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Abstract—Mobile crowdsensing has become increasingly popular due to its ability to collect a massive amount of data with the help of

many individual smartphone users. A crowdsensing platform can utilize the collected data to extract effective information and provide

diverse services. Designing an incentive mechanism to compensate the participants for their resources consumption is critical in

attracting more participation. Offline incentive mechanism design has been widely studied in various crowdsensing applications,

whereas the online scenario, is much more challenging due to the unavailability of future information when the platform makes user

selection decisions. In this paper, we investigate the problem of online crowdsensing by considering a critical property that the values of

users’ contributions decrease as time goes by. The time-discounting property is common in inter-temporal choice scenarios but has not

been carefully addressed from the perspective of mechanism design. To handle this problem, we propose a new method to select users

based on a time-dependent threshold, and present a strategy-proof framework where participants prefer to submit their true types,

instead of manipulating the market by misreporting their private information. We consider two cases, one is that the total value is the

summation of each participant’s contributing value, the other is more general that the total value function is submodular. We call these

two mechanisms TDM and TDMS, respectively. We prove that our two mechanisms can achieve computational efficiency, budget

feasibility, strategy-proofness, and a constant competitive ratio, in the context of time-discounting values. By comparing our

mechanisms with the state-of-the-art methods, we show that our design achieves better performance in terms of the total value.

Index Terms—Mobile crowdsensing, incentive mechanism, budget feasible mechanism, time-discounting

Ç

1 INTRODUCTION

MOBILE crowdsensing is a new kind of sensing paradigm
that utilizes mobile devices to collect, analyze, and share

local information [1], [2], [3]. It consists of a service provider,
service requesters, and mobile users. The service provider
(usually the crowdsensing platform), resided in the cloud,
recruits participants frommobile users to upload their sensing
data, and then provides services to requesters based on the col-
lected information. A wide variety of mobile crowdsensing
applications has emerged in recent years, such as Noi-
seTube [4] and Ear-phone [5] for noise monitoring, Signal-
Guru [6] and CrowdAtlas [7] for traffic monitoring, and
CrowdPark [8], Parknet [9] for finding on-street parking spots.

However, the success of crowdsensing applications highly
depends on the massive data contributed by mobile users to
ensure the service quality [10], [11], [12]. Since participating
in data acquisition campaigns would require mobile users to
consume resources on smartphones, mobile users are usually

reluctant to share their sensing capabilities (e.g., [13], [14],
[15]). Thus, it is necessary to design an incentive mechanism
to compensate the participants. According to different sce-
narios frompractical crowdsensing applications, two settings
are discussed in the literature, i.e., offline setting and online
setting. In offline setting [16], [17], mobile users are present
simultaneously, while the online scenarios aremore common
in practice: mobile users arrive and leave in an online man-
ner. Designing an incentive mechanism in online scenarios is
muchmore challenging, due to the lack of future information.
That is the incentive mechanism may lead to a sub-optimal
solution when considering participants myopically. Besides,
it also brings challenges in the guarantee of strategy-proof-
ness, since not just manipulating on the sensing cost,
mobile users may further misreport their arrival or depar-
ture times in order to gain higher benefits.1 For example,
after loginning in the crowdsensing system, mobile users
may not immediately participate in the crowdsensing cam-
paign, but could wait for a higher price. Here, intuitively,
strategy-proofness means that no one can improve her
utility by cheating on her private information including
arrival time, departure time and sensing cost.
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1. Throughout this paper, arrival time is the starting time slot that
mobile users could be allocated tasks. Similarly, departure time is the
time slot after which the participants would not be able to receive the
tasks. Both arrival time and departure time are private information of
the participants. The arrival time/departure time is different from the
login/logout time, which can be recorded by the digital technologies,
and is regarded as the public information.
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Most existingworks on onlinemechanismdesign only con-
sider flat values, i.e., the value over each participant’s contrib-
uted data is fixed during her presence. However, in many
time sensitive crowdsensing applications (e.g., real-time traf-
fic or noise monitoring [18], [19], [20], [21]), the service pro-
vider usually has time-discounting values, i.e., the value of
each mobile user’s contribution decreases as time goes by.
The property of time-discounting value introduces new chal-
lenges for mechanism design in mobile crowdsensing. From
the perspective of performance guarantee, without having the
knowledge of value information, it has been proved that no
online algorithm can achieve a competitive ratio better than
Vðlogn=log lognÞ for discounted secretary problem [22],
which is related to online mechanism design. The time-dis-
counting property also brings challenges in the guarantee of
strategy-proofness. In traditional incentive mechanisms
designed for mobile crowdsensing, the payment to a selected
participant is based on her contribution. However, in the con-
text of time-discounting values, the contribution would be
time-dependent and would be affected by many factors, such
as arrival time, departure time and sensing cost. The mobile
users can manipulate on this private information to change
the time slot being selected, and obtain higher payments. This
new feature makes the traditional techniques to guarantee
strategy-proofness unsuitable. In the time-discounting value
setting, we cannot reduce themulti-dimensional onlinemech-
anism design to the single dimensional online mechanism
design, similar to that in [23], and thus the traditional bid-
independent approach, derived from Myerson Theorem [24],
cannot be applied. Taking the budget constraint into account
brings another challenge in designing a strategy-proof online
mechanism. The existing approaches to guarantee the strat-
egy-proofness in budget feasible onlinemechanism is to parti-
tion the time period into multiple stages, distribute the total
budget in each stage proportionally to the number of users,
and use the information learned from the previous stages to
guide the task allocation in the current stage [25], [26]. When
the value discounts over time, it can be shown that partici-
pants can cheat on their private types to obtain extra benefits
under this framework.

In this paper, we focus on the online scenario where a ser-
vice provider intends to dynamically selectmobile users to per-
form sensing tasks, and provide them with some
compensations under a budget constraint. The objective is to
maximize the total values of the selected mobile users, taking
the time-discounting values into account, while at the same
time achieving the properties of budget feasibility and strat-
egy-proofness. To address the abovementioned challenges, we
propose a budget feasible online incentive mechanism with
time-discounting values. To explain our design intuitively, we
first consider the linear value function model, where the total
value over a set of selected participants is the summation of
each individual user’s value. We introduce the concept of effi-
ciency as the ratio of a mobile user’s value over the sensing
cost. To overcome the lack of information in online setting, we
adopt the framework of multi-stage sequential user selection,
where we can use an estimated efficiency threshold from the
previous stages to guide the user selection and payment calcu-
lation in the subsequent stages. The intuition of the threshold
estimation is to multiply an increasing stage-dependent factor
to the average efficiency of the sampling users selected follow-
ing some greedy rule. The stage-dependent factor is used to
prevent the users from misreporting their private information
in the time-discounting value setting. Within each considered

stage, we select the users with efficiencies higher than the
threshold under the budget constraint, and then calculate their
payments based on their current values and the threshold. We
show that our mechanism can achieve computational effi-
ciency and budget feasibility. We can also establish the prop-
erty of strategy-proofness in terms of arrival/departure time
and cost, and a constant competitive ratio compared with the
optimal solution in the offline settingwith full information.We
next extend our result to the general case, where the total value
is a submodular function of the selected users. We show that
the proposed mechanism still achieves the desired properties.
The numerical results show that our proposed mechanisms
have superior performance to the benchmarkmechanisms.

The main contributions of this paper is listed as follows:

� We consider the problem of online incentive mecha-
nism design in mobile crowdsensing, where partici-
pants arrive and departure over time. We propose a
time-discounting value model to measure the value of
the collected data in time-sensitive applications. We
also introduce a budget constraint to restrict the total
payment the platform can expense to collect data.

� To address the new challenges in designing budget
feasible online mechanism introduced by the time-
discounting value, we propose a new algorithm to
determine a time-dependent threshold to facilitate
the user selection and payment calculation.

� We investigate two types of value functions: linear
additive function and submodular function. For
these value functions, we design budget feasible
online mechanisms, and prove the properties of
strategy-proofness in terms of arrival time, departure
time and sensing cost, and constant competitive ratio
with respective to the offline optimal solution.

