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Abstract—With the growing deployment of wireless communi-
cation technologies, radio spectrum is becoming a scarce resource.
Auctions are believed to be among the most effective tools to
solve or relieve the problem of radio spectrum shortage. How-
ever, designing a practical spectrum auction mechanism has to
consider five major challenges: strategic behaviors of unknown
users, channel heterogeneity, preference diversity, channel spatial
reusability, and social welfare maximization. Unfortunately, none
of the existing work fully considered these five challenges. In this
paper, we model the problem of heterogeneous spectrum alloca-
tion as a combinatorial auction, and propose AEGIS, which is the
first framework of unknown combinatorial Auction mEchanisms
for heteroGeneous spectrum redIStribution. AEGIS contains two
mechanisms, namely AEGIS-SG and AEGIS-MP. AEGIS-SG is
a direct revelation combinatorial spectrum auction mechanism
for unknown single-minded users, achieving strategy-proofness
and approximately efficient social welfare. We further design an
iterative ascending combinatorial auction, namely AEGIS-MP,
to adapt to the scenario with unknown multi-minded users.
AEGIS-MP is implemented in a set of undominated strategies
and has a good approximation ratio. We evaluate AEGIS on two
practical datasets: Google Spectrum Database and GoogleWiFi.
Evaluation results show that AEGIS achieves much better perfor-
mance than the state-of-the-art mechanisms.
Index Terms—Channel allocation, mechanism design, wireless

network.

I. INTRODUCTION

T HE FAST development of wireless networks and mobile
communications is exhausting the limited radio spectrum

resource. However, currently, almost all spectrum is statically
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allocated to large service providers on a long-term basis for large
geographical regions, which is reflected in the radio regula-
tions published by the International Telecommunication Union
(ITU) [1]. Such static spectrum management leads to low uti-
lization in spatial and temporal dimensions. On one hand, many
spectrum owners (i.e., primary users) are willing to lease out
their idle spectrum and obtain proper profit. On the other hand,
new wireless applications (i.e., secondary users), starving for
spectrum, would like to pay for using the spectrum. Therefore,
an open and market-based framework is highly needed to re-
distribute the idle spectrum, and thus improve the utilization of
spectrum. SpectrumBridge [2] is an emerging platform that pro-
vides services for buying, selling, and leasing idle spectrum.
Due to the fairness and allocation efficiency, auctions are

attractive market-based mechanisms to distribute resources.
Examples include FCC spectrum license auctions in the US [3]
and auctions for UMTS [4] and LTE [5] in Europe. While
these auctions target only at large wireless service providers,
our focus is secondary spectrum markets of small wireless
applications, such as community wireless networks and home
wireless networks.
Designing a feasible and practical spectrum auction has its

own challenges. The first major challenge comes from the
strategic behaviors of rational and selfish wireless users. In
practical spectrum auctions, selfish users can not only misreport
their valuations, but also their channel demands, to increase
their utilities. We call them unknown users when both the val-
uations and channel demands are private information [6], [7].
The model of unknown users does not fall into the family
of conventional auction mechanisms with one-parameter do-
mains [8] and has not been considered in the existing work for
spectrum auctions.
Another design challenge is to consider both the channel het-

erogeneity and preference diversity. The channel heterogeneity
comes from both spatial heterogeneity and frequency hetero-
geneity. On one hand, the availability and quality of spectrum
vary at different locations. On the other hand, spectrum resided
in different frequency bandsmay have different propagation and
penetration characteristics. Due to the heterogeneity of chan-
nels, users may have diverse preferences on different combi-
nations of heterogeneous channels. For instance, a secondary
user may be likely to have a valuation for some paired chan-
nels to provide LTE-based services, and have another different
valuation for unpaired channels to support WiMAX services.
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Fig. 1. Heterogeneous TVWhite Space spectrum redistribution based on com-
binatorial auctions.

Therefore, it is necessary to allow users to express different val-
uations on multiple channel bundles. Considering the channel
heterogeneity and preference diversity, it is natural to model
the market of heterogeneous spectrum redistribution as a com-
binatorial auction. However, spectrum is different from tradi-
tional goods due to its spatial reusability, by which well-sepa-
rated users can be allocated on the same spectrum band simul-
taneously. Thus, traditional combinatorial auction mechanisms
cannot be directly applied to spectrum auctions. Fig. 1 shows a
combinatorial auction mechanism for TV white space spectrum
redistribution. The TV white spaces have both spatially and fre-
quency heterogeneity.White space devices at different locations
can access to different available white spaces and have distinct
permissive maximum power, adjacent channel interference and
noise floor. The frequency of TV broadband ranges from 54 to
806 MHz, leading to various frequency characteristics of dif-
ferent white spaces.
The last but not least design challenge is the basic and

common objective of auctions: maximizing social welfare,
which is defined as the sum of winners' valuations on allo-
cated goods (please refer to Section III-B for the definition).
However, finding the optimal social welfare in combinatorial
spectrum auctions is normally computationally intractable.
In this paper, we conduct an in-depth study on the problem of

dynamic spectrum redistribution, jointly considering the above
challenges. We propose a family of unknown combinatorial
Auction mEchanisms for heteroGeneous spectrum redIStri-
bution (AEGIS). AEGIS contains two mechanisms, namely
AEGIS-SG and AEGIS-MP. Specifically, AEGIS-SG is a direct
revelation combinatorial auction for unknown single-minded
users, achieving both strategy-proofness (please refer to
Section III-C for the definition) and a good approximation ratio.
AEGIS-MP is a novel iterative ascending combinatorial auc-
tion for unknown multiple-minded users. AEGIS-MP achieves
approximately efficient social welfare and is implemented in
undominated strategies, which is an important solution con-
cept from game theory (please refer to Section III-C for the
definition). To the best of our knowledge, AEGIS is the first
combinatorial spectrum auction framework for unknown users.
We summarize our contributions as follows.
• First, we propose a general combinatorial auction model
for the problem of heterogeneous spectrum redistribution,

and use the concept of virtual channel to capture the con-
flict of channel usage among wireless users. This gen-
eral model is powerful enough to express channel het-
erogeneity and spatial reusability, as well as preference
diversity.

• Second, we begin with considering a simple but classical
setting with unknown single-minded users and propose
AEGIS-SG.

• Third, we further extend this work by designing
AEGIS-MP for a more general case, in which users are
unknown multiple-minded.

• Fourth, we theoretically prove that AEGIS obtains approx-
imately efficient social welfare and has good economic
properties.

• Last but not least, we evaluate the performance of
AEGIS based on two practical datasets, Google Spectrum
Database and GoogleWiFi, and compare AEGIS to the
state-of-the-art mechanisms. Our evaluation results show
that AEGIS achieves superior performance in terms of so-
cial welfare, revenue, user satisfaction ratio, and channel
utilization.

