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Abstract—More and more loT data is being traded online in cloud-based data marketplaces due to the fast-growing market demand.
Within the current data selling mechanisms, data consumers have difficulties in making purchasing decisions due to uncertain loT data
quality and inflexible pricing interface. To resolve these issues, potential solutions could be to launch data demonstrations and release
free sampling data to reduce the uncertainty about data quality, and to charge based on the volume of data actually used to enable
flexible pricing. However, there is still no clear understanding of economic benefits of these mechanisms. In this paper, we design the
optimal data selling mechanisms for loT data exchange, and derive the following two results. First, whether to deploy a data
demonstration and how much free sampling data to release depend on the extent of data consumers’ inaccuracy perceptions for data
quality, which varies over a wide range in loT applications. We found that the data vendor has no incentive to conduct these strategies

if data consumers extremely overestimate data quality. Second, although flexible data pricing mechanisms provide convenience for
real-time and streaming loT data exchange, it brings less economic benefits to the data vendor compared with the fixed pricing
scheme, which sells the whole data set with a fixed price. We evaluate the optimal selling mechanisms on a real-world Taxi GPS data
set, and evaluation results verify the insights derived from our theoretical analysis.

Index Terms—Data exchange, data quality, data pricing, optimal selling mechanism.

1 INTRODUCTION

OWADAYS, data is becoming an important resource in

diverse fields, such as finance [1], [2], advertising [3],
[4], transportation [5] and etc. With the increasing market
demand for data, a number of data vendors have emerged
to collect, categorize and trade data on the Internet. For
example, Quandl [1] releases financial and economic data
for business decision, Factual [3] provides location data
for mobile advertising, and Uber [5] publishes traffic data
for urban planning. In order to facilitate data sharing and
trading over the Internet, several data marketplaces, such
as In fochimps [6], Dataexchange [7] and IOTA Data Mar-
ketplace [8], have provided centralized platforms for data
vendors to sell data and data consumers to purchase the
data needed.

The most common method to sell data is via REST-
ful APIs [1], [9], [10], [11], [12]. Data consumers submit
parametrized queries as requests for data. For example, if
one wants to purchase data from Yelp [12], she specifies the
keywords of interest, such as the name of a restaurant, in the
API call, and then Yelp would return the matched events up
to a defined API call limit. Typically, the data consumers
will be charged based on the total number of API calls.
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IoT data commonly is heterogenous, diverse, and with
mass data volume. The data quality is uncertain. The current
data selling mechanisms impose two problems for IoT data
trading: one is uncertain data quality and the other is inflex-
ible pricing interface. In IoT data markets [8], [13], the valua-
tions over data and the decisions for purchasing data highly
depend on the data quality, which is diverse and uncertain
in most IoT applications. However, data consumers cannot
obtain this information before purchasing data, forcing them
to make improper purchasing decisions. To resolve this
dilemma, some data vendors have deployed data demon-
stration and released free sampling data, to reveal signals
about data quality. The data demonstration provides rough
information, e.g., categories, formats, geographic coverage,
and etc; while the free sampling data, chosen from the actual
data set, have more precise description over the data. The
current data selling mechanism is inflexible in the sense that
data consumers have to buy the whole data set (or a large
number of API calls) even they only need a subset of data,
which becomes more severe for real-time and streaming IoT
data trading. To tackle this problem, recent work [14], [15],
[16] introduced query-based data pricing, in which data
consumers issue ad-hoc data queries and are charged based
on the data used to answer the queries.

However, data vendors have concerned about these new
data selling mechanisms, and hesitate to adopt them in
practice. The data vendor does not clearly know market
response to data demonstration and free sampling strate-
gies, e.g., whether these mechanisms can increase market
demand or revenue? Thus, the data vendor has no idea
when to deploy a data demonstration and how many free
samples to release. Another unclear question for the data
vendor is whether deploying flexible data pricing, such as
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query-based pricing, can bring economic benefits, especially
revenue increase? The goal of this paper is to answer these
questions via rigorous mathematical analysis.

In this paper, we address the above mentioned issues,
and design the optimal data selling mechanisms for IoT data
exchange.

In order to characterize the market responses to data
demonstration and free sampling strategies in an uncertain
data quality environment, we first have to model data
consumers’ perceptions over loT data quality. Considering
that data is one kind of experience goods, data consumers
can receive signals about the underlying data quality via
watching a data demonstration or receiving free sampling
data. With these signals, data consumers can calculate the
posterior data quality through Bayesian learning, and then
make data purchasing decisions based on this updated
perception. Depending on the purchasing conditions, the
data vendor can derive a specific demand function (and
then an economic objective function), on which we can
measure the market response to data demonstration and free
sampling strategies. To choose between flexible and fixed
data pricing schemes, we explicitly calculate the economic
benefits of these two pricing schemes under a discounting
valuation model, which captures the decreasing marginal
valuations over data sets in practice [17]. We compare these
two benefits to evaluate the economic incentive for data
vendor to adopt flexible data pricing for IoT data trading.

We summarize the contributions of this paper as follows.

1) We propose a market model for IoT data selling in
an uncertain data quality environment. The data con-
sumers’ perception over data quality is modeled as
a Gaussian distribution, which has been widely used
to describe the quality of IoT data. The data vendor
can deploy data demo strategy, free strategy, sampling
strategy and pure paid strategy to maximize her eco-
nomic objective, which is a trade-off between revenue
and social benefit. We then formulate the problem of
designing optimal data selling mechanisms for IoT data
exchange.

2) We present a Bayesian learning scheme for data con-
sumers to update their perceptions over data quality,
which determine data purchasing decisions. Based on
the purchasing conditions of data consumers, we can
explicitly express the data demand, and then a specific
economic objective function.