The rest of the paper is organized as follows. We briefly
review related work in Section 2. In Section 3, We introduce
the model of the budget feasible online mechanism problem
with time-discounting values, and recall some important
solution concepts. In Section 4, we present our design of a
strategy-proof online mechanism where the value function
is the summation of each participant’s value. In Section 5,
we consider the case with the submodular value function.
In Section 6, we implement and evaluate our mechanisms.
Finally, we conclude this paper in Section 7.

2 RELATED WORKS

The problem of designing incentive mechanism for mobile
crowdsensing has been extensively studied in recent years.
Yang et al. [16] considered the offline problem setting based
on stackelberg game, and proposed incentive mechanisms
from two different perspectives respectively: a user-centric
model and a platform-centric model. Koutsopoulos [17]
designed an incentive mechanism based on a reverse auc-
tion. In his design, when the cost of a participant is received,
the mechanism calculates the participant’s effort level and
payment vector to achieve the strategy-proofness, and mini-
mizes the total payment with guaranteed service quality.
Later, Zhao et al. [27] designed two online mechanisms,
namely OMZ and OMG, that satisfied truthfulness and
achieved constant competitiveness. Kumrai et al. [28] pro-
posed a new mechanism for participatory sensing based on
the evolutionary algorithm that can maximize both the
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number of active participants and the sensing coverage.
Singer presented a pricing mechanism for crowdsourc-
ing [29]. It uses a sample set to calculate the threshold,
which is the lowest single price a certain amount of workers
may accept, within the budget constraint. Peng et al.
designed a quality based incentive mechanism by extending
the well-known Expectation Maximization algorithm [11].
The new perspective is to apply the metrics from Informa-
tion Theory to measure the contribution of sensing data. Lee
et al. [30] designed a dynamic pricing mechanism based on
reverse auction, and focused on minimizing and stabilizing
the cost while preventing participants from dropping out of
sensing tasks. However, none of these works consider the
property of time-discounting value.

The budget feasible mechanism has been widely studied to
address the problem ofmechanismdesignwith a limited over-
all budget [31], [32]. Singer [31] first designed a budget feasible
mechanism for scenarios where the value function is submod-
ular. Chen et al. [32] further proposed a truthful budget feasible
mechanism with a competitive ratio of 1=9, which is better
than previous result of 233.83 in [31]. However, this line of
work failed to consider the property of time-discounting. Bud-
get constraintsmay not only apply to themechanismdesigner,
but could also come from other parties in market. The
papers [33], [34] also considered the budget constraint on the
bidders, motivated from ad auctions. Chan and Chen investi-
gate the budget feasible mechanism for the intermediate
dealer, who purchases items from the seller market and sell
them to the buyermarket [35].

Furthermore, there are some related works on online
mechanism design [23], [36]. Friedman and Parkes are the
first to consider the problem of mechanism design in the
online setting, where agents arrive and depart over
time [23]. Parkes and Singh further define and solve a Mar-
kov Decision Process (MDP) formulation of the online
mechanism design [36]. Online mechanism has been used
to solve online resource allocation in various applications,
e.g., task scheduling in mobile crowdsensing [26], resource
allocation in cloud computing [37], [38], and uncertain
resource allocation in renewable energy markets [39].

There are only few previous work considering the prop-
erty of time-discounting values [22], [40], [41], [42]. Olariu
et al. investigated the time-discounting value over the col-
lected data, and considered the data aggregation problem in
a networked setting [40]. Frazier et al. studied time-dis-
counting rewards in the problem of selfish bandit [41].
Babaioff et al. [22] considered two extensions of the secre-
tary problem, i.e., discounted secretary and weighted secre-
tary. In discounted secretary setting, the reward derived
from selecting an item is its original value multiplied by a
time-discounting factor. Wu et al. [42] designed a strategy-
proof online mechanism with time-discounting values, and
achieved a 2-competitive ratio. Unfortunately, this work
only considered the single-item forward auction, and also
cannot be easily applied to scenarios with budget constraint.

In contrast to previous works, we jointly consider time
discounting values and budget limitation, and propose a
budget-feasible online mechanism with the property of
strategy-proofness and constant competitive ratio.

3 PRELIMINARIES

In this section, we present the model of our budget feasible
online crowdsensing problem with time-discounting

values, and review some related solution concepts used in
this paper from game theory.

3.1 System Model
A representative process inmobile crowdsensing is shown in
Fig. 1. We assume that there is a service provider, some ser-
vice requesters and a set of mobile users N ¼ f1; 2; . . . ; ng:
The provider has a limited budget B to reward the selected
mobile users for collecting data, with the goal of providing
qualified services to the requesters. For example, the service
provider collects local traffic information from users, per-
forms data analysis process, and builds a traffic heat map,
which would be used to provide real-time road congestion
information to drivers.

In this paper, we focus on two value models, one is the
case where the value function is linear additive: the valua-
tion of the selected participants is the summation of each
user’s contributing valuation, and the other case is more
general, where the value function is a submodular function.
The submodular function captures the decrease of the user’s
marginal contribution when the set of the selected users is
large. In the practical mobile crowdsensing campaign, one
user’s collected data to the service provider may have some
“overlaps” to the existing collected data from other users,
resulting in a small marginal contribution. Although the lin-
ear valuation function is a special case of the submodular
function, we can illustrate the basic ideas and the intuitions
behind designing budget feasible mechanism in the context
of time-discounting values in a clear way. Thus, we discuss
these two value models in this work separately.

In linear valuation model, the private information (also
called type in mechanism design [43]) of each participant i is
ui ¼ ðai; di; ciÞ, where ai and di represent her arrival and
departure time to the crowdsensing campaign, respectively,
and ci represents her cost in performing the sensing task. Here,
the cost can also be considered as a reserve price, which is the
minimum payment that a participant would like to receive for
executing the crowdsensing task. In other words, the server
provider should compensate each mobile user not less than the
reserve price, to incentivize her to participate in. We also use vi
to denote the mobile user i’s value or contribution to the ser-
vice provider. In different crowdsensing applications, we can
have different interpretations for the values of the collected
data. For example, similar to sensor networks [46], we can use
the coverage area of the collected data to quantify the value.
We can also quantify, the value of collected data from a certain
location as the accuracy increase of the statistical distribution
over the entire monitoring region [47]. We note that ai, di and
ci are user i’s private information and are unknown to the ser-
vice provider, while vi is the public information as it can be

Fig. 1. A mobile crowdsensing system.
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evaluated in advance by the service provider [11], [12], e.g., the
coverage area and accuracy increase can be calculated once
knowing the location information, which can be obtained
before users doing the tasks. Without loss of generality, we can
assume each participant has a bounded value-cost ratio, i.e.,
L � vi

bi
� U; 8i 2 N, with appropriate parameters of L and U .

As the value is public information and the platform may have
some knowledge of the sensing cost, the platform can estimate
the parameters L and U , accurately.

Upon participant i’s arrival, she would submit her bid
ûi ¼ ðâi; d̂i; biÞ to the service provider. We note that since the
participants are rational and selfish, they may cheat on their
arrival times, departure times, or reserve prices for the pur-
pose of earning more payment or improving the probability
of being selected, implying that participant i’s bid may not
be her true type. It is also not so practical for a participant to
declare her arrival before she indeed arrives at the platform,
or still being active after she have already departed. Report-
ing earlier arrival or later departure can be prevented by a
heart-beat scheme [23], [36]. Furthermore, without restriction
on the arrival and departure time, it is impossible to achieve
a bounded performance guarantee for online mechanisms,
which has been demonstrated by Lavi and Nissan [48]. Thus,
we focus on the scenario where each participant can only
report an arrival time later than her true arrival time or a
departure time earlier than her true departure time, i.e., âi �
ai; d̂i � di. This assumption has also been widely adopted by
several previous work in the literature [48], [49], [50]. It is
possible that participant i can also misreport her reserve
price bi 6¼ ci to manipulate the participant selection process.