The rest of this paper is organized as follows. In Section II,
we review related work. In Section III, we present the auc-
tion model for heterogeneous spectrum redistribution. In
Section IV, we propose AEGIS-SG for the case with unknown
single-minded users. We further consider the case with un-
known multiple-minded users, and propose AEGIS-MP in
Section V. The evaluation results are presented in Section VI.
We conclude the paper in Section VII.

II. RELATED WORK

In recent years, designing auction mechanisms for spectrum
redistribution has attracted increasing interests [9]–[13]. Unfor-
tunately, none of these mechanisms fully considers the above
design challenges. Some of the spectrum auction mechanisms
(e.g., VERITAS [9] and TRUST [10]) consider channel spa-
tial reusability, but fail in heterogeneous channel scenarios. Re-
cent work CRWDP [12], TAHES [11], and SMASHER [13]
consider channel heterogeneity, but CRWDP ignores channel
spatial reusability, while TAHES and SMASHER have simple
valuation formats. Furthermore, these mechanisms only prevent
users from misreporting their valuations to manipulate the auc-
tion and always assume that the channel demands are publicly
known to the auctioneer. However, in practice, users can further
improve their utilities by cheating on their channel demands. In
this work, we design heterogeneous spectrum auction mecha-
nisms, considering both channel spatial reusability and diverse
valuation formats. To some extent, our mechanisms are resistant
to both valuations and channel demands cheating behaviors.
There are some other related works on spectrum auctions

mechanism design, e.g., online spectrum auction [14], revenue
generation [15], and spectrum auction with multiple auction-
eers [16]. Besides auction theory, some other powerful tools,
e.g., contract theory [17], queueing theory [18], and random-
ized algorithm [19], have been applied to different scopes in
spectrum markets design.
Another category of related work is combinato-

rial auction mechanism design. Dobzinski [20] and



ZHENG et al.: AEGIS: UNKNOWN COMBINATORIAL AUCTION MECHANISM FRAMEWORK FOR HETEROGENEOUS SPECTRUM REDISTRIBUTION 1921

Papadimitriou et al. [21] proved that optimal social welfare
and strategy-proofness cannot be achieved simultaneously in
general combinatorial auctions. Considering the intractability
of combinatorial auctions, a number of strategy-proof auction
mechanisms with well-bounded approximation ratios are
proposed [8], [22], [23]. There are still no positive results
(computationally efficient, deterministic, and strategy-proof
mechanisms with good social welfare approximation) to
combinatorial auctions with unknown multi-minded buyers.
Our design is based on the iterative wrapper technique for
unknown combinatorial auction mechanism [6]. However,
none of the above combinatorial auctions considered the
spectrum spatial reusability.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first describe network and auction model
for the problem of heterogeneous channel redistribution, and
then review related solution concepts used in this paper from
game theory. At last, we formulate the channel allocation
problem as a classic weighted set packing problem.

A. Network Model
We consider a static secondary spectrum market with a

primary spectrum holder, called “seller,” and some secondary
users (e.g., WiFi APs), called “buyers.” The primary spec-
trum holder wants to sell her temporary unused spectrum,
and the secondary users would like to lease spectrum to pro-
vide wireless services for their customers at certain quality
of service (QoS). We consider that the trading channels are
heterogeneous, and thus buyers have diverse preferences over
the different combinations of channels according to their QoS,
hardware abilities, and the interference conditions of accessible
channels. Different from traditional goods, wireless channels
can be spatially reused, meaning that conflict-free buyers can
be allocated the same channel simultaneously.
We denote the set of orthogonal and heterogeneous chan-

nels for leasing by , and the set of buyers
by .
Conflict Graph: In spectrum auctions, conflict graphs are usu-

ally used to represent the interference among buyers and can
be built by the auctioneer through some measurement methods,
e.g., measurement calibrated method [24]. Due to the hetero-
geneity of channels, each channel may have a distinct conflict
graph. Let denote the conflict graph on channel
, where is the set of buyers who can access channel
, and each edge represents the interference be-

tween buyers and on channel . We also denote the max-
imum degree on graph by , and the maximum among all

's by , i.e., .

B. Auction Model
We model the process of heterogeneous channels redistribu-

tion as combinatorial auctions. We discuss two popular kinds
of combinatorial auctions: direct revelation combinatorial auc-
tion for the case with unknown single-minded buyers, and it-
erative ascending combinatorial auction for the case with un-
known multi-minded buyers. Specifically, in the direct revela-
tion combinatorial auction, buyers simultaneously declare their

bids and channel demands to a trustworthy auctioneer, and then
the auctioneer makes the decision on channel allocation and the
charge to each winner. In the iterative ascending combinatorial
auction, buyers compete by gradually raising their bids, and the
auctioneer maintains a provisional allocation in each iteration.
The auction stops when all the remaining active buyers are de-
clared as winners, and winners pay their lastly reported bids. We
list some useful notations in our model as follows.
Interested Channel Bundle: Each buyer has

various private preferences on channel bundles
in which and can be arbitrarily

large, even exponential. We call a buyer , who is interested in
channel bundles as -minded buyer. We discuss single-minded
case ( for all ) in Section IV and multi-minded case
( for some ) in Section V. We denote the interested
bundles of all buyers by .
Valuation: Each buyer has a private valuation over

each of her interested channel bundle .1 For the other
channel bundles not in , we adopt theXOR operation in com-
binatorial auctions [25], and formally describe the valuation
function of buyer as

otherwise
(1)

We assume that is normalized (i.e., ) and
monotone (i.e., for each ). Since
the valuation function is derived from the expected quality of
wireless service applications, we can assume that the range of
the valuation function of buyer is and ,
where is the minimum monetary unit in auction systems. We
denote the maximum value of all by . We
call the valuation function of buyer is -close when .
This parameter characterizes the diversity of valuation function
from one buyer. Let .2 We denote the valua-
tion functions of all buyers by .
Bid and Declared Channel Bundle: In the direct revelation

combinatorial auction for unknown single-minded case, each
buyer declares a bid and one channel bundle to
the auctioneer, meaning that she is willing to pay at most , if
she is allocated a channel bundle containing . The bid vector
of all buyers is represented as , and the
declared channel bundles of all buyers are denoted by

. In the iterative ascending combinatorial auc-
tion for unknown multi-minded case, active buyer submits a
temporary bid and a channel bundle in the th iteration.
The bids of nonactive buyers are set to zeros, and their current
bundles are the declared bundles when they drop out of the auc-
tion. We denote all bids by and the de-

1When the size of is large, i.e., exponential, buyers may need exponential
storage to represent the general valuation function, and buyers can succinctly
express some specific valuation functions with the help of convenient bidding
languages [25].

