i(z)− zxi(z)} < max
0≤z≤v′

{Mip̃i(z)− zxi(z)},

we denote

v∗ = argmax
0≤z≤v′

{Mip̃i(z)− zxi(z)}.

Then we have that

pi(v
∗) =Mip̃i(v

∗)− (Mip̃i(v
∗)− v∗xi(v

∗)) = v∗xi(v
∗),

and

max
0≤z≤v∗

{Mip̃i(z)− zxi(z)} = max
0≤z≤v′

{Mip̃i(z)− zxi(z)}.

By the analysis of the above case, we have

pi(v
′) ≥ pi(v

∗) = v∗xi(v
∗) > vxi(v) ≥ pi(v).
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B Proof of Monotone Allocation Rule (Step 1 of
Theorem 2)

Lemma 7 (Monotone Allocation Rule). For ex post ROI-constrained bidders, if
a mechanism is DSIC, then the allocation rule is monotonically non-decreasing,
that is, xi(v) ≤ xi(v

′) for all v < v′ and bidder i.

Before the proof, we first present elementary inequalities derived from the
property of truthfulness for ex post ROI-constrained bidders.

Given values v, v′ with v < v′, by the truthfulness requirement, when a
bidder i with value v misreports v′, we have

Mivxi(v
′)− pi(v

′) ≤Mivxi(v)− pi(v), (11)

or
pi(v

′) > vxi(v
′). (12)

Similarly, considering bidder i with value v′ misreports v, we obtain that

Miv
′xi(v) − pi(v) ≤Miv

′xi(v
′)− pi(v

′), (13)

or
pi(v) > v′xi(v). (14)

One can observe that (14) contradicts the IR requirement since pi(v) ≤ vxi(v) <
v′xi(v). Hence, in a truthful mechanism, (13) must hold, and at least one of (11)
and (12) holds. On the basis of this elementary analysis, we now prove Lemma 7.

Proof. We prove the monotonicity by contradiction. Let v < v′, we assume
xi(v) > xi(v

′) in a truthful mechanism. Then we prove that (11) and (13) are
not compatible. By (13), we get

pi(v)− pi(v
′) ≥Miv

′ · (xi(v)− xi(v
′)). (15)

Similarly, by (11), we obtain

pi(v)− pi(v
′) ≤Miv · (xi(v)− xi(v

′)). (16)

Combining (15) and (16), we haveMiv
′ · (xi(v)−xi(v

′)) ≤Miv · (xi(v)−xi(v
′)).

However, since xi(v) > xi(v
′) and v′ > v, we can derive a contradiction.

Next, we continue to prove that (12) and (13) are not compatible. By the IR
property, we have

pi(v) ≤ vxi(v). (17)

Combining (12), (13), and (17), we obtain

Miv
′xi(v) − vxi(v) < Miv

′xi(v
′)− vxi(v

′),

that is,
(Miv

′ − v) · xi(v) < (Miv
′ − v) · xi(v

′). (18)

As we have xi(v) > xi(v
′) and v < v′, (18) does not hold. In conclusion, we

obtain that a mechanism could not be truthful if xi(v) > xi(v
′), and hence, the

allocation function xi(v) must be monotonously non-decreasing.
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C Proof of Uniqueness of Payment (Step 3 of Theorem 2)

Lemma 8 (Uniquessness of Payment). Given any monotonically non-decreasing
allocation rule x(·) and p(0) = 0, there exists a unique payment rule p(·) such
that (x, p) is DSIC.

Proof. For any bidder i and any vi ∈ [0, vmax]. We consider two valuations vi and
wi = vi + δ for some sufficiently small δ > 0. Following the payment sandwich
inequality techniques used in the original Myerson’s proof, we have

u(vi, vi) ≥ u(wi, vi) and u(wi, wi) ≥ u(wi, vi).

This gives us two inequalities that can together sandwich the payment pi(v).
If we follow Myerson’s original analysis and replace each utility with the value

minus the payment for the bidder, these two inequalities would give us

Mivi(xi(wi)− xi(vi)) ≤ pi(wi)− pi(vi) ≤Miwi(xi(wi)− xi(vi)).

In the limit, as δ approaches 0, we can divide each side by δ and get

dpi(vi)

dvi
=Mivi

dxi(vi)

dvi
. (19)

The uniqueness of the payment rule then follows by integrating (19) from 0 to
each value v. However, this argument has a problem in the ROI-constrained
setting: because of the extra factor Mi in the payment function due to the ROI
condition, it is possible that at some point the payment grows to be larger than
the bidder’s obtained value, therefore violating the IR condition.