The user recruitment process in mobile crowdsensing is
divided into T slots of equal lengths, i.e., T ¼ f1; 2; . . . ; Tg.
Upon a participant i’s arrival, the service provider would
examine her bid and determine whether to select the partici-
pant or not immediately. In dynamic arrival setting, the service
provider only knows the information of those already arrived
mobile users and has no prior knowledge of the bids of the
subsequent arrival participants. Inmobile crowdsensing, espe-
cially time sensitive applications, the server provider would
like to collect data as early as possible, in order to make real-
time decisions. However, the server provider may not always
achieve this, because that the qualified mobile users are only
available at certain time slots, leading to the delay of the col-
lected data. The service provider would then have less values
over the delayed data collected at later times. We use a time-
discounting value model to capture the value decrease of
delayed data over time. Specifically, when a participant i is
selected at a time t to collect data, her contributed value to the
platform equals vi multiplying a time discounting factor,
which is set as b�t in this work, i.e., viðtÞ ¼ vi � b�t: To sim-
plify the discussion, we can assume that users can provide the
data once they are selected. Under this assumption, the time t
in the above valuemodel is the time slot we select the user and
also the user collects data to make contribution. We note that
the participants would achieve the maximum value of contri-
bution if they can provide the data at time t ¼ 0.

If user i wins the auction, she will receive a payment pi,
having a utility of ui ¼ pi � ci; otherwise, she will get zero
utility, i.e.,

ui ¼ pi � ci; i 2 S;
0; otherwise;

�
(1)

We denote the set of selected participants as S. In contrast to
the participants who always want to maximize their own utili-
ties, the provider expects to maximize the total obtained value
V ¼P

i2S viðtiÞ, a system-level utility, under a budget con-
straint

P
i2S pi � B, where ti is the time slot when participant i

is selected.
Similarly, in the general case where the total value func-

tion is a submodular function, each participant i has a type
ui ¼ ðai; di; ciÞ, and reports a bid û ¼ ðâi; d̂i; ĉiÞ. The total
value over a selected participant set S is denoted as fðSÞ. In
the general case, our objective is to select a set S to maximize
the function fðSÞ, under the budget constraint.

3.2 Solution Concepts
We review several important solution concepts used in this
paper from algorithmic game theory [43].

Definition 1 (Dominant Strategy). A participant i’s strategy
si is called her dominant strategy, if for any strategy s0i 6¼ si
and any other player’s strategy profile s�i, we have
uiðsi; s�iÞ � uiðs0i; s�iÞ.

Definition 2 (Incentive-Compatibility). An online mecha-
nism is incentive compatible if and only if it is the dominant
strategy for every participant i 2 N to report her true type.

Definition 3 (Individual-Rationality). Amechanism is indi-
vidual rational if and only if ui � 0 for all participant i 2 N.

Definition 4 (Strategy-Proof Direct Revelation Mecha-
nism). A direct revelation mechanism is strategy-proof, when it
satisfies both incentive-compatibility and individual-rationality.

Our objective is to design a strategy-proof and budget
feasible online mechanism with time-discounting values.

We summarize the frequently used notations in Table 1.

4 MECHANISM WITH LINEAR VALUE FUNCTION

We first consider the simple case where the total value func-
tion is a linear function. In this section, we propose an
online mechanism, which is named as TDM, satisfying the
following properties:

� Computational Efficiency: The computational complex-
ity of the online mechanism is in polynomial time.

� Strategy-Proofness: Since the property of individual-
rationality can be easily achieved, we only need to
guarantee the property of incentive-compatibility,
i.e., each participant has no incentive to misreport
her type at any circumstance.

� Competitive Ratio: We define the competitive ratio as
the ratio between the expected total value gained in
our mechanism and the expected optimal value
where the server provider has the full information of
all participants [27]. We will prove our mechanism
can achieve a constant competitive ratio.

4.1 Threshold Calculation
The major step of an online mechanism is to determine
whether to select a participant in a dynamic manner. Once a
new user arrives, the service provider compares her efficiency
(the ratio of contributed value to the sensing cost) with a
threshold, which is calculated at the beginning of each stage.
The stage is a period of sequential time slots, and we would
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show how to define a stage and the detailed user selection
process within each stage in next subsection. In this subsec-
tion, we present the algorithm to calculate the threshold for a
specific stage. Since our objective is to maximize the total
value under a limited budget, a natural idea for the threshold
calculation is to give high priorities to those participants with
large efficiencies for a good utilization of the budget.

We present the procedure to calculate the threshold in
Algorithm 1, which will be carried out at the beginning of
each stage. For the input of the algorithm, B is the capped
budget for the threshold calculation process, S0 is the set of
sampling users, and Tk is the beginning time slot of this
stage. Our algorithm sorts participants in a non-decreasing
order of value-cost efficiency, and selects the participants
into DTk under the budget constraint bi � 2U

L
viP

j2DTk
vjþvi

B,

which is an extension of the budget constraint in classical
proportional share mechanism [31]. The budget constraint
used here is highly related to competitive ratio analysis in
next subsection. For example, the following Lemma 1 derives
a nice property of the participation selection due to this bud-
get constraint. In Theorem 1, we also show that with this
budget constraint, we can derive a meaningful lower bound
of the total bids of the selected participants. For the output of
the algorithm, we take the average efficiency of participants
in DTk multiplied by a stage related factor as the threshold,

i.e., r ¼ 1
�

U
L

� �l�kPi2DTk
viP

i2DTk
bi
, where � is a system parameter and l

is the total number of stages. We note that such a threshold
calculation procedure is different from the one in [26]. With
this new procedure, we can easily capture the relation
between two thresholds from different stages, using the
assumption on bounded value-cost efficiency.

The following results would help us to evaluate the stop-
ping condition of participant selection in Algorithm 1.

Lemma 1. Suppose the budget to calculate the threshold is B,
participants are sorted in a sequence by a non-decreasing order
of value-cost efficiency, i.e.,

v1
b1
� v2

b2
� � � � � vm

bm
;

and then for any two participants x and y, if

vx
bx
� vy

by
and by � 2U

L

vyP
j<y vj þ vy

B;

we also have

bx � 2U

L

vxP
j<x vj þ vx

B: (2)

Proof. Since vx
bx
� vy

by
, it means bx � vx

vy
by. Thus, we have

bx � vx
vy
� by � vx

vy
� 2U

L

vyP
j<y vj þ vy

B

� 2U

L

vxP
j<y vj þ vy

B � 2U

L

vxP
j<x vj þ vx

B:

tu
From this lemma, we can see that in Algorithm 1, if the

budget constraint in Line 4 is not satisfied for some partici-
pant i, we do not need to consider another participant j
whose efficiency is smaller than i, since from vi

bi
>

vj
bj
, we

can infer that bj > 2U
L

vjP
l < j

vlþvj
B.

Khuller et al.[44] proposed a modified greedy algorithm,
which has a similar procedure of our algorithm. The modi-
fied greedy algorithm also sorts the participants in a non-
decreasing order of value-cost efficiency: v1

b1
� v2

b2
� � � � � vn

bn
,

but greedily selects the participants only when the total bids
is less than the budget,

P
i2D bi � B. We use r to denote the

index that satisfies
P

i�r br � B but
P

i�rþ1 br > B. For our
algorithm, we also use m to represent the largest index that

satisfies bm �
2U
L vmP

j<m
vjþvm

B. This modified greedy algorithm

has a good approximation ratio in non-strategic settings. The
intuition behind our competitive ratio analysis is to make a
connection between the total value of our algorithm and that
of this algorithm,which is shown in the following theorem.

Theorem 1. For the value of selected participants of our algo-
rithm and that of the greedy output in Algorithm 2, we have

Xm
i¼1

vi >
L

U þ L

Xr

i¼1
vi: (3)

TABLE 1
Frequently Used Notations

Symbol Description

N The set of participants
B The total budget
ui Type of participant i
ai arrival time of participant i
di departure time of participant i
vi value of participant i
ci cost of participant i
ûi bid of participant i
T the set of time slots
b time-discounting factor
pi payment of participant i
S selected participant set
V The total value
L;U lower bound and upper bound of efficiency
r efficiency threshold
V The total value
� a system parameter
Ti time stage
f submodular value function

Algorithm 1. TDM: GetThreshold

Input: Budget B, bid profile of a user set S0, current stage Tk

Output: Threshold r

1: DTk  ? ;
2: while DTk 6¼ S0 do
3: i argmax

i2S0nDTk

vi
bi
;

4: if bi � 2U
L

viP
j2DTk

vjþvi
B then

5: DTk  DTk [ fig;
6: else break

7: r 1
�

U
L

� �l�kPi2DTk
viP

i2DTk
bi
;
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Proof.We first prove the following inequality holds

Xm
i¼1

bi >
Xr

i¼mþ1
bi: (4)