2We note that the auctioneer does not need to know any information about
the parameters of the valuation functions, including the range , the max-
imum valuation , and the closeness parameter . The design of AEGIS
auction mechanisms is independent on the knowledge of these parameters.
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clared bundles of buyers by in the th
iteration.
Clearing Price and Utility: The auctioneer charges each

winner a clearing price , and lets the losers free of any
charge. We use vector to represent
the clearing prices of all buyers. Each buyer has a
quasi-linear utility defined as

(2)

where is the channel bundle allocated to buyer .
In our model, we consider buyers are unknown, i.e., both the

valuation functions and interested channel bundles are private
information, and unknown to the auctioneer. In such environ-
ment, the selfish and rational buyers have more flexibilities to
manipulate the results of the auction and are eager to maximize
their own utilities. In contrast to buyers, the overall objective of
the auction mechanism is to maximize social welfare, which is
defined as follows.
Definition 1 (Social Welfare): The social welfare in a spec-

trum auction is the sum of winning buyers' valuations on their
allocated bundles of channels, i.e.,

(3)

where is the set of winners, and is the corresponding
allocated channel bundle for winner .
In this paper, we assume that buyers do not collude with each

other, and leave relaxation of this assumption to our future work.

C. Economic Properties
We briefly review the solution concepts used in this paper

from game theory.
Definition 2 (Dominant Strategy [26]: A strategy

(weakly) dominates another strategy of player , if for
any other players' strategy profile :

and this inequality is strict for at least one in-
stance of .
A strategy is a dominant strategy for player if it (weakly)

dominates any other strategies of player .
A strategy is an undominated strategy for player if it is

not dominated by any other strategies of .
In direct revelation mechanisms, incentive-compatibility

means that truthfully revealing private information, both valua-
tions and channel demands in this paper, is a dominant strategy
for each player. An accompanying concept is individual-ra-
tionality, which means that players truthfully participating in
the game gain nonnegative utilities. The formal definition of
strategy-proof mechanism is as follows.
Definition 3 (Strategy-Proof Mechanism [27]): A direct rev-

elation mechanism is strategy-proof when it satisfies both in-
centive-compatibility and individual-rationality.
Strategy-proofness is a strong solution concept in mechanism

design. However, the requirement of having dominant strategies
limits the existence of feasible allocation algorithms in combi-
natorial auctions for unknown multi-minded buyers [23], [28].
We turn our attention to another well-known game-theoretic
concept: implementation in undominated strategies.

Definition 4 (Implementation in Undominated Strategies [6],
[29]): A mechanism is an implementation of -approxima-
tion in undominated strategies if there exists a nonempty set of
undominated strategies with the following properties.
• achieves a -approximation in polynomial time for any
combination of undominated strategies from .3

• is individually rational for players taking undominated
strategies from .

• has fast undominance recognition property, meaning
that a player can efficiently determine if a strategy belongs
to , and if not, compute an undominated strategy in to
dominate it.

The underlying goal of spectrum auctions is to achieve ap-
proximately optimal social welfare in the presence of strategic
behaviors of buyers. In unknownmulti-minded case, we achieve
this goal by relaxing the strict strategy-proofness constraint and
allowing the mechanism to leave several strategies in for the
buyers to choose from. We compensate this uncertainly on the
game-theoretic side by strengthening the algorithmic analysis,
showing that the mechanism can achieve a good approximation
for any combination of undominated strategies from .

D. Problem Formulation

We borrow the novel concept of virtual channel [13] to repre-
sent the conflict of channel usage among buyers. By using vir-
tual channels, we transform the channel allocation problem to a
classical weighted set packing problem and formulate it as a bi-
nary program. Specifically, a virtual channel indicates that
buyers and cause interference between each other on channel
, when channel is allocated to and simultaneously, i.e.,

virtual channel is corresponding to the edge on
conflict graph . We now show the process of constructing vir-
tual channels. We first create virtual channel for each edge

on conflict graph , and then append to the
channel bundles containing channel from the buyers and .
We finally remove the original channels from all channel bun-
dles. Hence, the updated channel bundles only contain virtual
channels. From now on, the set and vector represent
the updated interested channel bundles and updated declared
channel bundles, respectively. We note that the valuations on
updated channel bundles retain the same. Let be the set of
virtual channels for the buyer . All virtual channels are denoted
by . According to the rule of virtual
channel construction, the maximum size of updated interested
channel bundle is bounded by .
When virtual channel is added into the channel bundles

containing channel from the buyers and , at most one of
the channel bundles from the buyers and can be allocated,
ensuring the exclusive allocation of channel for the buyers
and . If the buyer obtains all virtual channels
on conflict graph , then she is granted channel . We note
that the buyer may not conflict with any other buyers on some
channels. For these channels with no interference, we directly

3In this paper, a mechanism achieves -approximation means that the ap-
proximation ratio of is . The approximation ratio is defined as the ratio
between the social welfare achieved by and the optimal social welfare.
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allocate them to the buyer . Consequently, the exclusive alloca-
tion of virtual channels implies the feasible channel allocation
under conflict graph constraint.
We now transform the channel allocation problem to the

weighted -set packing problem. The weighted -set packing
problem can be described as follows: Given a family of
weighted sets, each containing at most elements drawn
from a finite universe, find a maximum weight subcollection
of disjoint sets. In the channel allocation problem, the set of
virtual channels corresponds to the universe, collection of
updated declared channel bundles corresponds to the
family of weighted sets, and . In the direct
revelation combinatorial auction for the single-minded case,
the problem of channel allocation can be formulated as an
integer programming.

(4)

(5)

Here, the variable indicates that channel bundle
is allocated to buyer ; otherwise . The first

set of constraints represents the exclusive allocation of virtual
channels, and the second set of constraints states the binary
value of the auctioneer's decision of allocation. In the th iter-
ation of ascending combinatorial auction, we can formulate the
channel allocation problem as a similar integer programming by
replacing and with and . In the formulation, we use
declared information ( , and ) instead of truly private
information ( and ) because the strategy-proof mechanism
in Section IV will guarantee that bidding truthfully is a domi-
nant strategy for each buyer, and the iterative ascending auction
mechanism in Section V will ensure that the declared informa-
tion is close to the truthful information at the end of the auction.
Solving the above integer programming is NP-hard, which

makes the general and celebrated VCG mechanism (named
after Vickrey [30], Clark [31], and Groves [32]) inapplicable.
Considering the computational intractability of the problem, we
present alternative solutions with greedy allocation algorithms
to achieve approximately efficient social welfare in following
sections.
We list the frequently used notations in Table I.