To deal with this issue, we first note that p(vi) ≤ vi ·xi(vi) ≤ wi ·xi(vi). This
means when bidder i has value wi and misreports her value as vi, her payment
will never violate the IR condition. This means we only need to discuss the case
when the bidder i with value vi misreports to wi. There are two cases to discuss.

– If there exists a neighborhood of vi, such that by applying (19) to pi(vi) to
get pi(wi), we have pi(wi) ≤ vi · xi(wi). This means in this small neighbor-
hood, the other direction of misreporting will also not be affected by the
IR condition. Myerson’s analysis can go through, and the derivative of pi(·)
remains fixed and unique at point vi.

– If for any small neighborhood of vi, applying (19) gives pi(wi) > vi · xi(wi).
This means bidder i with value vi would not want to misreport her bid
as wi because it would violate the IR condition for her. Here we notice
vixi(wi) < pi(wi) ≤ wixi(wi) must hold. When δ is sufficiently small, it
implies that we must have pi(wi) = wixi(wi). This suggests that even though
we can no longer apply equation (19) in this case. pi(wi) is still a unique and
fixed value.

Combining the two cases together, we know that at each point v ∈ [0, vmax],
pi(v) is always unique, therefore proving this claim.
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D Proof of Lemma 3

Proof. We prove this statement by contradiction. Suppose the claim is not true
at valuation v∗, then we have v∗ = argmax0≤z≤v∗{Mp̃(z)− zx(z)} (if there are
multiple such v∗, choose the smallest one). This means for all 0 ≤ v < v∗, the
difference d(v, v∗) between Mp̃(v∗)− v∗x(v∗) and Mp̃(v)− vx(v) is positive:

d(v, v∗) = (Mp̃(v∗)− v∗x(v∗))− (Mp̃(v)− vx(v))

=M

(
v∗x(v∗)− vx(v) −

∫ v∗

v

x(z) dz

)
− (v∗x(v∗)− vx(v))

= (M − 1)(v∗x(v∗)− vx(v)) −M

∫ v∗

v

x(z) dz > 0.

(20)

Given allocation x(·), our plan is to construct a new monotone allocation
rule, which together with the corresponding payment rule can generate a higher
revenue. More specifically, we select a sufficiently small δ > 0 such that letting
d(v, v∗) = 0 by increasing the allocation x(v) in the interval (v∗− δ, v∗) does not
break the monotonicity of the allocation rule. Then, the new allocation rule x̄(·)
is defined as

x̄(v) =




x(v) if v ≤ v∗ − δ or v ≥ v∗
( v
v∗

) 1
M−1

x(v∗) if v ∈ (v∗ − δ, v∗).

This way, for all values v ∈ (v∗ − δ, v∗), with respect to x̄(·), we have

d(v, v∗) =(M − 1)(v∗x̄(v∗)− vx̄(v))−M

∫ v∗

v

x̄(z) dz

=(M − 1)

(
v∗x(v∗)− v

( v
v∗

) 1
M−1

x(v∗)

)
−M

∫ v∗

v

( z
v∗

) 1
M−1

x(v∗) dz

=x(v∗)(M − 1)

(
v∗ − v

( v
v∗

) 1
M−1

)
− x(v∗)M

∫ v∗

v

( z
v∗

) 1
M−1

dz

=x(v∗)(M − 1)

(
1

v∗

) 1
M−1 (

v∗
M

M−1 − v
M

M−1

)

− x(v∗)M

(
1

v∗

) 1
M−1

∫ v∗

v

z
1

M−1 dz

=0.
(21)

Then, we prove that x̄(v) > x(v) for all values v ∈ (v∗−δ, v). Assume by contra-
diction that for any δ > 0, there exists some v ∈ (v∗−δ, v∗) such that x̄(v) ≤ x(v).
Because we have assumed that both x̄(·) and x(·) are right-differentiable and only
have finite non-differentiable points, this means there must exist some δ′ > 0,
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such that x̄(v) ≤ x(v) holds for all v ∈ (v∗ − δ′, v∗). Pick an arbitrary v in this
interval. We then have

d(v, v∗) = (M − 1)(v∗x(v∗)− vx(v)) −M

∫ v∗

v

x(z) dz

≤ (M − 1)(v∗x(v∗)− vx̄(v))−M

∫ v∗

v

x̄(z) dz

= (M − 1)(v∗x̄(v∗)− vx̄(v))−M

∫ v∗

v

x̄(z) dz

= 0,

where the first equality is by Equation (20) and the last equality is by Equa-
tion (21). This is a direct contradiction to our previous claim that d(v, v∗) > 0
for all v < v∗. Therefore, we obtain that x̄(·) remains non-decreasing because
we only modify x in the interval of (v∗ − δ, v∗) and we have: (1) x̄(v) > x(v) for
all values v ∈ (v∗ − δ, v∗); (2) x̄(v) is increasing in (v∗ − δ, v∗); and (3) x̄(v) is
continuous at v∗.