3) We start with considering a benchmark case, in which
data consumers exactly know the underlying data qual-
ity, to shed light on the design rationale of optimal data
selling mechanisms. We further investigate the optimal
selling mechanisms for the case of uncertain data qual-
ity, which is more pervasive in IoT applications. Our
results show that when data consumers underestimate
data quality too much, the optimal selling mechanism
needs to release free samples to enhance data con-
sumers’ perception over data quality, attracting them
to purchase data. In contrast, the data vendor has no
incentive to offer free samples when the extent of over-
estimation to data quality exceeds a certain threshold.

4) We extend previous results to the flexible pricing with a
discounting valuation model, in which data consumers
have decreasing marginal valuations over data sets. We
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further show that the fixed pricing has higher economic
benefits than the flexible pricing. Thus, the data vendor
has less economic incentive to deploy flexible pricing,
which explains the widespread adoption of fixed data
pricing in practice.

5) We evaluate the optimal data selling mechanisms on
a taxi GPS trace data set. The evaluation results verify
our theoretical analysis. Based on evaluation results, we
derive two conflict behaviors between the data vendor
and data consumers, which demonstrate that market
regulations are needed to eliminate these conflicts, fa-
cilitating the trading of IoT data.

The rest of this paper is organized as follows. In Sec-
tion 2, we present our market model for IoT data selling. In
Section 3, we determine a specific data demand through a
Bayesian learning scheme. We also derive the optimal data
selling mechanisms for the cases of certain data quality and
uncertain data quality, respectively, in Section 4. We com-
pare the economic benefits of flexible data pricing scheme
and fixed data pricing scheme in Section 5. We evaluate the
designed data selling mechanisms based on real-world data
sets in Section 6. The related work is briefly reviewed in
Section 7. We draw our conclusion in Section 8.

2 PRELIMINARIES

In this section, we describe a market model for IoT data
trading, and formulate the problem of designing optimal
data selling mechanisms from the perspective of a data
vendor.

2.1 Market Model

Data Vendor: The data vendor launches an IoT data set for
trading, which contains /N data packages and is associated
with an underlying data quality QQ*. One possible interpre-
tation for the data quality @* could be the average accuracy
of data packages. For example, the data set could be the
GPS traces of cars from one city in a month. The GPS traces
in each day, considered as one data package, may have
various accuracies due to the noise during data acquisition
and data processing. Since data consumers can not know the
exact data quality before purchasing data, the data vendor
could deploy a data demonstration, or offer free sampling
data, to revise the data consumers’ perceptions over data
quality, For the non-sampling data, the data vendor charges
a premium data access price p to extract revenue. In IoT data
markets, data vendor determines three decision variables:
data demo deployment indicator 7 € {0,1}, size of free
sampling data n € [0, N], and a selling price p > 0 for
the remaining N — n non-sampling data package(s). Given
a tuple of specific decision variables (7%, n*,p*), the data
vendor can adopt the following four different data selling
mechanisms.

Definition 1 (Data Selling Mechanisms). By the specific values
of (7*,n*, p*), the data vendor can deploy

(i) data demo strategy if T* =1,

(ii) free strategy if n* = N,p* =0,

(iii) sampling strategy if n* € (0, N),p* > 0,

(iv) or pure paid strategy if n* = 0,p* > 0.
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Data Consumer: Data consumers are uncertain about
the underlying data quality @, and initially perceive that
Q™ follows a Gaussian distribution with a mean @ and a
variance 62, i.e.,, Q* ~ N(Q,5?). Gaussian distribution has
been widely used to model the value of IoT data, such as
temperature, noise level and wind level [18], [19], [20], [21].
Data consumers can learn such a common prior belief from
numerous exogenous sources, such as reviews, ratings, and
“word of mouth”. Before purchasing data, data consumers
receive signals about data quality from data demo and free
sampling data. Let QF denote the signal from watching a
data demo. We further assume

Qf £ Q" + e, where € NN(O,US), ¢y

meaning that the signal Qf provides noisy information
about *. We refer variance o2 as demo variance.

Similarly, sampling data also does not fully reveal Q*,
due to the inherent quality variability from data acquisition
and data processing. Specifically, for the ith piece of sam-
pling data, the data consumers experience data quality QZ,

which is also a noisy signal of Q*:
QF £ Q" +¢, where g; ~ N (0, 0?). )

Here, 0% captures the inherent data quality variability, and
we refer it as experience variance. It is worth noting that the
experience variance o is smaller than the demo Variance o3,
which i 1s further less than the prior variance 62, i.e., 02 <
o8 < 2. For convenience of discussion, we assume these

three types of variances satisfy the following relation:

o3 52 &2

o2 =7 0_0 =7 ; =7
where v > 1 is referred to as a variance parameter.

After receiving signals from both data demonstration
and n free sampling data, data consumers can update their
perceptions of data quality in a Bayesian fashion, and get
posterior data quality Q(7,n), which will be discussed in
Section 3

Valuation and Utility: Data consumers normally have
large valuations over the data set with high data quality,
but they may differ in the way to evaluate data quality.
Data consumers integrate the purchased data into various
IoT applications [22], [23], and thus could have different
valuations for the data set even with the same quality. To
capture such heterogeneity, we introduce a parameter 6 for
diverse preference over data quality, which is uniformly
distributed in the interval [0, 1].! In the fixed data pricing,
each data consumer either purchases the whole data set,
or stays with the n free data samples.”> We normalize the
valuation of free sampling data to be zero, and express a
data consumer’s valuation when purchasing the whole data

set as:
v(n) 2 —n) x Q(r,n). 6)

The valuation over the purchased data packages consists of
two components: private valuation 8 x (N — n) and common

0 x (N

1. We can also use other kind of distribution for 6 to derive the same
results.

2. We will relax this assumption, and consider the flexible data
pricing, in which data consumers can purchase any number of data,
in Section 5.

