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Abstract—In mobile crowdsensing, finding the best match between tasks and users is crucial to ensure both the quality and
effectiveness of a crowdsensing system. Existing works usually assume a centralized task assignment by the crowdsensing platform,
without addressing the need of fine-grained personalized task matching. In this paper, we argue that it is essential to match tasks to
users based on a careful characterization of both the users’ preference and reliability. To that end, we propose a personalized task
recommender system for mobile crowdsensing, which recommends tasks to users based on a recommendation score that jointly takes
each user’s preference and reliability into consideration. We first present a hybrid preference metric to characterize users’ preference
by exploiting their implicit feedback. Then, to profile users’ reliability levels, we formalize the problem as a semi-supervised learning
model, and propose an efficient block coordinate descent algorithm to solve the problem. For some tasks that lack users’ historical
information, we further propose a matrix factorization method to infer the users’ reliability levels on those tasks. We conduct extensive
experiments to evaluate the performance of our system, and the evaluation results demonstrate that our system can achieve superior
performance to the benchmarks in both user profiling and personalized task recommendation.

Index Terms—Mobile crowdsensing, task matching, user profiling, truth discovery, recommender system

1 INTRODUCTION

UE to the rapid development of smart devices and wire-

less technology, mobile crowdsensing [1], [2], [3] has risen
as an emerging sensing paradigm. It can employ a large num-
ber of smart devices to extract and share their local informa-
tion using the embedded sensors on them. A typical mobile
crowdsensing system usually consists of three major compo-
nents: crowdsensing platform, service requesters, and mobile
device users (data contributors). The platform is responsible
for handling information requests from the service requesters
and publishing sensing tasks to the users through the interac-
tion of their smartphone applications.

A critical problem in crowdsensing is to find the best match
between users and tasks [4]. Most of the existing works adopt
a platform-centric model [5], [6], [7], [8], [9], [10], which allows
the platform to make centralized decisions on which users are
selected to perform which sensing tasks. These works usually
focus on the incentive problem, where a typical procedure
goes like this: each user submits a bid reflecting her willing-
ness or cost in participating in a task, and then the platform
determines the set of selected users and their payments, so as
to optimize certain utility metric (e.g., coverage, revenue, ser-
vice quality) and satisfy some game-theoretic properties. The
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underlying assumption behind this type of model is that the
users are fully rational and are capable of determining their
optimal strategies. However, as pointed out in [11], this
assumption, as well as the setting that each user’s preference
can be abstracted as a single bidding parameter, could be an
oversimplification of the complicated user behaviors.

Another type of task matching systems, referred as user-
centric model, gives the users more freedom to choose their
interested tasks. It has been widely adopted in many commer-
cial crowdsensing systems, such as Waze [12], Field Agent
[13], and Gigwalk [14]. In these systems, the available tasks
are shown to the users via their smartphone applications. The
users can manually browse through the task corpus (often
with simple built-in filters, such as proximity filter and pay-
ment filter), and choose their interested tasks to participate in.
However, since the number of the tasks is often really large, it
is inefficient for the users to browse page by page searching
for suitable tasks. Without an efficient personalized task
matching solution, the users may end up selecting tasks that
they are not familiar with or not interested in, which may
result in a decrement of the quality of their collected sensing
data.

Considering the limitations of existing task matching
works, we propose to design a personalized task recom-
mender system for mobile crowdsensing, so as to facilitate the
match of the users with suitable tasks. Note that in traditional
recommender systems, such as movie recommendation, items
are recommended based only on customers’ preferences [15].
Whereas, in mobile crowdsensing, besides the metric of the
users’ preferences, we also need to take the users’ reliability/
data quality into consideration. That is because the users
may have heterogeneous sensing behaviors towards different
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tasks, which could influence the quality of their collected data
[16]. Achieving preference- and quality-aware task recom-
mendation can have a positive impact on both attracting the
user’s further participation and improving the crowdsensing
system’s effectiveness. However, such a personalized task rec-
ommender system is missing in the current crowdsensing
literature. Jin et al. [10] and Wang et al. [17] studied the quality-
aware incentive mechanism design without addressing the
need of personalized task recommendation. Karaliopoulos
etal. [11] proposed to assign the tasks to the users based on the
profile of each user’s probability of accepting a task, but did
not consider the users’ reliability information.