We only need to consider the case of m < r. According
to Lemma 1, for i 2 f1; 2; . . . ;m� 1g, participant i would

also satisfy bi �
2U
L viP

j< i
vjþvi

B, and for i 2 fmþ 1;mþ
2; . . . ; rg, participant i would not have this property. For

the purpose of contraction, we assume that
Pm

i¼1 bi �Pr
i¼mþ1 bi. Since bi >

2U
L viP

j< i
vjþvi

B for i > m, we can

have the following inequality:

Xr
i¼mþ1

bi >
Xr

i¼mþ1

2U
L viP

j<i vj þ vi
B

>
Xr

i¼mþ1

2U
L viPm

j¼1 Ubj þ
Pi

j¼mþ1 Ubj
B

>
Xr

i¼mþ1

2U
L viPr

j¼mþ1 Ubj þ
Pr

j¼mþ1 Ubj
B

>
Xr

i¼mþ1

2U
L � L� biPr

j¼mþ1 Ubj þ
Pr

j¼mþ1 Ubj
B ¼ B:

We have derived a contradiction, and (4) holds. With this
result, we can have

Xr
i¼mþ1

vi � U
Xr

i¼mþ1
bi � U

Xm
i¼1

bi � U

L

Xm
i¼1

vi:

With the above inequality, we further have

Xr
i¼1

vi ¼
Xm
i¼1

vi þ
Xr

i¼mþ1
vi � ð1þ U

L
Þ
Xm
i¼1

vi;

We rearrange the terms to get the result
Pm

i¼1 vi >
L

UþL
Pr

i¼1 vi. tu

4.2 Participant Selection and Payment
Determination

We now use the above threshold calculation method to
guide participant selection. We first compute the 2i-quantile
over the time period ½1; T �, given the distribution of the
departure time of participants [29]. We denote Tk as the
time slot before which participants depart with the proba-
bility 2�k. Then, we get a set of l quantiles fTl; Tl�1; . . .; T1g
with l ¼ bLogðT Þc, and have Tk � Tk�1. We also denote the
beginning time slot 1 and the ending time slot T as Tlþ1 and
T0, respectively. Based on this set, we divide the entire time
period into several stages, where the stage ½Tk; Tk�1Þ begins
at time slot Tk and ends at time slot Tk�1. With this time
stage construction, we can partition users into several stages
using their departure times. The motivation of doing this is
that we can overcome the lack of users’ information in
designing online mechanisms. Specifically, for each stage
½Tk; Tk�1Þ, we can calculate the threshold using the informa-
tion from the departure participants in the previous stages
by Algorithm 1, to guide the participant selection in this
stage. We increase the number of departure participants in
the stage in an exponential way, which would guarantee

the system performance of our algorithm. We would dis-
cuss this in detail in next subsection.

Algorithm 2.Modified Greedy Algorithm

Input: Budget B, Bid profile of a user set S0
Output: Selected participants
1: D! ;;
2: while D 6¼ S0 do
3: i argmax

i2S0nD

vi
bi
;

4: if bi � B�P
j2D bj then

5: D D [ fig;
6: else break
7: i	  argmax

i2S0
vi;

8: if V ðDÞ � vi	 then
9: Return D;
10: else Return fi	g;

We now present our procedure in Algorithm 3 to elabo-
rate the processes of participant selection and payment cal-
culation. The threshold r is an estimate of the value-cost
efficiency. For the first stage, we do not have enough sam-
pling data to have an accurate estimate, and select a random
number " to initialize the threshold r to avoid starvation.
The budget for each stage is proportional to the number of
users in the corresponding stage, and we initialize the bud-
get B0 for the first stage to 1

2l
B.

The algorithm iterates from time slot t ¼ 1 to t ¼ T . At
each time slot t, it adds all newly arrived participants to the
set A, which represents the active participants who have
arrived and not been selected until the current time slot t
Line 5. If participant i has a large enough value-cost effi-
ciency at time slot t, i.e., viðtÞbi

� r, and satisfies the budget con-
straint viðtÞ

r
� B0 �P

j2S pj, she would win the auction and be
compensated with a payment corresponding to her value-
cost efficiency at that time, i.e., pi ¼ viðtÞ

r
. Otherwise, she

would be ignored and wait to be selected at next time slot
until her departure time (Lines 6-9). During the entire period,
we assume that each participantwould only receive one task,
and would be considered as a new user when she re-enters
the system after wining the auction.2 Thus, we remove the
winners from the set of candidates A in Line 10. For the pur-
pose of truthfulness, we remove all departure participants,
who lose the auction, from A, and add them to the sampling
set S0, making the calculation of the threshold is independent
on the bids of winning users (Line 11). At the beginning of
next stage Tk, the threshold and the remaining budget will be
updated (Lines 12-14).

4.3 Analysis
In this subsection, we analyze our proposed mechanism.

Theorem 2. Mechanism TDM is computationally efficient.

Proof. In each time slot t, for each participant who arrives at
this time, it takes up to OðnÞ steps to decide whether to
select her. So the total computational cost in each time
slot is bounded by Oðn2Þ. Furthermore, it costs at most
OðnlognÞ to calculate the threshold for each stage, which

2. Designing incentive mechanisms to resist the potential strategic
behaviors from the users across multiple participations in the auction is
beyond the scope of this paper.
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is lower than the computational cost used to determine
the participant selection process. Thus, the computational
complexity of this mechanism is OðTn2Þ. tu

Theorem 3.Mechanism TDM is budget feasible.

Proof. Since the total payment of each stage ½Tk; Tk�1Þ never
exhausts the corresponding allocated budget B0 ¼ 1

2k�1 B,

i.e.,
P

j2S pj � B0, we can see that in the last stage ½T1; T0Þ
we have

P
j2S pj � B, and thus the total payment will not

exceed the total budget. tu
Theorem 4. The mechanism is strategy-proof in terms of arrival

and departure times.

Proof. A mechanism is strategy-proof in arrival/depature
time information, i.e., participants cannot obtain higher
utilities by misreporting their arrival or departure times.
We recall that each participant has a type ðai; di; ciÞ and a
bid ðâi; d̂i; biÞ, âi � ai; d̂i � di. We fix the bids of all but
participant i. If she proposes her true type, we further
consider two cases:

Case 1: Participant i can win the auction at time t
which belongs to stage ½Tk; Tk�1�. Suppose the new
reported arrival time has âi < t. Since participant i can-
not win the auction until t, she would still be selected at
time t, and obtain the same value and payment. Suppose
âi > t, we assume she would win the auction at time t̂
which belongs to the stage ½Tk0 ; Tk0�1�. Since âi > t, we
would have t̂ � tþ 1. Let rk and rk0 be the threshold of
the stages ½Tk; Tk�1� and ½Tk0 ; Tk0�1�, respectively. The pay-
ments calculated in the cases of truthfully reporting and
misreporting are pk ¼ viðtÞ

rk
and pk0 ¼ viðt̂Þ

rk0
, respectively,

and we have

pk
pk0
¼ viðtÞ

viðt̂Þ
rk0

rk
¼ vi � b�t

vi � b�t̂

1
�

P
i2DTk0 viP
i2DTk0 bi

U
L

� �l�k0

1
�

P
i2DTk

viP
i2DTk

bi

U
L

� �l�k : (5)

When the participant is selected in the same stage k0 ¼ k,
we have ra ¼ rb. As the value discounts over time, we
get viðt̂Þ < viðtÞ, leading to a smaller payment. We next
investigate the payments for the case of k0 < k. Since
each participant has a bounded efficiency, i.e., L � vi

bi
�

U , we then have

pk
pk0
� bðt̂�tÞ

L

U
� U

L

� �k�k0
> 1: (6)

This indicates that the participant would also get a lower
payment in this case, and she would have no incentive to
cheat on her arrival time.

Suppose the reported arrival time satisfies d̂i � t. The
participant i would not be selected as a winner in this
case, resulting in a zero utility, which would not be larger
than that of truthfully reporting the departure time. For
the other case of d̂i > t, the selection result and payment
calculation remain the same, and the participant obtains
the same utility. Therefore, the participants also have no
incentive to misreport the departure time.

Case 2: Participant i can not win this auction. She
would not satisfy the selection result at any time slot
within her present time, and has no incentive to misre-
port a later arrival or an earlier departure time since she
would still not win the auction. tu

Theorem 5. The mechanism is cost-truthful.