Table 1: Key notations

Notation | Definition
T The indicator of data demonstration de-
ployment
N Size of data packages in an IoT data set
n Size of free sampling data
D Selling price
Q* The underlying data quality
N(Q,5?) | Gaussian distribution of Q*
Q(7,n) | The posterior data quality
¥ The signal from deploying data demonstra-
tion
ol The demo variance
E

The data quality data consumers experi-
enced from the ith piece of sampling data
o The experience variance that captures the
inherent data quality variability

vy Variance parameter

D Data demand

v The valuation of data consumer

U The utility of data consumer

7w(T,n,p) | The economic benefit of the data pricing
mechanism
w(n) The social benefit of n free sampling data
K The maximum volume of non-sampling
data packages that data consumers can buy
1) The discounting factor

valuation QQ(1,n). The parameter 0 is the type of a data
consumer, denoting her private valuation for each piece
of non-sampling data. The posterior data quality Q(r,n)
can be regarded as a “common” valuation for all data
consumers, which is derived from the identical data quality
learning model. This linear valuation model is the simplest
model for IoT data markets, and has been adopted in other
markets [24].

The utility of a data consumer is defined as the difference
between the valuation over the purchased data and the price
p charged by the data vendor:

2 v(n) —p. )

The price p is zero if consumers stay with free sampling
data.

Data Demand: Data demand represents the percentage
of data consumers buying data set in the market, and
is determined by the decision variables 7, n, and p. We
denote the data demand by D(r,n,p, E[Q(7,n)]). We note
that the posterior data quality Q(7,n) is the private in-
formation of consumers, and the data vendor only has an
expectation over such information. A feasible data demand
satisfies several basic properties. First, the data demand
decreases with price, i.e., 9D/Jp < 0. Second, we require
0D/0Q > 0, meaning that data demand depends positively
on the expected posterior data quality. Third, the number
of free sampling data n has direct and indirect effect on
data demand. We derive data demand with respective to

n: % + %g—g, where the term 0D/0n and the term

u(p,n)
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(0D/0Q) x (0Q/0On) captures direct and indirect effects,
respectively. If 0D /0n < 0, then we have 8D + gD gg < 0.
It means the data demand decreases w1th the sample size
n. If 0D/0n > 0 and 9D /dn is sufficiently large, then the
indirect effect will be stronger than the direct effect so that
%2 + gg g@ > 0, and the data demand increases with the
sample size n.

Revenue and Social Benefit: The data vendor adopts
different data selling mechanisms from Definition 1 by mak-
ing a trade-off between revenue and social benefit. Here, we
define the revenue as the selling price of non-sampling data
multiplies the data demand, i.e., p x D(7,n,p,E[Q(7,n)]).
The data vendor should also take social benefit of free
sampling data into account during data trading. Releasing
free sampling data can attract more data consumers, helping
to discover the potential applications behind data set. In
addition, the released high quality data can also improve the
reputation or brand cognition of the data vendor, bringing
new revenue in the future. This can be analogous to some
kind of “advertising” for the data set. We quantify such
advantage of launching free sampling data as the concept
of social benefit, and use a general concave function w(n)
to represent the social benefit of n free sampling data. The
data vendor integrates revenue and social benefit into her
optimization objective.

2.2 Problem Formulation

In IoT data markets, the data vendor jointly optimizes the
revenue and social benefit from data trading. The data
vendor can extract revenue from selling non-sampling data,
and obtain social benefit from releasing free sampling data.
The data vendor determines three decision variables: 7, n,
and p, to maximize the weighted average of revenue and
social benefit. We can formulate the design of optimal data
selling mechanism in IoT data markets as:

max
7,1, P

71—(7—7 nap) £ CZpD(T, n,p, E[Q(Tv TL)D + (1 - a)w(n) (5)

st. p>0, 0<n<N, 7€{0,1},

where « is a weight parameter, measuring the proportion
of revenue in the objective function. We call n(7,n,p) as
the economic benefit of the data pricing mechanism. It is
worth to note that the problem of revenue maximization
(i.e., @ = 1) and the problem of social benefit maximization
(i.e., o = 0) are nested within such formulation.

3 DATA DEMAND DETERMINATION

To determine the data demand, we start with describing
a Bayesian learning scheme for data consumers to up-
date their perceptions over data quality after receiving
signals from data demonstration and free sampling data.
As discussed in Section 2.1, data consumers initially have a
common prior Gaussian distribution A/ (Q, 62) for Q*. The
posterior perception, i.e., the posterior Gaussian distribution
N(Q(7,n),0?(T,n)), after receiving the data demo signal

4
QY in (1) and n sampling data signals {QF,1 < i < n}

in (2), can be given by the standard Bayesian analysis:
Q(r.n) v L yert L a e

™N) =T 55 25 0 2Sni:1 i 5—2577, )

1
2

- 7
where S, = 1/0%(r,n). Equation (6) describes that the

posterior data quality Q(7,n) is a weighted average of the
prior data quality and the received signals. We note that
Q(7,n) is arandom variable across data consumers, because
data consumers may receive different signals from data
demonstration and free sampling data. This learning model
is simple but appealing, as it captures the heterogeneity
across data consumers in perceived data quality, even they
start with the identical prior distribution. Equation (7) de-
scribes how data consumer’s uncertainty over data quality
declines after she has received a set of accumulated signals,
implying that the greater extent of updating, e.g., deploying
data demo or increasing the size of free sampling data, the
more accurate the posterior data quality. In the limit, the
perceived quality Q(,n) converges to the underlying data
quality Q*.