Central to the personalized task recommender system is a
careful characterization on each user’s preference and reliabil-
ity towards different tasks. However, it is not a trivial task,
due to the unique nature of the crowdsensing scenarios. One
of the challenges is finding a good way to model the users’
preference over different tasks. In some traditional recom-
mendation scenarios, customers’ preference can be readily
obtained from their previous ratings [15]. However, the users
in mobile crowdsensing do not typically provide explicit rat-
ings on their preference, s.t., we have to infer the users’ prefer-
ence from their implicit feedback, including their task
browsing history and task selection record.

The most challenging part is estimating the users’ reliabil-
ity levels. In particular, we have to learn the users’ reliability
information for different tasks based on their submitted sens-
ing data, if any, so as to build each user a profile characterizing
the trustworthiness of the users’ data for performing the tasks.
Although truth discovery algorithms [18] can be adopted to
jointly estimate the users’ data quality and the underlying
truths, they cannot fully address the need of user reliability
profiling in the context of task recommendation. Note that
truth discovery algorithms usually generate a single reliability
parameter for each user representing the overall trustworthi-
ness level of the user. However, to conduct personalized task
recommendation, the heterogeneity of a user’s reliability in
different tasks has to be exploited, and thus a more fine-
grained reliability profiling of the users should be considered.
A possible alternative is to independently generate each user
a reliability parameter for each task by applying truth discov-
ery algorithms to the data of each sensing task. Unfortunately,
this approach may suffer from scalability issue, and what’s
worse, a user’s reliability for a task cannot be estimated by
truth discovery algorithms, if the user did not contribute data
to that task. This could often be a problem in real crowdsens-
ing scenarios, especially when the users’ data are sparse, i.e.,
each user only contributes data to only a small number of the
tasks. Besides, without the prior knowledge of truth and reli-
ability measures, typical truth discovery algorithms are likely
to fail, when the majority of data are inaccurate [19].

In this work, we jointly consider the problems of user pro-
filing and personalized task matching in mobile crowdsens-
ing, and propose a personalized task recommender system
framework, which recommends tasks to the users based
on both the users’ preference and reliability. We propose
approaches to measure the users’” preference and reliability,
respectively. First, in profiling the users’” preferences, we pres-
ent a hybrid preference metric that integrates the feedback
against both the users’ historical performance and the prefer-
ence of their peers. Then, to tackle the more challenging part
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of profiling the users’ reliability, we model the problem as a
semi-unsupervised learning problem, and propose an effi-
cient block coordinate descent algorithm to jointly estimate
the users’ reliability and the unknown ground truths. We sur-
pass existing truth discovery methods by (1) considering
grouping tasks into several categories, (2) taking the informa-
tion of failed tasks into consideration, and (3) using a small
number of available truth data to facilitate the estimation
accuracy. Note that a user’s reliability for certain task category
cannot be estimated if the user did not provide data for those
tasks. To address this problem, we further propose a matrix
factorization method to estimate the missing entries. We con-
duct a real-world experiment and also a crowdsensing simu-
lation to evaluate the performance of our methods. The
evaluation results show that our proposed methods can
achieve superior performance over existing works and our

benchmarks.

The main contributions of this work are listed as follows.

e First, we design a personalized task recommender
system framework that matches tasks to the users
based on both the users’ preference and reliability of
the tasks. We propose a method to profile each user’s
preference over the tasks by exploiting the user’s
implicit feedback.

e Second, we model the problem of user reliability profil-
ing as a semi-supervised learning model, and propose
an efficient algorithm to estimate the users’ reliability
and the unknown ground truths simultaneously. We
also propose a matrix factorization method to estimate
each user reliability for tasks she did not contribute
data to.

e Third, we conduct a real-world crowdsensing exper-
iment and a simulation to evaluate the performance
of our methods. Both the experiment and simula-
tion results show that our proposed methods can
achieve significant performance improvements to
our benchmarks.