Proof. A mechanism is cost-truthful if participants cannot
obtain higher utilities by simplymisreporting their reserve
prices [27]. Different from previous works on the truthful-
ness problem which claim that an online auction is cost-
truthful only if it is bid-independent, the case in our mech-
anism is more complicated because of the time discount-
ing property.We consider the following two cases.

Case 1: Participant i can win the auction at time slot t̂ in
the stage ½Tk0 ; Tk0�1�. We next show it is impossible for the
participant i to declare a smaller bid bi and wins the auc-
tion earlier, say at time t, in stage ½Tk; Tk�1�. If some partici-
pant wins at time slot t̂ when bidding truthfully, she
would not win the auction before that time. We notice
that in time slot t̂, viðt̂Þci

� rk0 , and we further have viðtÞ
ci
� rk

at time slot t as viðtÞ
rk
� viðt̂Þ

rk0
� ci, which can be derived from

the analysis in Theorem 4 (i.e., Equations (5) and (6). But
she was not allocated at the time slot t, the only reason is

that her payment viðtÞ
rk

exceeds the remaining budget. So

this participant would not win the auction at time slot t by

declaring a smaller bid bi. Obviously, declaring a larger

bid would not help her gainmore utility.
Case 2: Participant i loses this auction. This means at

any time slot t, viðtÞ
ci

< r, or viðtÞ
ci
� r but viðtÞ

r
� B0 �P

j2S pj. The second conditionmeans at that time, the pay-
ment calculated in our algorithm would exhaust the
remaining budget. Nomatter how the participant changes
her bid, this block always exists. If she declares a larger
bid, the inequations still hold. If she declares a smaller
bid, wins the auction at time slot t, and receives a payment
viðtÞ
r

. Since viðtÞ
ci

< r, this payment would be less than her
true cost ci, resulting in a negative utility. A rational par-
ticipant has no incentive tomisreport in this case. tu

Algorithm 3. TDM: Participant Selection & Payment
Calculation

Input: Budget B, fT1; . . .; Tlg
Output: Selected set of participants S and payment
1: t 1; r "; ; k l;
2: B

0  1
2l
B; S ? ; S0  ? ;A ? ;

3: for t ¼ 1 to T do
4: if some participant i arrives then
5: A A [ fig;
6: foreach participant i in A do
7: if viðtÞ

bi
� r and viðtÞ

r
� B0 �P

j2S pj then
8: pi  viðtÞ

r
;

9: S S [ fig;
10: A AnS;
11: Remove all participants that depart in t from A and add

them to S0 as the sampling users;
12: if t ¼ Tk then
13: r GetThresholdðB0; Tk; S

0Þ;
14: k k� 1; B0  2B0;
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Theorem 6. The mechanism is time-truthful and cost-truthful.

Proof. We prove that participants cannot obtain higher util-
ities by simultaneously misreporting their arrival or
departure time and their reserve prices. We consider the
case that a participant may misreport her present time
and cost at the same time. It should be noted that the pay-
ment has not a direct relationship with the bid bi. If this
participant can win the auction at t, and she can be
selected after time t by misreporting her present time. As
we show in Theorem 4, the payment decreases in this
case. When the participant is selected at a time before t, it
is equivalent to the case in Theorem 5. If the participant
can not win the auction at any time, she has no incentive
to misreport her bid bi within the present time ½ai; di�. tu
The above theorem demonstrate the truthfulness of our

mechanism in terms of arrival time, departure time and bid.
To quantify the performance of the mechanism, we compare
the total value of our algorithm with the optimal solution. In
our analysis, we omit the effect of time-discounting prop-
erty because it only changes the constant coefficient.

Theorem 7. The mechanism TDM has a constant competitive
ratio in a large-scale crowdsensing scenario. This competitive
ratio approaches to U

L

� ��1�l U
32ðUþLÞ ð1� 1

eÞ.
Proof. A large-scale crowdsensing scenariomeans that there

are a large number of participants and a single participant
cannot affect the market significantly [45]. Our analysis is
based on the observation from a large-scale crowdsensing
system that the bid of each participant is negligible com-
pared with the total budget, i.e., we can assume that a bid
satisfies bi � �Bwith a small parameter �.

The high level idea behind the proof is to analyze the
correlation among three sets of selected participants, that is
outputs by the optimal algorithm, (modified) greedy algo-
rithm in Algorithm 2 and our algorithm, respectively. It is
widely known that the modified greedy algorithm has a
constant approximation ratio with respective to the opti-
mal solution in the worst cases [44]. We further prove the
our mechanism also has a constant competitive ratio to the
greedy algorithm. Combiningwith these two steps, we can
obtain the performance guarantee of ourmechanism.

We first show the greedy algorithmhas a constant com-
petitive ratio to the optimal solution, under the large-scale
crowdsensing assumption. Let SOPT be the optimal set
when the provider has full information of the partici-
pants. S1 be the set of participants in SOPT who depart
before time slot T1, and S2 be the set of participants in
SOPT who departure in the last stage ½T1; T0�. When partici-
pants depart uniformly (this assumption would only
affect the constant coefficient), it is easy to show the
expected value of the set S1 is E½V ðS1Þ� ¼ 1

2E½V ðSOPT Þ�
because users are uniformly distributed within the set S1

and S2. Therefore, the competitive ratio of modified greedy
algorithm over the set S1 with the budget B0 ¼ 1=2B is a
constant 1

8 ð1� 1
eÞ, with respective to the optimal solution

SOPT . We recall that the approximation ratio of the modi-
fied greedy algorithm for an instance of a user set S and a
budget B is 1

2 ð1� 1
eÞ [44]. In the last step of modified

greedy algorithm, we choose the participant with the
highest value or those selected by the greedy rule, to

guarantee the performance in the worst case. Under the
assumption of a large-scale crowdsensing system, the out-
put would have a high probability to be the latter. Thus,
the expected greedy output approaches to the expected
output of the modified greedy algorithm when n is large
enough, and also has a constant competitive ratio 1

8 ð1� 1
eÞ

with respective to the optimal solution.
We next compare the value of the participants selected

by our mechanism with the value of those selected by the
greedy rule over the set of sampling participants before
the last stage. If this ratio is a constant, the competitive
ratio of our mechanism would also be a constant. We
recall that notation S is the selected participants of our
mechanism, S0 is the sampling participants to determine
the threshold r in the last stage. We use set f1; 2; . . . ;mg
and set f1; 2; . . . ; rg to denote the participants selected by
GetThreshold in Algorithm 1 and those selected by the
greedy rule in Algorithm 2 over the set S0, respectively.

We first analyze the relation between the value of S
and the value of f1; 2; . . . ;mg

X
i2S

vi �
X
i2S

viðtÞ �
X
i2S

ri � pi

�
X
i2S

U

L

� ��l
r� pi

�
Pm

i¼1 vi
2� �B

U

L

� ��2X
i2S

pi;

(7)

where ri is the threshold when participant i is selected.
We next present a lower bound of the total payments

under the assumption of large-scale crowdsensing sys-
tem. We consider the participants who fail to be selected
in the last stage. By appropriately choosing the parame-
ter � and the large-scale assumption, we can assume that
there exists one participant i that loses the auction due to
the budget constraint, i.e., viðtiÞ

r
þP

j pj > B.3 We can
select the parameter � to have a small threshold r such
that this assumption holds, e.g., by choosing � to be
U
Lð Þl�1
� � 1

d
with d > 1, we can have r smaller than U

d
. In

the following discussion, we choose d ¼ 2 and thus
2 U

L

� �l�1� �. For this participant i

viðtiÞ � ðB�
X
j

pjÞ � r ) vi � ðB�
X
j

pjÞ � r:

Since vi � Ubi � U�B, we have ðB�P
j pjÞr � U�B, i.e.,

X
j

pj � ð1� U�

r
ÞB:

If we can choose an appropriate parameter � or � is small
enough, such that 1� U�

r
> 0, the total payment would

be at least a constant fraction of the total budget B. To
guarantee such an assumption, the requirement for � is

3. Our result also holds when we relax this assumption to that with
a high probability such a participant exists.
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U� < r ¼