IV. AEGIS-SG
In this section, we begin with a simple but classical setting,

in which buyers are unknown single-minded. As shown in
Section III-D, finding the optimal auction decision is computa-
tionally intractable, even in this restricted case. Therefore, we
design AEGIS-SG, which is a direct revelation combinatorial
auction mechanism for heterogeneous channel redistribu-
tion among unknown single-minded buyers, achieving both
strategy-proofness and approximate efficiency.

A. Design Details
We first formally define the concept of unknown single-

minded buyers.

TABLE I
FREQUENTLY USED NOTATIONS

Definition 5 (Unknown Single-Minded Buyer): Buyer is an
unknown single-minded buyer iff she is only interested in one
channel bundle and has a valuation for any bundle
containing . Both the valuation and channel demand are
private information.4
AEGIS-SG contains two major components: greedy channel

allocation and clearing price calculation. The greedy channel
allocation procedure is depicted in Algorithm 1. The algorithm
contains two steps.

Step 1: We sort buyers according to their bids in nonin-
creasing order, and denote the sorted list by . We break
the tie following any bid-independent rule, e.g., lexico-
graphic order of buyer's ID or channel ID.

Step 2: Following the order in , we greedily grant
channel bundles, which do not overlap with the previous
allocated virtual channels.

The clearing price calculation is based on critical bid.
Definition 6 (Critical Bid): The critical bid for buyer

is the minimum bid that the buyer should declare to win the
auction.
The critical bid of winner can be calculated by the

following steps. Consider the winner in the sorted list , we

4The terminology “unknown” denotes that the channel demands and valua-
tions of single-minded buyers are unknown to the auctioneer before the auction
begins. Due to the property of strategy-proofness, buyers will truthfully reveal
their private information in the auction, and thus the auctioneer can learn this
private information after AEGIS-SG is carried out.
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find the first buyer following that has been denied but would
have been granted a channel bundle when the buyer is removed
from , and denote this buyer by . We note that such a
buyer necessarily conflicts with . We can formally represent

as

and
is a winner

The critical bid for the winner is . We show the method of
calculating the clearing price for buyer by distinguishing
two cases.

If buyer is a loser or does not exist, she pays zero.
If there exists a , and buyer is granted , then she

pays .

B. Analysis

In this section, we prove that AEGIS-SG guarantees strate-
gy-proofness in terms of valuations and channel demands, and
analyze the approximation ratio of AEGIS-SG.
We first show the monotonicity of channel allocation algo-

rithm, which is essential for a strategy-proof mechanism.
Lemma 1: AEGIS-SG's channel allocation algorithm is

monotonic, i.e., buyer , who wins by declaring , also
wins if she declares , such that, and .

Proof: We assume that the buyer declares in
sorted list and declares in , respectively. We use
the same bid-independent rule to break the tie, and thus
and differ only in that the buyer may have been moved
forwards by the change from to . The allocation
result is exactly the same on and before the position
of in . If wins in , no winner before in conflicts
with her. Therefore, no winner before in conflicts with her
either, and in is also allocated.
We present the strategy-proofness and approximation ratio of

AEGIS-SG.
Theorem 1: AEGIS-SG is a strategy-proof combinatorial

spectrum auction for unknown single-minded buyers.
Proof: We first show that AEGIS-SG satisfies individual-

rationally, i.e., truthful buyers obtain nonnegative utilities. On
one hand, losers' utilities are zeros. On the other hand, winner
gets utility: . Since winner bids truthfully, her
declared bid and declared bundle are equal to her valuation
and interested bundle , respectively. As wins the auction,

we also have . Hence, she gets nonnegative
utility.
We now prove that AEGIS-SG also satisfies incentive-com-

patibility. Suppose the true type of buyer is , we prove
that buyer cannot increase her utility through misreporting.
By the property of individual-rationally, we just need to con-
sider the case that buyer gets a positive utility when declaring

and . We complete the analysis by
proving the following two claims.

Declaring would not be worse off than declaring
. Let and denote the payments (critical bids) when

declaring and , respectively. Since the valuations
on and are the same, we just need to prove that .
By contradiction, we assume that , and there exists a bid

that satisfies . According to the payment rule and
Definition 6, for , the buyer loses the auction when she
declares , and for , she wins the auction when
declaring . By and Lemma 1, losing
with the auction implies that also loses, and then we get
a contradiction. We can conclude that , and declaring

is not worse off than declaring .
Declaring is not worse off than declaring .

If buyer is denied when declaring , her utility is zero,
which could not be better than that of declaring . If both
bids win, buyer has the same valuation and pays the same pay-
ment, which results in same utility. If wins and
loses, it must be the case that . Buyer gets
zero utility when bidding truthfully, while it achieves nonpos-
itive utility when lying. Consequently,
declaring is not worse off than declaring in all
scenarios.
These two claims imply that truthfully revealing is

the dominant strategy for each buyer . Hence, AEGIS-SG
satisfies incentive-compatibility.
Since AEGIS-SG achieves both individual-rationally

and incentive-compatibility, we conclude that AEGIS-SG
is a strategy-proof combinatorial auction mechanism by
Definition 3.
Theorem 2: AEGIS-SG achieves -approximation.
Proof: Let be the optimal channel allocation, and

be the allocation achieved by AEGIS-SG. For each
buyer , we define

to represent the buyers in that cannot be selected by
AEGIS-SG because of the existence of buyer in .
Theorem 1 guarantees that bidding truthfully is a dominate
strategy for each buyer, so we use true type of buyers here.
Since is a valid allocation, the bundles that allocated

to any pair of buyers cannot overlap on any virtual
channel. Every bundle granted to in the optimal alloca-
tion intersects with at least one virtual channel. Additionally,
the size of updated channel bundles is bounded by . Conse-
quently, there are at most buyers in , combining with the
definition of , we have

(6)

Since , we finally get

(7)

Therefore, AEGIS-SG achieves -approximation.