The rest of the paper is organized as follows. We first
present the system overview in Section 2, and then intro-
duce the problem formulations in Section 3. In Section 4, we
propose our reliability profiling algorithms. We evaluate
our proposed methods and present the evaluation results in
Section 5. In Section 7, we review the related works. Finally,
we conclude this paper in Section 6.

2 SYSTEM OVERVIEW

In this section, we present an overview of our proposed per-
sonalized task recommender system.

2.1 Personalized Task Recommendation

Suppose there are N users and M sensing tasks in the sys-
tem. The set of users and tasks are denoted by N and §,
respectively. We consider a user-centric model, where the
users can browse the tasks in their smartphone applications
and choose to participate in their interested tasks. If a user ¢
wants to participate in a task j, she can click on some button
to inform the platform her participation. After that, the user
will use her smartphone to collect and then submit sensing
data to the platform. Let z;; denote the data submitted by
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the user i to the task j. The ground truth of the task j is
denoted by :c’;, which is usually unavailable to the platform.

We tend to build a personalized task recommender sys-
tem, where the tasks are recommended to the users based
on a joint consideration of the users’ preference and reliabil-
ity. Specifically, for each task j, suppose each user ¢’s prefer-
ence and reliability regarding the task is denoted by p; ; and
qi,j, respectively. We note that there are some other facts
that could also affect the task recommendation results in
practice. For example, to avoid the scenario that few tasks
are recommended to a lot of users, we could involve the
completion ratio cr; of the task j when consider recom-
mending the task j. The completion ratio could be the
weighted average of recruitment ratio and coverage ratio,
where the recruitment ratio is the percentage of already
recruited users, and the coverage ratio is the ratio of covered
regions and the required covered regions in both spatial and
temporal dimensions.

We propose a recommendation score Score(i, j) that takes
the user i’s preference and reliability for the task j and the
completion ratio of task j into account, i.e., Score(i,j) =
f(pij, Gij, cr;), where the function f() outputs the recommen-
dation metric based on the three input parameters. Instances
of the function f() can be specified by the platform according
to its need. Simple instances may include a linear combination
(ie., Score(i,j) = vy pij+ v24ij + (1 — y1 — yo)ery) or a prod-
uct (i.e., Score(i, j) = p;; X g;j x cr;) of the three parameters.
One may also treat the personalized recommendation as a
constrained optimization problem, where one parameter is
applied into the optimization term while the other as the con-
straint. For example, for each user i € N, we want to recom-
mend such task j/ € S that maximizes the user’s preference
and also satisfies the constraint that the user’s reliability for
the task should be above a certain threshold and the comple-
tion ratio should also not to be small. More formally:

Vi €N, j « arg max p;;,
JjES N (1)
s.t. qi,j’ Z Qreq

er 2 Cl'req, (2)

where ¢,., is the minimum required reliability for a user to
perform a task. Central to the system model is the users’
preference and reliability measures. To that end, we need to
carefully examine the historical data of the crowdsensing
system, in order to acquire profiles of the users’ preference
and reliability.

2.2 User Preference Profiling

To characterize users’ preference on tasks, users’ feedback
information is needed. We distinguish two types of feedbacks
in mobile crowdsensing systems, namely explicit feedback
and implicit feedback. The explicit feedback represents the
information signals that can directly indicate users’ preference
over sensing tasks, while the implicit feedback is the data that
need further process and mining to infer users’ preference. In
mobile crowdsensing, due to additional efforts in providing
the time-consuming explicit feedback, e.g., ratings, reviewers,
like or dislike, such explicit feedback is usually unavailable or
incomplete. Thus, we have to further leverage implicit feed-
back for user preference profiling. The mobile crowdsensing
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platform can obtain users” browsing history on the applica-
tion, including which tasks the user has browsed, selected,
and successfully completed. Compared with traditional rec-
ommendation systems, the mobile crowdsensing systems
have much rich implicit feedbacks, such as locations of users
and the current status of smart devices, which imply users
preference over tasks. For example, users would not like to be
assigned the tasks with far travel distance and the tasks with
heavy computational resources when their smart devices are
almost out of power. We note that the feedback data may con-
tain sensitive personal information, such as location and
healthy data. We can leverage some privacy-preserving tech-
niques, such as k-anonymity [20] and differential privacy [21],
to aggregate and anonymize the users’ feedback information.
We can also integrate federate learning [22] into recommenda-
tion systems, training local models by personal information
and only transmitting the obtained user preference informa-
tion to the crowdsensing platform. Both explicit and implicit
feedback can be used to infer users’ preference on tasks, from
two different perspectives, i.e., either against the user’s histor-
ical performance (content-based methods) or the preferences
of similar users (collaborative methods) [15].