Pm

i¼1 viPm

i¼1 bi
U
L

� �l�1
�

) � <

Pm

i¼1 viPm

i¼1 bi
U
L

� �l�1
U�

:

We note that

Pm

i¼1 viPm

i¼1 bi
� U , so we can relax our restricted

condition to � <
U
Lð Þl�1
� :

Rearrange the terms in (7) and use the lower bound of
the total payments, we can get

P
i2S viPm
i¼1 vi

>
ð1� U�

r
Þ

2� �

U

L

� ��2
(8)

From the result in Theorem 1, we can obtain the rela-
tion between the value of f1; 2; . . . ;mg and that of
f1; 2; . . . ; rg

Xm
i¼1

vi >
L

U þ L

Xr

i¼1
vi: (9)

With (8) and (9), we can derive the expected competi-
tive ratio of our algorithm

E
P

i2S vi
� �

E V ðSOPT Þ½ � �
1

8
1� 1

e

� �
� E

P
i2S vi

� �
E½Pr

i¼1 vi�

� 1

8
1� 1

e

� �
� L

U þ L
� E

P
i2S vi

� �
E

Pm
i¼1 vi

� �

� L

16ðU þ LÞ 1� 1

e

� � ð1� U�
r
Þ

�

U

L

� ��2
:

We note that although r is a variable, it is a constant
because of the bounded value-cost efficiency. So we can
take the lower bound to be the competitive ratio. The
detailed calculation is omitted here. When � approach to
1, the competitive ratio is

L

8�ðU þ LÞ ð1�
1

e
Þ U

L

� ��2
: (10)

The restricted condition on the parameter � is

2
U

L

� �l�1
� � <

1

�

U

L

� �l�1
: (11)

When � is sufficiently small, we can always find such a
parameter � equals 2 U

L

� �l�1
. Then the expected competitive

ratio is

U

L

� ��1�l U

32ðU þ LÞ 1� 1

e

� �
: (12)

tu

5 MECHANISM WITH SUBMODULAR VALUE

FUNCTION

In this section, we propose an online mechanism, namely
TDMS, for the general submodular value model.

5.1 System Model
The model for this general case is similar to the model we
have presented in Section 3. We assume each user can com-
plete multiple tasks, and the bid of each participant contains
the set of sub-tasks she can finish. The bid of of participant i
is now ui ¼ ðai; di; pi; ciÞ, where we use the notation pi to
represent the sub-task set of participant i.

5.2 Design
In last section, we propose an incentive mechanism for
online crowdsensing with time-discounting values, where
the total obtained value for the service provider is a linear
summeration of value contributed by each participant, i.e.,
V ¼P

i2S viðtiÞ: However in many scenarios [27], the value
from a set of participants S to the platform is a monotone
submodular function fðSÞ, which is defined as

Definition 5 (Monotone Submodular Function). A func-
tion f : 2½n� ! R is submodular if and only if

fðA [ figÞ � fðAÞ � fðB [ figÞ � fðBÞ: 8 A 
 B:

In existing works about submodular optimization in the
realm of incentive mechanism design for mobile crowdsens-
ing [25], [27], [31], the marginal value contributed by a par-
ticipant is related to the order she is selected, and the total
value is only determined by the set of already selected
participants. However, in this paper, considering the time-
discounting property, both the marginal value and total
value depend on the time slots at which the participants are
selected. That is when a participant i is selected at time ti,
her marginal contribution given a subset S is

ðfðS [ figÞ � fðSÞÞ � b�ti ;

where we still use f to denote the value function without
considering the time-discounting value effect. Assume the
selected participants follow the order fi1; i2; . . . ; ing and
their selected time slots are ti1 ; ti2 ; . . . ; tin , respectively. We
use ~f to substitute f when considering time-discounting
value effect. When selecting the first participant i1, her con-
tribution value is ~fðfi1gÞ ¼ fðfi1gÞ � b�ti1 . Similarly, the
value contributed by the second selected participant is
fðfi1; i2gÞ � fðfi1gÞ � b�ti2 with the time discounting effect
b�ti2 . Thus, the total value obtained from these two
participants is ~fðfi1; i2gÞ ¼ fti1 ðfi1gÞ � b�ti1 þ ½fðfi1; i2gÞ �
fðfi1gÞ� � b�ti2 . Following the same principle, the total
value contributed by all these n participants is

~fðfi1; i2; . . . ; ingÞ ¼ fðfi1gÞ � b�ti1

þ½fðfi1; i2gÞ � fðfi1gÞ� � b�ti2 þ . . .

þ½fðfi1; i2; . . . ; ingÞ � fðfi1; i2; . . . ; in�1gÞ� � b�tin :

(13)

Theorem 8. The new total value function ~f with time-discounting
value is monotone submodular.

Proof. We can prove this according to the definition of sub-
modular function.

Let A and B are two arbitrary subsets and A 
 B.
Then,
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~fðA [ figÞ � ~fðAÞ
¼~fðAÞ þ ½fðA [ figÞ � fðAÞ� � b�ti � ~fðAÞ
¼½fðA [ figÞ � fðAÞ� � b�ti :

Similarly,

~fðB [ figÞ � ~fðBÞ
¼~fðBÞ þ ½fðB [ figÞ � fðBÞ� � b�ti � ~fðBÞ
¼½fðB [ figÞ � fðBÞ� � b�ti :

Since f is a submodular function, then we have
fðA [ figÞ � fðAÞ � fðB [ figÞ � fðBÞ. tu
Under the property of time-discounting value, we denote

participant i’s marginal contribution given a subset A as
~fi
ti
ðAÞ ¼ ½fðA [ figÞ � fðAÞ� � b�ti . Next we modify the pro-

cedure inAlgorithm1 to calculate the thresholdwhen the value
function is submodular, and show the procedure in Algorithm
4. Recall that we assumeL � v

b � U before, herewemake a rea-

sonable assumption that L � fið?Þ
bi
� U . Then we also can

obtain that L � fiðAÞ
bi
� U for all set A. Line 3 in Algorithm 4 is

to calculate the efficiency, which is the ratio of the marginal
value and her cost. As we have discussed before, we always
add the participantwith the highest efficiency into the set.

Algorithm 4. TDMC: GetThreshold

Input: Budget B, bid profile of a user set S0, current stage Tk

Output: Threshold r

1: DTk  ? ;
2: while DTk 6¼ S0 do

3: i argmax
i2S0nDTk

fiðDTkÞ
bi

;

4: if bi � fiðDTk Þ
fðDTk[figÞB then

5: DTk ¼ DTk [ fig;
6: else break

7: return 1
�

fðDTk ÞP
i2DTk

bi

U
L

� �l�k
;

Next we propose the participant selection process in
Algorithm 5. We should pay more attention to the guarantee
of strategy-proofness. Since the value function now is sub-
modular, the marginal value is related to a given subset. If
the order of selection is changed, the marginal value would
change as well. This is a new kind of opportunity for the
participants to cheat on their bids. Singer has ever studied a
budget feasible mechanism [31], where the value function is
submodular. However it is used in offline scenario, we
would give an extension to the online setting.

5.3 Analysis

Theorem 9. The mechanism with submodular value function is
computationally efficient and budget feasible.

Proof. The proof is similar to the proofs of Theorem 2 and
Theorem 4, and we omit it here. tu

Theorem 10. The mechanism with submodular value function is
time-truthful.

Proof. We prove that a participant can not obtain higher
utility by misreporting her arrival or departure time.

Denote her true arrival and departure time is ai; di and
the misreporting time is âi and d̂i. Fix the bids of all par-
ticipants but i, we consider two cases.