We next derive a specific demand function based on the
purchasing behaviors of data consumers with the above
Bayesian learning scheme. A data consumer will buy the
data set if the utility in (4) from purchasing the whole data
set is non-negative, i.e.,

0 x (N —n)xQ(r,n)

We recall that data demand is defined as the fraction of
consumers that purchase the data set, i.e., the consumers
with 6 that satisfies (8). Combining with the assumption
that 0 is uniformly distributed in [0, 1], we can express the
data demand as a function of the three decision variables, T,
n, and p

-p=0. (8)

p
D(r.m,p) = max {0’ LT N B ) } -0
It is worth noting that the data vendor uses the expected
posterior data quality E[Q(7,n)] rather than the posterior
data quality Q(7,n). This is because the posterior data
quality is private information of data consumers, and is un-
known to the data vendor. We now calculate such expected
posterior data quality. We assume that the data Vendor
knows the common prior quahty distribution @ and 62, data
quality Q*, demo variability 03 and experience Varlablhty
o?. This information can be learned by conducing standard
market research, such as survey. According to equations (1)

and (2), we have E [QF] = Q* and E [QF] = Q* for all
1 <4 < n. Together with (6), we can derive
1 1 -
BIQ(r )] = T Q' + @ 4 -0, (10

We substitute this expected data quality into (9), and ob-
tain the data demand function. We note that this demand
function satisfies the basic properties in Section 2.1.
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4 OPTIMAL DATA SELLING MECHANISMS

In this section, we design the optimal data selling mecha-
nisms for two cases. We first analyze the benchmark case, in
which consumers exactly know the underlying data quality
Q*. In this case, the data demonstration and sampling
mechanisms do not affect consumers’ perceptions over data
quality. For convenience of discussion, we allow the size of
free sampling n to be any real number in (0, N], which is
justified when N is large. We specify the concave function
w(n) of social benefit as 8 log(n + 1), where § is a weighted
parameter.

Certain Data Quality: When data consumers know the
data quality Q*, the data demand in (9) is

D(n,p) :maX{O,l - (N—pn)Q}

In this case, data demonstration does not affect the value of
objective, and thus the data vendor only has to determine
the free sampling size n and the selling price p to maximize

m(n,p) = ap (1 - ﬁ) +(1

According to the first-order condition, the optimal selling
price p*(n) for a given sampling size n is:
pny = YW

We substitute the above optimal price into the objective
function in (12), and obtain

(11)

a)Blog(n+1). (12)

(13)

m(n) = ax Ci X(N=n)+(1—a)xBxlog(n+1). (14)
The corresponding derivative of 7(n) is
ooy aQ” N8
m'(n) = 1 +(1 a)n+1. (15)

The optimal sampling size n* satisfies the first-order condi-
tion:

_ 48
=30
where A £ a/(1 — «) is the ratio of weight parameters for

revenue and social benefit. Substituting the optimal n* into
(13), we can express the optimal price with A and Q*:

C_ (N+1Q —48
b 2)

We can observe that the parameters A and )* have opposite
effects on the optimal price in (17) and the optimal sampling
size in (16). Specifically, the optimal price p* increases in A
and @*, while the optimal sampling size n* decreases in \
and Q*. Furthermore, p* increases in the size of data set NV,
while n* is independent on V.

The following theorem characterizes the optimal data
selling mechanism in the setting with certain data quality
Q"

Theorem 1. When data consumers know IoT data quality Q*,
there are two cut-off values for the weight ratio ), i.e.,

483 48
Q*(N +1)’ Q*’

) =0 = n*

17)

A= and X =

5
such that
> if A < A, the data vendor would deploy free strategy, i.e.,
= N and p* = 0.
> if A < XA < A, the data vendor would deploy sampling
strategy, i.e., n* = /\45* —1,p* = W
D> if A > Xthg data vendor would launch paid strategy, i.e.,
=0,p=

Proof. The data vendor determines the optimal free sam-
pling size n* to maximize 7(n) in (14). There are three pos-
sible solutions for this optimization problem, i.e., an interior
solution given in (16), two corner solutions n* = N and
* = 0, which correspond to the three data selling strategies,
respectively. The derivative function 7’(n) in (15) decreases
with n. Thus, for a corner solution involving n* = N, the
Karush-Kuhn-Tucker conditions require that

45

"NY>0 =

(N) 2 SO INFL)

At the other extreme, when n* = 0, the Karush-Kuhn-

Tucker conditions imply that

45
0)<0 = A>—
(0 o

It is easy to check that in the condition

the optlmlzatlon problem has only one unique interior

Q)« 7
solution n* .

Substituting n* into (13), we can derive the correspond-
ing optimal selling prices in these three cases. O

Uncertain Data Quality: When data consumers are un-
certain about the data quality QQ*, we have derived the
expected data demand in (9). Then, the data vendor deter-
mines 7, n, and p to maximize

. - P
m(rn.p) = XPXO(N—MMMﬂMO
+(1—a) x Blog(n+1),

where E[Q(7,n)] is the expected posterior data quality in
(10). The data vendor can decide whether to deploy a data
demo by simply comparing the values of solutions when 7
is 1 and 0, respectively. In the following discussion, we set
7 = 0, and focus on the determination of n and p.

Similar to the benchmark case, we can obtain the optimal
price function with respective to the sampling size n

(N = n)E[Q(O, m)]

(18)

p(n) = 5 (19)
The expected posterior data quality in (10) becomes
Q. Q _ nQ Q
IE O - = —
QOmI =55, * 525, n+ % T
2 * * A
V?nQ* +Q Q" -Q
= - =Q - (20)
v n + 1 ny? 41’
where S,, = 1/0%(0,n) = n/o? + 1/0?. Substituting p*(n)
and E[Q(0,n)] back into the objective function in (18), we

can rewrlte it as
_a Q" -Q
m(n) = SN - )(Q -

> + (1 —a)Blog(n+1).