V. AEGIS-MP
In this section, we consider a more general scenario, in which

buyers are unknown multi-minded. We first give an illustrative
example to show that simply extending AEGIS-SG can no
longer guarantee strategy-proofness. Furthermore, designing
a deterministic, approximately efficient, and strategy-proof
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Fig. 2. Illustrative example on why extending AEGIS-SG is not strategy-proof
in multi-minded scenario. When buyer 3 changes her second interested bundle
from to , she decreases her clearing price from 9 to 6 and obtains
higher utility.

combinatorial auction mechanism for unknown multi-minded
buyers is still an open problem in algorithmic mechanism
design, and some negative results are demonstrated [20], [21].
We turn to another well-known game-theoretic concept, imple-
mentation in undominated strategies, and design AEGIS-MP,
which is an approximately efficient ascending combinatorial
auction for heterogeneous channel redistribution among un-
known multi-minded buyers.
We first give the definition of unknown multi-minded buyer.
Definition 7 (Unknown Multi-Minded Buyer): Buyer is an

unknown multi-minded buyer iff she is interested in multiple
channel bundles , and has valu-
ation function defined as (1). The channel demands and
valuation function are private information.5

A. Counterexample

In Fig. 2, there are three buyers and two trading
channels . The two conflict graphs capture the inter-
ference among buyers on two heterogeneous channels. While
buyers 2 and 3 conflict on the usage of channel , they have
no interference on channel , and thus they can use channel

simultaneously. Since buyers are multi-minded, they may
have different valuations on different bundles, e.g., buyer 3 has
valuation 10 and 8 over channel bundles and , re-
spectively. Based on the conflict graphs and buyers' interested
channel bundles, we can construct virtual channel bundles for
each buyer. In this example, we assume that buyers truthfully
reveal their valuations, and investigate their manipulated strate-
gies on channel demands.
In AEGIS-SG, we sort buyers' declared channel bundles ac-

cording to the nonincreasing order of their bids and greedily
grant channel bundles, ensuring the exclusive allocation of vir-
tual channels. Buyers 2 and 3 are the winners and obtain channel
bundles and , respectively. When bid-
ding truthfully, according to the pricing scheme of AEGIS-SG,
buyer 3 should pay 9, which is the bid of buyer 2 on bundle ,
and her utility is . However, buyer 3 can cheat by

5Different from the unknown single-minded scenario, the private informa-
tion, in unknownmulti-minded setting, remains to be unknown to the auctioneer
at the end of the auction.

changing her second interested bundle to , and will still
be allocated bundle but be charged with 6, increasing her
utility to 4. Hence, by declaring untruthful channel demands,
buyers can improve their utilities, which leads to the untruthful-
ness of AEGIS-SG in multi-minded scenario.

B. Design Rationale

AEGIS-MP is an ascending Japanese auction [33]–[35] on
top of a greedy channel allocation algorithm. In traditional as-
cending Japanese auctions, the auctioneer collects temporary
bids from active buyers and maintains a provisional allocation
in each iteration. Provisional losers can choose to increase their
bids or permanently drop out of the auction. This process is it-
erated until all remaining active buyers are winners, and their
prices are lastly reported bids.
The most challenging part of designing combinatorial auc-

tions for unknown multi-minded buyers is that both the valua-
tions and channel demands are private and unknown to the auc-
tioneer.We overcome this challenge by extending the ascending
Japanese auctions to approach the true valuations and channel
demands of buyers. Informally, in AEGIS-MP, we also main-
tain an “active bundle” for each buyer. This active bundle will
keep approaching to one of the interested bundles of the buyer
during the auction. Another challenge is the impact of manipu-
lative behaviors of selfish buyers, which should be prevented to
form a relatively stable market. Since the buyers are rational,
they will not take dominated strategies if some undominated
strategies can be quickly recognized. By exploiting this ratio-
nality of buyers, we carefully design the structure of auctions
such that, at each decision point, buyers can efficiently recog-
nize the undominated strategies and take one of them, leading
AEGIS-MP to be implemented in undominated strategies.

C. Design Details

We now describe AEGIS-MP in detail. We suppose that
GDY_ALG is the approximately efficient greedy-based allo-
cation algorithm, and when given as input vectors of active
bundles and temporary bids, it outputs a provisional allocation
that is approximate to the optimal solution. In AEGIS-MP,
which is shown in Algorithm 2, the vector of bids and
active bundles are initialized to and ,
respectively (Line 2). At the beginning of the th iteration,
the auctioneer knows four parts of information: the previous
losers set , the previous winners set , the current active
bundle vector , and the temporary bid vector of buyers .
These parameters are handed in as input to GDY_ALG, who,
in return, outputs a new set of provisional winners and
active bundles (Line 4). The provisional winners retain
the same bids, while provisional losers are required to either
increase their current bids by multiplying or permanently
drop out of the auction (this is denoted by setting )
(Lines 5–8). Here, parameter is Euler's Number and is the
best choice over all constants for the optimal approximation
ratio. This process is iterated until all remaining active buyers
are declared as winners by GDY_ALG. Let the total number
of iterations be , and the set of winners is . Each winner

gets her finally active bundle and pays her
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lastly reported bid . The losers will not be allocated
bundles and are free of any charge (Lines 11 and 12).
We now depict the design of channel allocation algorithm

GDY_ALG in details. Algorithm 3 shows the pseudo-code of
GDY_ALG procedure. Let denote the active buyers in the
th iteration. Function denotes the virtual chan-
nels not in . Here, is a subset of buyers, and

is a vector of active bundles. GDY_ALG constructs a greedy
allocation, , by extending the channel allocation al-
gorithm in AEGIS-SG. Similarly, we sort the active buyers ac-
cording to their current bids in nonincreasing order, and break
the tie following any bid-independent rule (Line 2). Following
order , two steps are performed for the currently considered
buyer .

Shrinking Active Bundle: If the buyer was previously a
provisional loser, then she is given an option to “shrink” her
active bundle. If the buyer chooses to shrink her bundle, the
new bundle must satisfy that its valuation is not less than her
current bid , and it is a subset of the previously reported bundle

and disjoints from the bundles of buyers that are already in
(Lines 4 and 5).

Updating Candidate Winner Sets: Buyer is added to the
allocation (or ) when her declared bundle
does not intersect the bundles of existing buyers in
(or ). This operation ensures that the two allocations

and are Pareto-efficient6 with respect to the
new active bundles (Lines 6 and 7).
Once all the active buyers have been considered, GDY_ALG

outputs the allocation with the maximum value out of the two
allocations and as the new set of provisional
winners . It also outputs the updated active bundles
(Lines 8 and 9).
We summarize four important properties of GDY_ALG.

These properties will be frequently used in the next section.
(Pareto Efficiency) For any buyer

.
(Improvement) .
(Shrinking Sets) For any buyer and any

.
(First Time Shrink) Let
. For any , it holds that .

D. Analysis

In this section, we prove that AEGIS-MP is an implementa-
tion in undominated strategies by the following steps. First, we
characterize the set of undominated strategies . Second, we
show that AEGIS-MP is individually rational for buyers taking
any strategies from . Third, we demonstrate that AEGIS-MP
has fast undominance recognition property. Finally, we analyze
the approximation ratio of AEGIS-MP.
We first define a type of buyers in AEGIS-MP.
Definition 8 (Drop-Out If Silent Buyers): Active buyer is

a “drop-out if silent” buyer in the th iteration if, when she is
allowed to shrink her active bundle at Line 5 in GDY_ALG, all
the following hold.