Case 1: If she can win the auction at time t when she pro-
poses her true type. If âi � t, she won’t get more payment
because she cannot win the auction until t. If âi > t, assume
shewill win the auction at t̂. Assume t and t̂ belongs to stage
½Ta;Ta�1� and ½Tb; Tb�1� respectively and the corresponding
threshold is ra ¼ GetThrsholdðBa;Ta; S

0
aÞ and rb ¼

GetThresholdðBb;Tb; S
0
bÞ. Assume the set D in Algorithm 4

is Da and Db, so ra ¼ 1
�

fðDaÞP
i2Da bi

U
L

� �l�a
and rb ¼ 1

�
fðDbÞP
i2Db biU

L

� �l�b
. Hence

Pa

Pb
¼

~fit ðSaÞ
~fi
t0 ðSbÞ

rb
ra

¼ ðfðSa [ figÞ � SaÞb�t
ðfðSb [ figÞ � SbÞb�t0

rb
ra

¼ ðfðSa [ figÞ � SaÞb�t
ðfðSb [ figÞ � SbÞb�t0

1
�

fðDaÞP
i2Da bi

U
L

� �l�a
1
�

fðDbÞP
i2Db bi

U
L

� �l�b

� 1 � bt0�t L
U
� U

L

� �a�b

� 1:

The inequality fðSa [ figÞ � SaÞ � fðSb [ figÞ � SbÞ is due
to the submodularity of function f . This indicates that the

Algorithm 5. TDMC: Participant Selection & Payment
Calculation

Input: Budget B, set fT1; . . .; Tlg
Output: Allocation result
1: t 1; r "; ; x l;
2: B

0  1
2l
B; S ? ; S0  ? ;A ? ;

3: for t ¼ 1 to T do
4: if some participant i arrives then
5: A A [ fig;
6: foreach Participant i 2 A do

7: i	  argmax
i2A

~fi
t ðSÞ
bi

8: if
~fi	t ðSÞ
bi	 � r and

~fi	t ðSÞ
r
� B0 �P

j2S pj then

9: pi	  
~fi	t ðSÞ
r

;
10: S S [ fi	g
11: A AnS;
12: A0  fiji 2 A and i departs at tg
13: while A0 6¼ ? do

14: i	  argmax
i2A0

~fi	
t ðSnfi	gÞ

bi	

15: if bi	 �
~fi	t ðSnfi	gÞ

r
� B0 �P

j2S0 pj þ pi	 and
~fi	t ðSni	Þ

r
� pi	

then
16: pi	  

~fi	t ðSnfi	gÞ
r

;
17: if i	 =2 S then
18: S S [ fi	g
19: Remove all participants that depart in t from A and add

them to S0;
20: if t ¼ Tx then
21: r GetThresholdðB0; Tx; S

0Þ;
22: x x� 1; B0  2B0;
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participant can’t obtaining higher utility by misreporting
her arrival time. The analysis on departure time similar.

Case 2: In this case, this participant can not win the
auction any time. She will not win the auction by misre-
porting her time because in her present period, her low
efficiency always makes her lose the auction. tu

Theorem 11. The mechanism with submodular value function is
cost-truthful

Proof. Here we prove that a participant can’t misreport her
cost for more utility. It suffices to show bidding her true
cost is a dominant strategy. As we have proved before,
we consider two cases.

Case 1: Participant i can win the auction before she
departs if she bids truthfully. Assume she is selected at
time ta in stage ½Ta; Ta�1�. If she misreports her cost and
fails, her utility will be zero. Otherwise, assume she mis-
reports her cost and wins the auction at time tb in stage
½Tb; Tb�1�. With the analysis in the proof of Theorem 5,
she can not get higher payment calculated in line 9 in
Algorithm 5. We next prove she can not get higher pay-
ment calculated in line 15 in Algorithm 5. From the anal-
ysis in the proof of Theorem 10, her payment will not be
updated because she can’t get a higher payment. So we
have proved she can’t obtain more utility in this case.

Case 2: Participant i can be selected when she departs
and she misreports a cost bi. If she still can not win the
auction until she departs, she will get a payment equals
~fit ðSnfigÞ

r
, which is the same as she bids truthfully because

this payment has nothing to do with the bid. Otherwise,

we assume she can win the auction at some time t by mis-

reporting lower cost (Apparently, higher cost doesn’t
“help”). The participant’s failure is due to two reasons:

low efficiency or budget constraint. If it is because of the

budget, she will still fails. If it is because the low effi-

ciency, i.e.,
~fit ðSÞ
ci
� r, we can derive ci �

~fit ðSÞ
r

. If she wins

the auction and get a payment, this payment will be less

than her cost. So we have proved this case.
Case 3: Participant i can not win the auction all the time.

It she can not win the auction by misreporting her cost, she
will get the same payment 0. Otherwise, she can win the
auction.With the analysis in case 2, she can notwin the auc-
tion before she departs for the reason of individual-rational-
ity. So she can only be selected at the time she departs and

she will get a payment
~fit ðSnfigÞ

r
calculated in line 15. When

she bids her true type, she will fails in line 14. It is because

of the budget constraint or the efficiency. If she proposes a

lower cost for higher efficiency, she will get a negative util-

ity. If she fails for the reason of the budget, she will fails

again, because the budget has nothing to do with the bid. It
is noted that she can’t be compared earlier for a payment by

misreporting a higher efficiency because she ever failed in

the previous comparing rounds. tu
Theorem 12. The mechanism has a constant competitive ratio in

the large-scale crowdsensing system.

Proof. In the case where the value is not time-discounting,
Zhao et al. has proposed a different algorithm to calculate
the threshold in Algorithm 6 [27]:

They also proved that the competitive ratio is a con-
stant times 2a

d
if d satisfies that 1

2� ð d
1�2a� 1Þ 1

v
� 1

d
¼ 2a

d
,

where a 2 ð0; 12� and v is a sufficiently large constant
which reflects the relationship between a bid and total
budget. It approaches to 1

4 as v!1 and d! 4.
Our proof is based on their result. We first prove that

our calculated threshold used in the last stage is larger
than that calculated in Algorithm 6. In line 7 in the Algo-

rithm 4, the threshold is defined as 1
�

fðDTk ÞP
i2DTk

bi

U
L

� �l�k¼
1
�
fðDTk Þ

B
BP

i2DTk
bi

U
L

� �l�k� 1
�
fðDTk Þ

B
U
L

� �
. With the same analysis,

the competitive ratio appraoches to 1
4 as v!1 and

�! U
4L . tu

Algorithm 6. Threshold Calculation [27]

Input: Stage budget B0, sample set S0

Output: Threshold r

1: J! ;; i! argmaxj2S0VjðJÞnbj;
2: whilebi � viðJÞB0

V ðJ[fjgÞ do
3: J! J [ fig;
4: i! argmaxj2S0nJVjðJÞnbj;
5: r! V ðJÞnB0;
6: return rnd;

6 NUMERICAL RESULTS

6.1 Methodology
We implement our budget feasible online mechanism with
time-discounting values in the linear value model, namely
TDM, and compare its performancewith several benchmarks:
the optimal offline mechanism (OPT), a random online mech-
anism (Random), and two online budget feasiblemechanisms
(OMG and Singer’s) in the context of crowdsourcing from the
literature [27], [29]. The optimal result is computed by solving
an offline binary integer program. The procedures of OMG
mechanism [27] and Singer’s mechanism [29] are similar to
ours, and the essential difference is threshold calculation
scheme, which does not adjust for time-discounting value in
either OMG or Singer’s mechanism. In [27], the threshold cal-
culated for each stage is simply the average value-cost effi-
ciency of the selected sampling users, while in [29], the
threshold is the largest value-cost efficiency from selected
sampling users under the budget constraint.Wewould evalu-
ate thesemechanisms in the following threemetrics:

� Total Value is the total contribution of all the selected
participants. In TDM mechanism, the total value is
the summation of each participant’s value. In TDMS
mechanism, the total value is the submodular func-
tion over the set of selected participants. We would
measure the total value with the variation of some
parameters, e.g., the total budget, the number of par-
ticipants and some system parameters.

� Selected Ratio is the percentage of participants who is
selected by the mechanism. This metric can capture
the fairness of the mechanisms to some extent.

� Budget Utilization is the percentage of the used bud-
get to recruit participants.

For evaluation setup, the auction period T is 50, and are
further divided into 5 stages. The arrival time and departure
time of users are uniformly distributed in ½1; T �. In a large-
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scale crowdsensing system, we make a reasonable assump-
tion that the cost of each participant is tiny compared to the
total budget, and is less than a ratio multiplying the budget,
which is set to 0.0015 in our experiment. The lower bound and
upper bound of efficiency are set as 0.1 and 2.0, respectively.
The initial threshold r is set to a small value, i.e., 0.1, to avoid
starvation.We also evaluate the effects of these systemparam-
eters, including the upper bound of efficiency U , the initial
threshold r and the parameter �, on the system performance.
The time discounting function in our evaluation is set to
viðtÞ ¼ vi � 0:9t. The value and cost of each participant are
randomly selected within the feasible range, i.e., the value-
cost efficiency is in the range ½1; 2�, and the cost is less than
0:0015�B. All the results are averaged over 200 rounds.