Finally, we analyze the revenue generated by x̄(·). Let q(·) be the correspond-
ing payment rule of x̄(·) derived from Theorem 2. We compare q(v) and p(v) at
each value v.

– When v ≤ v∗−δ, we have q(v) = p(v). This is because the allocation remains
unchanged in the interval [0, v∗ − δ), and the payment of a bid at value v
only depends on the allocation at interval [0, v].

– When v ∈ (v∗ − δ, v∗), we always have v ∈ argmax0≤z≤v{Mp̃(z) − zx̄(z)},
which means the payment of q(v) reduces to the first price, and we have
q(v) = vx̄(v) > vx(v) ≥ p(v).

– When v ≥ v∗, we again have q(v) = p(v). This is because when v ≥ v∗, we
have v∗ ∈ argmax0≤z≤v{Mp̃(z)−zx(z)} for both (x, p) and (x̄, q). Then the
payment formulation of (4) reduces to

p(v) =Mp̃(v)− (Mp̃(v∗)− v∗x(v∗)) = v∗x(v∗) +M(p̃(v)− p̃(v∗)).

This payment only depends on the allocation at interval [v∗, v], which again
x(·) and x̄(·) agree on.

Combining these cases together, we have
∫
v
q(v)f(v) dv >

∫
v
p(v)f(v) dv. That

is, the new mechanism (x̄, q) has a higher revenue compared to (x, p). This is a
contradiction, and this completes the proof.

E Proof of Lemma 4

Proof. Assume that in some revenue-maximizing auction (x, p), there exists a
value v such that the two conditions claimed in the lemma do not hold. That
is, we have p(v) < vx(v), and x′(v) > 0 or x′(v) does not exist. Since x(·) is
right-differentiable with finite non-differentiable points, by Theorem 2, we have
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p(·) is also continuous at all but a finite number of points in its domains. This
means we can always find an interval [v, v̄], such that p(v) < vx(v) and x′i(v) > 0
for all valuations v ∈ [v, v̄].

Recall that when p(v) < vx(v) for all v, by Lemma 3, the payment reduces
to p(v) = Mp̃(v) and we can write the revenue of the mechanism as rev =
M
∫ vmax

0
φ(z)x(z)f(z) dz. Next, we look at the virtual values φ(v) within this

interval [v, v̄]. Our plan is to modify the allocation x(v) in (a subinterval of) this
interval based on the sign of φ(v) while maintaining the monotonicity of x(·) and
p(v) < vx(v) in the interval, and the expected revenue will (weakly) increase.

We consider the following three cases:

– There exists an interval [a, b] ⊆ [v, v̄] such that φ(v) > 0, ∀v ∈ [a, b]. In this
case, we define

x̄(v) =





x(v) if v ≤ a or v ≥ b

x(v) + δ ·
b− v

b− a
if v ∈ (a, b),

where δ > 0 is sufficiently small such that:
1. x̄(·) is still non-decreasing; and
2. p(v) < vx̄(v) still holds in the interval [v, v̄], which means the corre-

sponding payment is still p(v) =Mp̃(v) in this interval.
Conditions (1) and (2) imply we can still write the expected revenue as

rev =M

∫ vmax

0

φ(z)x̄(z)f(z) dz

for the new mechanism with allocation x̄. In the meanwhile, x̄(v) is point-
wise larger than x(v) at all values v ∈ [a, b] where φ(v) is always positive, and
outside this interval the two allocations remain the same. This means x̄(·),
together with its corresponding payment rule, would yield strictly higher
revenue than the previous mechanism. A contradiction.

– There exists an interval [a, b] in [v, v̄] such that φ(v) < 0, ∀v ∈ [a, b]. Similar
to the first case, we define

x̄(v) =

{
x(v) if v ≤ a or v ≥ b

x(v) − δ ·
v − a

b− a
if v ∈ (a, b),

where δ > 0 is sufficiently small such that x̄(·) is still non-decreasing and
p(v) < vx(v) still holds in the interval [v, v̄]. Using the same argument as in
the previous case, we can again argue that x̄(·) gives a higher revenue than
x(·). Again a contradiction.

– If neither of the first two cases happens, we must have φ(v) = 0, ∀v ∈ [v, v̄]. In
this case, as long as the monotonicity of x(·) and p(v) ≤ vx(v) is maintained
in the interval, any modification of x(·) would generate the same revenue.
Therefore we can always find an allocation x̄(·) that satisfies one of the
required two conditions and have the same revenue as that of x(·). Therefore
x̄(·) still gives a revenue-maximizing auction.

This concludes the proof.
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