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 31,2021 at 05:58:04 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3113387, IEEE

Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. XXX, NO. XXX
The derivative of m(n) is

oo (@ = Q)N +1) 5
w'(n) = 1

—Q*> +(1_a)m

o 1) @
We observe that objective function 7(n) has different prop-
erties when () and Q" have different relations. Specifically,
if data consumers underestimate data quality, i.e., @ < Q,
7’(n) is monotonically decreasing, and thus 7(n) is strictly
concave. When data consumers overestimate data quality,
ie, Q@ > QF, the property of m(n) is a bit complicated:
the revenue term decreases with n and is convex, while
the social benefit term decreases with n but is concave.
We characterize the optimal n* and p* when consumers
underestimate and overestimate data quality in Theorem 2
and Theorem 3, respectively. When 7 = 1, we can get the
similar conclusions. To avoid repetition, we do not describe
again.

Theorem 2. In t}ie case that data consumers underestimate IoT
data quality, i.e., Q < Q, there are two thresholds

2
A= 46 _O°N+D 5o _46 .
(N+1) (12NQ* + Q) PN@Q-Q)+Q
such that
e Case A: data quality ga N < Q* <1,

> if A < A, the data vendor would deploy free strategy, i.e.,
= N and p* = 0.
> if A < XA < A, the data vendor would deploy sampling
stmtegy, ie., n* = arg{n’(n) = 0} and p*(n*).
> if A\ > ), the data vendor would launch paid strategy, i.e.,

—0,p" = N2
_ 2N/
> if A < A, the data vendor would dep oy free stmtegy, ie,
= N and p* = 0.

> if A > )\, the data vendor would deploy sampling strategy,
ie, n* = arg{n’'(n) = 0} and p*(n*).

Proof. In the case of underestimate data quality, i.e., @ < Q"
the objective function 7(n) is strictly concave, because 7’(n)
is a decreasing function. For such concave maximization
problem, the optimal solution may stay at the interior point
n* = arg{n’(n) = 0}, or the two extreme points: n* = N
and n* = 0. These three solutions correspond to the three
data selling strategies. We derive the conditions of these
three solutions by d1st1n§ulsh1ng the followmg two cases.

e Case A: when 1]_ 2NQ* < Q < @7, the analysis
is similar to that in Theorem 1. Considering that 7’(n) is
decreasing with respective to n, if the optimal solution is
the corner solution n* = N, the Karush-Kuhn-Tucker (KKT)
conditions imply that

48 (*N+1)
(N+1) (2NQ* + Q)

When the optimal solution stays at the other extreme
point, n* = 0, the KKT conditions require that

45
VN@Q - Q) +Q
We note that this degivation holds when the denominator of
A is positive, i.e., %Q* < Q.

T(N)>0=> A< A=

T0)<0=A>\=

6

If A < A < ), the concave maximization problem has
one unique interior solution n* = arg{n’(n) = 0}.

e Case B: when Q < 2NQ* we have

7(0) = (Q" - Q) x Q)+ 801 -a) 20,

meaning that the optimal solution would not be at point
n* = 0. Similarly, we can obtain the conditions for n* = N
and n* = arg{n’(n) = 0} are A\ < Aand A > ), respectively.

O

==

(Y’N+1) -

The above result is consistent with the insight from
Theorem 1, and Theorem 2 reduces to Theorem 1 if data
consumers have correct estimations over the data quality,
ie, Q =Q".

In contrast to the underestimate case, it is complicated
to characterize the conditions for the data vendor’s optimal
sampling and pricing decisions analytically in the overesti-
mate case. Nevertheless, we have the following result.

Theorem 3. In the scenario data consumers overestimate IoT
data quality, ie, Q > QF, the objective function m(n) is
neither concave nor convex. The optimal sampling size is n* =
arg max{m(0), w(n}), m(ns), 7(n}), 7(N)}, where n3, n}, and
n} are three interior solutions obtained by solving 7' (n) = 0. The
corresponding optimal selling price is p*(n*) given by (19).

The proof for this theorem is straightforward. From stan-
dard optimization theory [25], for a differentiable function, a
global maximum either must be a local extrema (stationary
point) or must lie on the boundary of the domain. We will
use specific parameters derived from a real-world data set
to show how to determine the optimal mechanism for this
case in Section 6.

5 EXTENSIONS TO DISCOUNTING SETTING

In previous section, data consumers have inflexible purchas-
ing options: either staying with free data samples or buying
the whole data set. In this section, we consider a flexible
data selling scenario, in which consumers are allowed to
buy any data subset. We derive the optimal mechanisms
under various settings. We further show the result that the
data vendor has no economic incentive to adopt the flexible
pricing scheme.

We extend the market model by introducing a discount-
ing valuation function [17]. This function is motivated by
the observation that data consumers always have decreasing
marginal valuations over the data set in practice, which are
also known as the law of marginal utility in economics.
Specifically, the valuation for buying k € [0, K] non-
sampling data packages is defined as

(k) =01+ 6+ -+ 0" 1) x Q(r,n),

where K is the maximum volume of non-sampling data
packages that data consumers can buy and ¢ is the discount-
ing factor. In this extended discounting model, the private
valuation of k£ non-sampling data packages is 6 x 11%6;,
rather than 6 x k in (3). The common valuation remains to
be the posterior data quality, i.e., Q(7,n). Given a unit price

po, the utility of purchasing k data packages becomes

u(k) =v(k) —k xpy, ke]|0,K].
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We now derive the market demand of exactly buying k data
packages. The data consumer chooses to buy k£ data pack-
ages if and only if k = argmax@(k’), which is equivalent
to u(k) > u(k — 1) and (k) > a(k + 1) in the discrete
domain. Thus, the marginal type ) can be obtained by
setting (k) = @(k — 1). By simple calculation, we can get