(Not a previous winner) .
(Drop out if keep silent)

and
.

A buyer can recognize that she is a “drop-out if silent” buyer
at Line 5 of GDY_ALG, and if there exists a feasible channel
bundle, she will definitely shrink her active bundle. This is be-
cause she has to drop out of the auction if she keeps silent, and
if she shrinks her active bundle, she might win. In terminology
of game theory, the strategy that keeping silent is dominated by
the strategy of bundle shrinking.
We now characterize strategy set and claim that every

strategy in is an undominated strategy.

6Pareto-efficiency means that it is impossible to add losers into the winner set
without removing at least one winner.
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Definition 9 (Set ): Let be the set of all strategies that
satisfy the following conditions, for every iteration .

If buyer does not drop out, her bid is always less than
her valuation on the active bundle, i.e., . As

, her active bundle must contain some interested
bundles.

If buyer drops out, then .
If buyer is a “drop-out if silent” buyer (Definition 8),

then she will definitely declare some feasible bundle that
satisfies the conditions at Line 5 of GDY_ALG, if such a bundle
exists.
Lemma 2: Strategy set is a set of undominated strategies.
Proof: According to the definition of , all strategies out-

side are dominated strategies, which cannot dominate any
strategy in . We just need to look at any two different strate-
gies of buyer from the set (i.e., ), and
show that neither of them dominates the other. We consider the
first point that they differ (i.e., the buyer has different active
bundles). At this point, we can construct the strategies of the
other buyers that will cause one strategy to win and the other
to lose. Therefore, neither nor dominates the other, and
then both strategies and are undominated strategies.
Lemma 3: AEGIS-MP is individually rational for buyers

taking undominated strategies from .
Proof: According to the fact that winners pay their lastly

reported bids and the first condition of Definition 9, a winner
cannot obtain a negative utility when she plays any undominated
strategy in . Obviously, losers' utilities are zeros. Therefore,
our claim holds.
Lemma 4: AEGIS-MP has fast undominance recognition

property, i.e., buyers can efficiently determine if a strategy
belongs to , and if not, compute an undominated strategy in

to dominate it in polynomial time.
Proof: Clearly, any buyer can check if her strategy satis-

fies the conditions of undominated strategies in Definition 9 in
polynomial time, and if not, modify her strategy to an undomi-
nated strategy that dominates the original one.
We now analyze the approximation ratio of AEGIS-MP. We

first present some notations. Let denote the value
of the optimal outcome (in terms of valuation function ) for
a set of buyers when their channel bundles are . We
call a valid allocation, if for any

and . Besides the four important properties in
Section V-C, we present another property, which can be derived
from Definition 9.

(Value Bound) For any , and any
. For buyer who drops out in the th iteration,

.
Before presenting the main theorem, we give some impor-

tant lemmas. We first show that the number of iterations in
AEGIS-MP is limited.
Lemma 5: AEGIS-MP stops in at most

steps.
Proof: We look at a loser who drops out in the last itera-

tion (the th iteration). According to the Pareto Efficiency
property, loser 's active bundle must intersect with that of a
winner , which implies that . Addition-
ally, by the Shrinking Sets property, it holds that ,

for any . Therefore, we can claim that buyer
and never win together. Each of them can be a loser and mul-
tiply her bid at most consecutive times. We can get
that , and thus the lemma holds.
We have the following lemma for AEGIS-MP.
Lemma 6: For AEGIS-MP, it holds that

, where .
Proof: We consider , where rep-

resents the buyers that drop out in the th iteration. We have
. Therefore, to prove

the correctness of our claim, it is sufficient to show

(8)
We can obtain this inequality by proving the following two
claims.
Claim 1:

.
Proof: We note that for a drop-out buyer
.We consider the optimal allocation for the buyers in

and distinguish the winners into two types.
Let denote the set of winners that belong to either

or , but are not in . We have the following
inequalities for :

(9)

The first inequality comes from the Improvement property, the
second inequality is due to theValue Bound property, and the last
equality comes from the fact that is a valid allocation.

We consider the other case, in which the winners do not
belong to or , and denote the set of winners
in this type by . Similar to Theorem 2, we can prove
that GDY_ALG achieves -local approximation, meaning
that the greedy allocation in the th iteration in GDY_ALG
(the buyers in ) has total value at least of

. Together with the Improvement property,
we have

(10)
Since , we get

(11)
According to the Value Bound property, we can get

(12)

Combining with Inequalities (10)–(12), we have

(13)

For any , by Inequalities (9) and (13), we
have

.
Claim 2: .
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Proof: By the Improvement property, we can get
. According to the Value Bound

property, we have for all . Furthermore,
is a valid allocation. Combining with the above

two inequalities, we can get
.

Applying the two claims, we obtain Inequality (8). Therefore,
we conclude that

.
We present the approximation ratio of AEGIS-MP.
Theorem 3: AEGIS-MP achieves
-approximation.
Proof: Let be the set of winners in the op-

timal allocation, and winners are allocated bundles from
. We partition the winners into three

categories, and then bound the value of them separately.
We denote the winners that also stay in by . In this

case, winners might win other interested channel bundles in the
optimal allocation, so we get

(14)

We turn to another set of winners , which is the subset of
losers in AEGIS-MP, i.e., . Buyer belongs to if
and only if she is a winner in the optimal allocation , and her
allocated bundle is not included in , which is the bundle
that the buyer declares in AEGIS-MP when she drops out. We
have the following claim for winners .
Claim 3: .
Proof: Let

be the set of buyers from that first shrink their bundles in the
th iteration, andwe have . According to the first
and third properties of undominated strategy in Definition 9, we
can conclude that contains some interested channel bundles
for all and . Therefore, for , we have

(15)

According to the First Time Shrink property, all bundles
of buyers in are disjoint. Additionally, by the Shrinking Sets
property, we have , implying bundles of buyers
in are also disjoint. Therefore, is a valid allocation.
Since , we get

(16)
Together with Inequalities (15) and (16), we conclude that

(17)
Using Inequality (17) and Lemma 6, we get

Finally, we conclude that

(18)

We denote the winners in by . According to the
definition of , the allocated bundles of winners in are
contained in bundles , together with Lemma 6, we get

(19)

We now combine these three types of winners to-
gether [Inequalities (14), (18), and (19)] and conclude
that

.
From the above analysis, we now can get our main result for

AEGIS-MP according to Definition 4.
Theorem 4: AEGIS-MP is an implementation of an

-approximation in undominated strategies.
Our unknown multi-minded model is a generalization of un-

known single-value model , in which buyers have
single valuation for any one of their interested channel bun-
dles [36]. The approximate result of AEGIS-MP is degenerated
to single-value model when . We have the following
theorem for unknown single-value model.
Theorem 5: AEGIS-MP implements an -approxima-

tion in undominated strategies for unknown single-value model.