6.2 The Effects of System Parameters
We first investigate the effects of system parameters includ-
ing the threshold parameter �, the initialization of r and the
upper bound of efficiency U , on the total value, under dif-
ferent experiment settings with various budgets and num-
ber of participants. We show the results in Figs. 2, 3 and 4,
respectively. These three sets of experiments follow the
same setup, where we first fix the number of users as 300,
and report the results under different budgets, and then fix
the budget as 1000, and show the results with different
number of users. First, according to inequality (11), the

parameter � has an upper bound �max ¼ 1
�

U
L

� �l�1
and a lower

bound �min ¼ 2 U
L

� �l�1
, but it is not clear how to choose � to

maximize the total value in practice, even though we can
always guarantee a constant competitive ratio in this range.
We divide the interval ½�min; �maxÞ into 100 pieces, and cal-
culate the total value under different parameter �. The
results in Fig. 4 show that with � getting closer to �min, the
total value is getting higher. We note that when � gets small,
the threshold r gets large. The premise of this trend is the
sufficient number of participants. Considering that there are
few participants competing in this auction, if the threshold
r is too large, some participants would be selected later,
leading to the decrease of total value due to the time- dis-
counting effect. When there are plentiful participants, the
participants with small efficiency would lose and never be
selected. In addition, we also see the competitive ratio in
Equation (10) has a negative correlation with �, which is fur-
ther confirmed by this evaluation result.

We next consider the evaluation results about the effect
of initial threshold r on the total value. From the results in
Fig. 3, we find that the total value increases with the initial
threshold r at first, and then remains stable after the initial
threshold larger than a certain value, which would depends
on the specific experiment setups. The reason for this trend
is that a small initial threshold r would select too many

participants with low value-cost efficiency at the beginning,
leading to performance degradation in overall stages. In
contrast, for a large initial threshold, TDM mechanism
would be conservative at first, but would quickly update
the threshold in the following stages based on observed
information. The evaluation results demonstrate that TDM
mechanism is robust to the variance of initial threshold.

We now show the evaluation results of the upper bound
of efficiency U in Fig. 4. We find that the total value
decreases with U in almost all experiment settings. Online
mechanisms rely on one underlying assumption that users
are similar in some metrics, such as the value-cost efficiency
in our context, which is critical to leverage the observed
information from the previous users to guide the selection
for the following users. In the situation with a large U , users
are quite different in terms of the value-cost efficiency, and
thus the estimated efficiency threshold r from the sampling
users is not so informative for the following users. In such a
dynamic situation, we find that the learned efficiency
threshold fluctuates over the stages. In contrast, when U is
not too large, over the collected information from enough
sampling users, TDM mechanism can estimate an accurate
and stable efficiency threshold for a good guideline of
online selection. One potential solution for the large vari-
ance in value-cost efficiency would be to group users using
historical information, and estimate a separated efficiency
threshold for each group of users. Designing comprehen-
sive solutions for this problem is reserved to the future
work. The evaluation result here is also consistent with the
theoretical result from Theorem 7, where the competitive
ratio has a negative relation with the value of U .

6.3 Total Value
We next evaluate the total value of the mechanisms under
different budgets and numbers of participants, respectively.

In Fig. 5a, we fix the number of participants n as 200, and
change the budget B from 0 to 20000 with an increment of
2000. We observe that as the budget increases, the total values
of all five mechanisms become large before the saturation is
achieved. We note that when the budget is small, the value of

Fig. 2. Impact of � ð� ¼ �min þ �	
100 ð�max � �minÞÞ. Fig. 3. Impact of initial threshold r.

Fig. 4. Impact of the upper bound of efficiency U.
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TDM is less than the value obtained by the random mecha-
nism. This is because several participants would lose the auc-
tion due to the harsh budget constraint and the requirement
of strategy-proofness in TDM. However, even with the
requirement of strategy-proofness, TDM mechanism still
achieves superior performance to the random mechanism,
and approaches to the optimal mechanism, when the budget
becomes large. TDMmechanismoutperformsOMGand Sing-
er’s mechanisms in all experiment settings, which demon-
strates that the threshold calculated in TDM is tailored for the
situation of time discounting values. The thresholds calcu-
lated in OMG and Singer’s mechanisms would exclude the
participants with small time discounting values from being
selected. In TDM, we introduce one stage dependent parame-
ter ðULÞl�k for threshold calculation to capture time-discounting
effect on values. The evaluation results demonstrate that this
operation can dramatically increase system performance.

In Fig. 5b, we vary the number of participants n from 0 to
600, and fix the budget to 15000. We observe that the total val-
ues of allmechanisms increasewith the number of participants.
This is due to the fact that with more participants, the probabil-
ity of the appearance of participants with high efficiencies
becomes higher, and thuswe can utilize the limited budget in a
more efficient way. Again, TDM mechanism also outperforms
Random, OMG and Singer’s mechanisms, and approaches to
the optimal solution. The close gap between TDM and the opti-
mal solution shows that we just sacrifices small system perfor-
mance to guarantee strategy-proofness. We also note that the
revised Singer’s mechanism even has worse performance than
the random mechanism. The problem considered in [29] is not
so fully consistent with the problem in our work. They did not
considered the values of tasks, and only maximize the number
of completed tasks. The participants in [29] are able to complete
multiple number of tasks,whilewe only consider that each par-
ticipant can only complete one task. We revised the Singer’s
mechanism to adapt into our setting, but still reserve the two
key components from the original mechanism: one is the

threshold calculation scheme; and the other is to select a single
participant with the largest value-cost efficiency at a relatively
high probability, which is 2/3 in [29]. As demonstrated in [29],
the latter component is critical to the performance guarantee
(constant competitive ratio) in the worst case, which, however,
is only a small fraction of instances under our experiment set-
ting. It is this operation that leads to a large performance degra-
dation in the average sense.

6.4 Selected Ratio
In Figs. 6a and 6b, we intend to investigate the selected
ratio with various numbers of participants and budget,
respectively. We first vary the budget from 6,000 to 15,000,
and then vary the number of participants from 200 to 500.
As shown in Fig. 6a, the selected ratio increases when the
budget gets large. We also find that the selected ratio is
always less than 0.9, even when the budget is large
enough. This is because the decision about user selection
in online environments, especially in the initial stage, may
not be optimal due to the lack of information for accurate
threshold estimation. In Fig. 6b, we can also see that with a
fixed budget, the selected ratio decreases with the number
of participants. When the number of participants increases,
TDM mechanism would prefer to the participants with a
high value-cost efficiency, and ignores the originally
selected users, under the budget constraint. The decrease
of selected ratio in this scenario shows that the mechanism
would break the fairness to some extent in an extensive
competition environment.

6.5 Budget Utilization
We also investigate the budget utilization of our TDM mecha-
nism. With similar experiment setup, the number of partici-
pants varies from 200 to 500 and the budget changes from 6000
to 15000. In Fig. 7a, it is shown that for a fixednumber of partici-
pants, the budget utilization decreases with the budget, and in
Fig. 7b with a fixed budget, the budget utilization increases
with the number of participants. These evaluation results also
show that the decrease of marginal effect of budget utilization
is evident. This suggests that for a mobile crowdsensing appli-
cation with a fixed number of registered participants, adding
more budget may not bring large enough benefit, which is con-
sistentwith the result found in Fig. 5.

7 CONCLUSION

In this paper, we have proposed two strategy-proof and
budget feasible online incentive mechanisms, namely TDM
and TDMS, for mobile crowdsensing that consider the prop-
erty of time-discounting values. The designed mechanisms
calculate a time-dependent threshold to guide the online

Fig. 5. Impact of varying budget and number of participants on Total
Value.

Fig. 6. Impact of varying budget and number of participants on Selected
Ratio.
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participants selection, and incentivize each selected partici-
pant with a carefully designed payment to guarantee strat-
egy-proofness. We consider two cases with the linear value
function and the submodular value function. Our mecha-
nisms for these two cases both satisfy the budget feasibility
and achieve constant competitive ratios. The simulation
results have shown that our mechanisms achieve superior
performance in terms of the total obtained value.
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