Po
E[Q(7,n)] x §k—1°

Then, the market demand for buying k data packages is

-
Di(po) = { 1kj191< k

O = (22)

k=1,2,...,K—1

k- K (23)

We note that the demand could not be negative, and then
we have an additional constraint: 0 < 1.
With the demand Dy, (po) for each possible k, we can de-

termine the optimal unit price pg. In discounting valuation
setting, the objective function in (5) becomes

K

m(n,po) = a Yy kpo x Di(po) +
k=1

(1 —a)x Blog(n+1)

K
—oc|:K><p0>< 1—91{ ZkXp0X(9k+1—9k):|

k=
+(1 - «a) x Blog(n + 1)

W 7 —(
- [KPO E[Q(r,nn -

We derive 7(n, pg) with respect to pg, and set it to be zero.
We then get the optimal price function with a certain n

\./

1
5

+ (1 — a)Blog(n + 1)24)

=

L EQ(rm)]  K(1-1) ,
= . 5
Po (n) 2 X 1— (%)K ( )
Plugging this optimal price back to (24), we get
w(n) = o 2O )”@“_’W+u_@m%m+)(%)

S ON
We note that the constraint 8 < 1 determine the value of
K and affect the feasible range of n. Substituting (25) into
(22) with k = K, we can get
K(1-3)

2651 x (1 (1) 2%
We can check that 0 increases with K, and thus for a given
9, there exists a K*(9) such that -5y < 1 and O (541 >
1. Considering that K = min{K*(4), N — n}, we further
distinguish two cases:

» Case A: K*(0) < N —n.We then have K = K*(§) and
n € [0, N — K*()]. The objective function in (26) becomes

E[Q(0,n)] (K*(9)* (1 - 5)

K(1—96)
(1-6K)

m(n) =« 1 - (l)K*(‘S) +(1—a)Blog(n+1).
s
27)
The derivative of this objective function is
2 * A
/ b (Q _Q)
’/Tl(n) a(72n+1)2 XC()+( a)n+17
* 2(1_1
where C'(9) = (K O)*(1—5) is a constant, and is only

7

related to §. We use the following theorem to characterize
the optimal data selling mechanism in this scenario.

Theorem 4. In the case that data consumers underestimate
the data quality, ie, Q < Q¥ the optimal data sell-
ing mechanism is n* = N — K*(§) and p§(n*, K*(9)).
In the case that data consumers overestimate the data qual-
ity, ie, Q > @ the optimal data selling mechanism
is n* = argmax{m(0),m(n}), 7(n;), 7(N — K*(d))} and
p§(n*, K*(9)), where n} and n} are two interior solutions
obtained by solving 7' (n) = 0.

The proof is straightforward, and similar to that in
Theorem 2. Due to the limitation of space, we omit the proof
here.

» Case B: K*(0) > N —n. We then have K = N — n
and n € [max{0, N — K*(d)}, N]. The objective function
becomes

MUUZQMQmeUﬁ:?ggjf)+O_Qngn+D
’ (28)

To maximize m3(n), it is not possible to obtain a closed form
solution. We chose specific values for the parameters, and
derive the optimal n* and p* in Section 6.

We now consider whether data vendor has economic
incentive to deploy the above flexible pricing scheme. We
first derive the objective of the fixed pricing scheme, in
which data consumers have to choose between buying the
whole data set or staying at free samples, in the discounting
setting. Similar to (22), we can get the marginal type

- KXpO
K B < e )

and the market demand for buying the whole data set is

= max - K X po
Drc(po) = {0, 1 R[Q(rn)] x SK] 5,}

We substitute the demand into the objective function in (5)

Kpo

m3(n,po) = aKpo [ 1— —— |+ (1—a)Blog(n+1).

< E[Q(r,n)] /5" 62)

(30)
We derive ms(n,pg) with pg, and obtain the optimal unit
price
. _  E[Q(r,n)]
Do =

2><K><ZK Loi

Substituting pf into (29), we get that the marginal type is
0k = 1/2, and thus the demand is Dg (pf;) = 1/2. Putting
p§ back to w3(n, po) in (30), we get

an

Zéz

Here, we use the fact m3(n) increases with K and K < N —
n.

We compare m3(n) of the fixed pricing scheme with the
objective 71 (n) and m2(n) of the flexible pricing scheme. For
m1(n) in (27), we have the following relation

(K*(8))* (1= 3)
- ()0

m3(n) = (1 —-a)Blog(n+1). (31)

(N=n? 3N
= N—-n-1 i < Z o'
=0 o =0

>

(32)
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Figure 1: The probability density function of sampling fre-
quency of taxi GPS data set.

The first inequality follows from the monotonicity of func-
tion G(K) = K(1 —6)/(1 — 6%), and the second inequality
follows from the Cauchy-Schwarz inequality. By this result,
we can derive that 71 (n) < m3(n) for any given n. For ma(n)
in (28), we can use the second inequality in (32) to get the
similar result that m2(n) < 73(n) for any n. From the above
analysis, we have max{mi(n]),m2(n3)} < ms(n}), where
ni, n3 and nji are the optimal sampling sizes in the cor-
responding scenarios, respectively. Thus, we can conclude
that the economic objective of the flexible pricing scheme
is less than that of the inflexible pricing scheme. Our result
demonstrates that bundling mechanism [26] could be more
profitable in IoT data markets. We characterize this result in
the following theorem.