VI. EVALUATION RESULTS
In this section, we show our evaluation results.We implement

AEGIS using network simulation and compare its performance
to CRWDP [12], NSR-MP, and VERITAS-EX [9]. CRWDP
is an unknown single-minded combinatorial spectrum auction,
and NSR-MP is a variant of AEGIS-MP. Neither CRWDP nor
NSR-MP considers channel spatial reusability. VERITAS-EX is
a simple extension of VERITAS to the unknown multi-minded
scenario.7 In VERITAS-EX, each unknownmulti-minded buyer

is allowed to submit a super channel bundle , the
number of demanded channels , and the declared bid . Here,

is the union set of all her interested channel bundles, and
is the minimum size of the interested bundles. In order to

avoid negative utility, the declared bid is set to the minimum
valuation over the interested bundles. The auctioneer can allo-
cate any channel set with size to the buyer . In
VERITAS-EX, a buyer is said to be a winner if and only if
she has positive valuation on her allocated channel bundle. We
also show the optimal results with tolerance , computed by
solving the binary program of AEGIS-MP in Section III-D. We
denote this optimal result as OPT-MP and use it as the refer-
ences of upper bound.

A. Methodology
We use two complementary datasets, namely Google

Spectrum Database [37] and GoogleWiFi [24], to eval-
uate the performance of our mechanisms. We take Google
Spectrum Database as our first dataset. As shown in
Fig. 3, we first extract WiFi nodes in an area (Lati-
tude range: , Longitude range:

) from WiGLE.net [38], and we

7In unknown single-minded scenario, extended VERITAS is essentially the
same as AEGIS-SG.
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Fig. 3. Wireless WiFi networks map constructed by WiGLE.net from
2001 to 2013. Latitude range: , Longitude range:

.

Fig. 4. Conflict graph of GoogleWiFi dataset.

then query Google Spectrum Database the available TV white
spaces and corresponding maximum permissible power for
each WiFi node, which is considered as a portable device in the
database. Portable devices can work on unused TV channels
21–51, except channel 37–39. To generate conflict graphs, we
apply a simple Free Space propagation model [39] to predict
the interference range between nodes, and consequently create
the conflict graphs.8 We also evaluate our mechanisms in a
practical conflict graph, built from exhaustive signal measure-
ments, in the second data set. The second dataset, GoogleWiFi,
records 78 APs in a 7-km residential area of the Google WiFi
network in Mountain View, CA, USA. It was collected by a
research group from the University of California (UC) Santa
Barbara in April 2010 [24]. Fig. 4 shows the practical conflict
graph in GoogleWiFi dataset.
We build a set of auction configurations by sampling WiFi

nodes in the first data set, and the number of WiFi nodes varies
from 200 to 2000 with increment of 200. For the second data set,
we assume the number of leasing channels can be one of three
values: 6, 12, and 24. We consider the case of single-minded
buyers and the case of multi-minded buyers, who can have up to
10 interested bundles (i.e., ). For each buyer , her in-
terested channel bundles are randomly generated from her avail-
able channel set, and the valuations on bundles are uniformly
distributed over . The maximum closeness parameter of
valuation is set as 5, i.e., . The minimum monetary
unit in the auction systems is set as . In AEGIS-MP,
since buyers may have multiple undominated strategies at their

8Other propagation models, e.g., Egli and Longley-Rice [39], could be used
to generate more accurate conflict graphs.

decision points, we assume that buyers randomly select one of
them. All the results of performance are averaged over 200 runs.
Metrics:We evaluate the following five metrics:
Social Welfare: the sum of winning buyers' valuations on

their allocated bundles of channels;
Revenue: the sum of payments received from buyers9;
Satisfaction Ratio: the fraction of winners over buyers;
Channel Utilization: the number of radios working on each

channel;
Channel Eccentricity: the ratio of allocated channels over

actually used channels for one buyer. In AEGIS-MP, for each
winner, the final allocated bundle may contain multiple inter-
ested bundles and uninterested channels, but the winner only
uses one interested bundle. Therefore, we use channel eccen-
tricity to measure this channel overallocation.

Jain's Fairness Index:Under the scenario of combinatorial
spectrum auction, the Jain's fairness index [40] for channel
is defined as

(20)

where is the total number of buyers who are allocated
channel , and is the payment that buyer is charged
for being allocated channel . Suppose buyer pays for
allocated channel bundle , and for each can be
calculated by , where is the size of bundle
. We use the Jain's fairness index to evaluate the fairness of

AEGIS in terms of payment for certain channel.

B. Performance on Google Spectrum Dataset

By varying the number of buyers, we collect a set of per-
formance data, as illustrated in Fig. 5. In this dataset, the
scale of spectrum auctions is large, so we just calculated the
results of OPT-MP when the number of buyers is small. From
Fig. 5, we can see that AEGIS always outperforms the other
two mechanisms without considering the spectrum reusability,
CRWDP and NSR-MP. This result demonstrates that exploiting
channel spatial reusability can significantly improve the per-
formance of spectrum auction systems. In Fig. 5, AEGIS
also outperforms VERITAS-EX on the three metrics. This is
because VERITAS-EX does not apply any effective method
to prevent the strategic behavior of unknown multi-minded
buyers. Fig. 5 shows that when the number of buyers increases,
the social welfare and revenue increase, while the satisfaction
ratio decreases. On one hand, AEGIS allocates channels more
efficiently among more buyers, hence the social welfare and
revenue increase. On the other hand, larger number of buyers
leads to more intense competition on limited channels, thus de-
creasing the satisfaction ratio. We also observe from Fig. 5 that
revenue is much lower than social welfare. Similar to previous
work [9], we can institute reserve prices for channels to in-
crease revenue and make a tradeoff between revenue and social
welfare. How to determine an optimal reserve price is out of

9Determining the optimal revenue for spectrum auctions is out of the score
of this paper, so we do not calculate the revenue metrics of OPT-MP in the
evaluation results.
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Fig. 5. Performance of OPT-MP, AEGIS, CRWDP, NSR-MP, and VERITAS-EX on Google Spectrum dataset. (a) Social welfare. (b) Revenue. (c) Satisfaction
ratio.