Theorem 5. In discounting valuation setting, the fixed data
pricing scheme has more economic benefit, compared with the flex-
ible data pricing scheme. Thus, the data vendor has no economic
incentive to launch the flexible data pricing scheme.

6 EVALUATION RESULTS

In this section, we report the evaluation results of the
designed optimal data selling mechanisms on a real-world
GPS trace dataset collected from Shanghai taxis in 2007 [27].
Taxi GPS Dataset: The data set consists of N = 28
data packages, where each represents one day of data col-
lected in February 2007. Each data package involves around
2000 files, each of which is collected by one taxi on the
corresponding day. Each file further contains around 2000
messages, which records the information of date, time, taxi
ID, GPS location and whether there are passengers in taxi.
We adopt sampling frequency, the number of messages
recorded every second, as data quality in our evaluation.
Due to the unreliable wireless communication, there is high
data loss during IoT data acquisition, and thus the metric
of sampling frequency is critical for data consumers. For the
above data set, we can calculate the sampling frequency of
each file. The data quality of each data package is defined
as the average sampling frequency of files within this data
package. The data quality of the whole data set, i.e., Q% is
the average data quality of all data packages. We assume
the data quality of files are independent identical random
variables. According to Central Limit Theorem, the data
quality of the whole data set follows a normal distribution.
We illustrate the probability density function of the sam-
pling frequency of our data set in Figure 1. We can calculate
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Figure 2: Optimal data selling strategy (7*, n*, p*) in certain
data quality case.

the data quality Q* as 0.02011 message per second, with
a variance 2.6075 x 10~°. For convenience of discussion,
we normalize the mean to @* = 2.011 and the variance to
03 =2.6075 x 1074,

In the following discussion, we investigate the optimal
data selling mechanisms under certain data quality and un-
certain data quality settings, respectively. Since it is straight-
forward to check whether launching data demonstration
is optimal, we omit the evaluation results of data demo
strategy.

6.1 Certain Data Quality

In Figure 2(a), given different weight parameters «, the
blue, green, red lines correspond to the optimal 7* for free,
sampling, paid strategies, respectively. We use solid lines
to denote the optimal data selling strategy. The evaluation
results confirm our analysis in Theorem 1. With N = 28,
Q* = 2.011 and B8 = 1, the two cut-off values for the
weight ratio A are A = 0.0686 and A = 1.989, and the
corresponding weight parameters are o = 0.0642 and
a = 0.665, respectively. We can observe from Figure 2(a)
that if o is less than ¢, i.e., A < ), free strategy is the optimal
strategy; for an intermediate level of o, i.e.,, &« < a < @, the
sampling strategy that jointly considers revenue and social
benefit is optimal. If « is greater than @, the paid strategy
becomes optimal. We also denote the two turning points, i.e.,
the tangent points of sampling line with free line and paid
line, as points A and B in Figure 2(a). Figure 2(b) shows
the optimal sampling size n* and price p* with different
weight parameters «. The reason for this trend is that the
data vendor prefers to generate revenue and cares less about
social benefit when o becomes large.
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Figure 3: Optimal 7* in underestimate data quality case.

6.2 Uncertain Data Quality

We first consider the case that data consumers underesti—
mate data quality, ie., @ < Q*. Weset v = 2 and 8 =
in thls set of evaluation. The threshold of data quality gap

- sz ~ is 0.991. We recall that in Theorem 2 there are two

cases: large underestimate Q@ < 0.991 and slight underes-

timate 0.991 < Q*'

set Q to be 1, and plot 7* in Figure 3(a). From the figure, we
can find that the paid strategy would no longer be optimal
when consumers underestimate data quality too much. In
this case, data vendor has to offer free samples to enhance
consumers’ perceptions over data quality, attracting them to
purchase data set. ~

For the case of slight underestimation, we set () to be 2,
and plot the optimal 7* in Figure 3(b). We observe that all
the three different mechanisms could have chance to be the
optimal mechanism, which is similar to that in certain data
quality case. One interesting observation is that the paid
strategy, which does not provide any free sample, could still
be the optimal strategy in some scenarios (when o locates
in [@, 1]). This implies that the data vendor may not release
free samples to revise the perceptions of data consumers if
the extent of underestimate is not too large.

We then evaluate the optimal data selling strategy when
data consumers overestimate data quality, and report 7*
for the cases of moderate overestimate () = 2.5 and large
overestimate () = 7.173 in Figure 4(a) and Figure 4(b),
respectively. From Theorem 3, the optimal n* should be
chosen from five candidates. In our evaluation setting, there
is only one particular valid candidate among n}, n3, n3, and
the other two are either not real number or fall out of [0, N].
As shown in Figure 4(a), the interval of ¢, in which sampling

For the case of large underestimate, we
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Figure 4: Optimal 7* in overestimate data quality case.

strategy is optimal, i.e., [a, @], becomes small if the extent of
overestimate increases, and reduces to empty if () exceeds
the threshold 7.173. When data consumers overestimate
data quality, the data vendor has less incentive to offer
free sampling to revise their perceptions, and would like to
charge more data packages to extract revenue. Figure 4(b)
shows that when the data vendor cares much about social
benefit, she would adopt free strategy; otherwise, she would
just deploy the paid strategy towards those optimistic con-
sumers to extract high revenue. Sampling strategy would no
longer be optimal in this case. Based on these discussions,
we can derive the first conflict between data consumers and
the data vendor: the data vendor would not like to release free
samples to revise data consumers’ mistaken perceptions over data
quality in the extreme overestimate case.