Fig. 6. (a) Channel eccentricity and (b) channel utilization of AEGIS.

the scope of this paper. Intuitively, multi-minded auction mech-
anisms should perform better than single-minded ones because
of the more feasible bundle choices for buyers. However, as
shown in Fig. 5, AEGIS-MP is slightly worse than AEGIS-SG
in terms of social welfare and revenue. Furthermore, in small
scale of auction settings, the performance of AEGIS has a note-
worthy degradation compared to the performance of OPT-MP.
As we will discuss later, the channel eccentricity of winners in
AEGIS-MP is the main reason for this degradation of system
performance.
We now present the evaluation results of channel eccen-

tricity and channel utilization. The channel eccentricity for
AEGIS-SG is always equal to 1 because the allocated bundle
is exactly the buyer's interested bundle. This means that there
is no channel over-allocation in AEGIS-SG, and the allocated
channel resource is fully exploited. Fig. 6(a) shows the channel
eccentricity of AEGIS-MP. We randomly select one instance
from the 200 simulation instances when the number of buyers
is fixed at 2000, and calculate the channel eccentricity for each
winner. The placement of a circle in Fig. 6(a) indicates one set
of winners with the same channel eccentricity and the same
size of used channel bundle. The size of a circle is logarithmic
to the number of winners. Though some of winners' channel
eccentricities are equal to 1, there exist about 67% winners,
whose channel eccentricities are larger than 1. On one hand,
AEGIS-MP just stimulates buyers to take undominated strate-
gies, such that buyers can still maintain multiple bundles or
uninterested channels in their active bundles during the auction.
On the other hand, buyers only use the most valuable channel
subset among their allocated bundles. Therefore, the size of
allocated bundle can be larger than that of actually used bundle
in some cases, leading to channel overallocation.
The channel eccentricity affects the channel utilization of

AEGIS-MP. By fixing the number of buyers at 2000 and running

200 simulation instances, we record the average channel utiliza-
tion for each channel and plot the results in Fig. 6(b). We do not
include CRWDP and NSR-MP in this analysis because they do
not consider channel spatial reusability. As shown in the figure,
different TV channels have different channel utilization. The
reason is that TV white spaces are spatially heterogeneous, e.g.,
channel 47 can be accessed to almost all buyers, while channel
33 is only available to around 36% buyers. In AEGIS-MP, we
distinguish between allocated channels and used channels. We
can observe from Fig. 6(b) that the allocated number is always
larger than the used number for each channel. This is because
some winners have channel eccentricity higher than 1. We can
also see fromFig. 6(b) that the channel utilization of AEGIS-MP
is always lower than that of AEGIS-SG. The reason is that the
winners with high channel eccentricity in AEGIS-MP disable
some possible allocations of their interfering neighbors. From
the above analysis, we can get that buyers' manipulated strate-
gies on channel demands indeed impact the performance of
spectrum auction systems.
At last, we present the evaluation results of the fairness of

AEGIS in terms of payments in Fig. 7. We fix the number of
buyers to be 1000 and obtain the results by running 200 simu-
lation instances. Fig. 7(a) shows the CDF of price per channel
for each winner in 200 experiments, and we can conclude that
under the payment schemes of AEGIS, the winners have to
pay different prices for each purchased channel. Specifically,
in AEGIS-SG, around 50% winners pay zero for their allocated
channels, and about 10% buyers are charged with the payment
higher than 0.2 for each purchased channel. The payment differ-
entiation also exists in AEGIS-MP. We also measure the Jain's
fairness index for each trading channel by calculating (20), and
show the results in Fig. 7(b). We can see from Fig. 7(b) that
the Jain's fairness indexes for most channels are below 0.3,
which indicates that the payment mechanisms in AEGIS, to
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Fig. 7. Payment fairness of AEGIS. (a) CDF of price per channel, (b) Jain's Fairness Index for each channel.

Fig. 8. Performance of OPT-MP, AEGIS, CRWDP, and NSR-MP on GoogleWiFi Dataset. (a) Social welfare. (b) Revenue. (c) Satisfaction ratio. (d) Channel
utilization.

some extent, are unfair. By incorporating the existing work,
such as the envy-free solution concept [41], [42], we can de-
sign fairer payment schemes for AEGIS in our future work.

C. Performance on GoogleWiFi Dataset
Fig. 8 shows the system performance of AEGIS, CRWDP,

NSR-MP, and OPT-MP on GoogleWiFi dataset when there are
6, 12, and 24 channels. Since channels are accessible to all
buyers in this setting, we average the channel utilization on all
channels on this dataset. Since the auction scale in this setting
is relatively small, we can calculate the results of OPT-MP
in all cases. Generally, the evaluation results are similar with
those on Google Spectrum Dataset. Again, AEGIS achieves
better performance than CRWDP and NSR-MP. Fig. 8 also
shows that when the number of channels increases, the social
welfare and satisfaction ratio increase, and channel utilization
decreases. The reason is that fixing the number of buyers, larger
supply of channels results in more trades in the auction, and
thus increases social welfare and satisfaction ratio. The channel
utilization decreases because buyers can be allocated to more
channels when the number of channels increases. For revenue,
AEGIS-SG decreases with the number of channels, while
AEGIS-MP, CRWDP, and NSR-MP increase. The clearing
price calculation in AEGIS-SG is based on critical bid. When
a larger number of channels is accessible in the auction, more
buyers are allocated channels, reducing the critical bids for
winners. Hence, the revenue of AEGIS-SG decreases. Though
the clearing price of CRWDP is also calculated based on critical
bid, there still exist considerable losers when the number of
channels becomes large. Therefore, the critical bids for winners
still stay high, so that the revenue continues to grow with the
increase of channels. The clearing prices of AEGIS-MP and
NSR-MP are the bids of winners at the end of the auctions.
Larger supply of channels leads to more winners, and thus
revenues in AEGIS-MP and NSR-MP become higher. Again,
because of buyers' manipulated strategies on channel demands,
the performance of AEGIS degrades compared to the perfor-
mance of OPT-MP.

VII. CONCLUSION

Considering the five challenges for designing a practical
spectrum auction mechanism, we have proposed AEGIS, which
is the first framework of unknown combinatorial auction mech-
anisms for heterogeneous spectrum redistribution. For the case
with unknown single-minded buyers, we have designed a direct
revelation combinatorial auction mechanism, call AEGIS-SG.
AEGIS-SG achieves strategy-proofness and approximately
efficient social welfare. We have further considered the case
with unknown multi-minded buyers and designed an itera-
tive ascending combinatorial auction, namely AEGIS-MP.
AEGIS-MP is implemented in undominated strategies and has
a good approximation ratio. We have implemented AEGIS,
and evaluated its performance on two datasets. Compared to
the existing work, AEGIS achieves superior performance in
terms of social welfare, revenue, satisfaction ratio, and channel
utilization.
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