6.3 Discounting Valuation

Following the principle in Section 5, we derive the optimal
data selling mechanism and the optimal objective 7* under
two different discounting factors 6 = 0.98 and § = 0.9. For
a fixed &, we can observe the similar results for certain data
quality case and uncertain data quality case. Here, we only
report the evaluation results of the overestimate data quality
case with two different discounting factors in Figure 5(a).
From Figure 5(a), we can find that the sampling strategy
could be optimal in more scenarios when ¢§ is smaller.
This is because the data vendor would extract less revenue
from charging non-sampling data if consumers have larger
discount, e.g., = 0.9, and she would like to release more
free samples to obtain social benefit in this case. Figure 5(a)
also shows that the objective value 7* in the case of § = 0.98
is significantly larger than that in the case of 6 = 0.9, which
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Figure 5: Optimal 7* in overestimate data quality case with
discounting valuation.

demonstrates that the discounting factor has a high impact
on the revenue.

In Figure 5(b), we describe the optimal objective values
7* of the flexible pricing and the fixed pricing when ¢ is
0.9. From Figure 5(b), we can see that the fixed pricing out-
performs the flexible pricing in all cases. which is consistent
with the results in Theorem 5. We can derive the second con-
flict between data consumers and the data vendor: although
data consumers can benefit from the flexible pricing scheme, the
data vendor has no economic incentive to deploy such scheme. To
facilitate the sustainable and healthy trading of IoT data, it
is necessary to deploy market regulations to eliminate these
two conflicts.

7 RELATED WORK

In this section, we briefly review the related work about data
markets and pricing mechanisms for information good.
Data Market: Different types of data, e.g., personal data,
IoT data and image data, have been collected and monetized
by online service providers [28], [29], [30], [31], [32]. The
seminal paper of data marketplaces outlines key challenges
and potential research opportunities in this direction [33].
Koutris ef al. [14], [15] designed a query-based data pricing
framework to replace the current inflexible data pricing.
Jung et al. [34] proposed a set of countable protocols for
big data trading among dishonest consumers. In paper [35],
Li et al. adopted information entropy to price data. Mehta et
al. designed pricing policies for the data set with row-
column format [36]. Agarwal et al. proposed matching
mechanism to efficiently buy and sell training data for
machine learning tasks [37]. Theses approaches determine
the price of data based on information and determinacy.
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However, the focus of our work is the widespread data
APIs pricing [16], which determines price only based on
the number of API calls. Our results in Theorem 5 shows
that the flexible pricing, such as the query-based pricing,
achieves less economic benefit, compared with the fixed
price mechanism.

There are other issues related to data sharing and trad-
ing, such as privacy preserving [38], [39], [40], data quality
management [41], revenue sharing [42], [43], and data usage
policies [44].

Information Pricing: Pricing information or digital
goods have been widely studied in economics [17], [45],
[46]. The book [47] distilled the pricing rules for information
services. There are two effective mechanisms for pricing in-
formation services in the literature. One is bundling, which
sells a large number of information goods for a fixed price.
Geng et al. provided guidelines to bundling design in the
case that consumers have decreasing valuations [17]. This
discounting valuation model is similar to that considered
in this work. Our results demonstrate that bundling is
also a profitable selling mechanism in the uncertain data
quality environment. The other strategy is versioning, which
provides multiple versions for one product to satisfy the
diverse demands of data consumers. As observed in [45],
manufactures may intentionally damage their goods to en-
able price discrimination, leading to Pareto improvement.
Bhargava and Choudhary derived the optimal versioning
condition [46]. We observe that in practical data markets,
the data vendor also launches different versions for data
commodity, such as different numbers of available API calls.
In our further work, we would investigate the effect of
versioning on designing data selling mechanism.

Information pricing is also a well-explored subject IoT
network and wireless network [48], [49], [50], [51], [52]. Niy-
ato et al. [48] studied the economics of IoT and presented the
information economics approaches. Finally, they proposed
an economic model based on game theory to study the
price competition of IoT sensing services. Alsheikh et al. [49]
studied data pricing in IoT data markets from a machine
learning perspective. They presented IoT market models
and optimal pricing schemes of selling IoT services for
standalone sales or bundled sales. In standalone sales, they
maximized the profit of service providers by optimizing the
size of bought data and service subscription fees, while in
bundled sales, they aimed to maximize the total profit of
cooperative service providers. Wu et al. [53] captured the
unique economic characteristics of IoT data and presented a
novel data model from the information design perspective.
They also proposed data pricing mechanisms to maximize
their revenue. Niyato et al. [54] designed a smart data pric-
ing approach to achieve flexible and efficient data manage-
ment in IoT. Moreover, they proposed a pricing mechanism
to determine the data price for IoT service providers. In
addition, some surveys summarized the research status of
data pricing and pricing models in IoT [55], [56].

For the rising of data marketplace, survey [57] discusses
a lot related issues. [14], [58] work out the QueryMar-
ket system intending to address the inflexibility problem,
while [59] purpose an arbitrage-free pricing scheme to deal
with the simplicity issues. More details of query-based
pricing with API can be seen in [15], [60]. Data market is
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tightly related to cloud computing [33] as well as privacy
issues [30], [61], [62]. We also investigate several works [63],
[64] where data market appearing in mobile devices which
is also another interesting topic regarding data marketing.

8 CONCLUSION

In this paper, we have considered the optimal data sell-
ing mechanisms for IoT data exchange. By modeling IoT
data quality as a Gaussian random variable and adopting
Bayesian learning scheme to update perceptions over data
quality, we can obtain a specific data demand function,
and then derive the optimal data selling mechanisms for
the scenarios when data consumers underestimate, correctly
estimate and overestimate the data quality. Our theoretical
analyses and evaluation results show that the data vendor
would not release free sampling data for optimistic data
consumers to revise their incorrect perceptions. Further-
more, the data vendor has no economic incentive to adopt
flexible pricing schemes, which explains the current widely
adopted fixed pricing schemes in data markets.
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