2.2.1 Content-Based Method

Each task has many attributes, including time, location,
travel distance, payment, category, and so on. Along with
the users’ task selection choices (selected or not), this infor-
mation can be regarded as training data. By applying classi-
fication methods, such as logistic regression or Bayesian
classifier, we can build a classifier for each user to infer her
probability of selecting each task [11]. We let P;(j) denote
the probability of the user ¢ selecting the task j.

2.2.2 Collaborative Method

Let U denote the users’ task preference matrix, where the
entry u;; indicates the user i’s preference over the task j.
We assign the value of each u; ; by mapping the user’s task
browsing history to a task preference value, i.e.,

N/A if i did not browse task j,
u;; =« 0.5  if ¢ browsed but not selected task j,
1 if 4 browsed and selected task j.

(3)

Then, we can apply state-of-the-art collaborative filtering
methods to predict these missing entries [23].

Both of the above two methods have their limitations. On
one hand, the content-based method may suffer from an
overspecialization problem, i.e., it will only recommend a
user tasks that are similar to those she has already selected.
On the other hand, the collaborative methods may not per-
form well when the preference matrix is sparse. To alleviate
the limitations of these two methods, we propose a hybrid
recommendation approach. To do so, we define each user
i’s preference for each task j as a linear combination of the
content-based characteristic and the collaborative-based
characteristic, i.e.,

Gie = NP (5) + (1 — n)uij, )
where 7 € [0, 1] is a hyperparameter.
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Many previous works on recommender system have
investigated the problem of exploiting customers’ implicit
feedback in different application contexts. The intuitions of
them can be further incorporated to improve our modelling
of the users” preferences. Possible extensions may include
further considering the users” preference over each category
[24], [25], incorporating the implicit negative feedback [26],
multidimensionality of recommendations [15], and Bayes-
ian personalized ranking [27]. In the rest of the paper, we
tend to put our most efforts on user reliability profiling,
which is the most challenging part of the system.

2.3 User Reliability Profiling

A user’s reliability in performing a sensing task is measured
by the quality of her contributed data. Intuitively, if a user’s
contributed data are accurate, i.e., close to the ground truths,
the user would have a higher reliability level, and vice versa.
Note that in mobile crowdsensing scenarios, the ground
truths are usually unavailable, thus we cannot directly mea-
sure the users’ reliability level by comparing their data with
the ground truths.

To address this problem, one possible approach is to adopt
truth discovery algorithms, which are proposed to resolve con-
flicts in data provided by heterogeneous data sources. Exist-
ing truth discovery algorithms, e.g. [28], [29], [30], [31], [32],
[33], usually follow a similar unsupervised procedure: first
initializing the ground truth estimation using a simple major-
ity voting or averaging scheme, and then iteratively updating
reliability and ground truth based on the current estimation
of the other. Although truth discovery algorithms have been
performed well on many web mining tasks, they cannot be
directly applied due to the following unique requirements of
our reliability profiling contexts.

Multi-Dimensional Reliability. Existing truth discovery algo-
rithms usually output a single reliability parameter for each
user characterizing the overall trustworthiness of the user.
Whereas, with the objective of personalized task recommen-
dation, the tasks are actually heterogeneous, s.t., we need to
estimate the users’ various reliability levels for different tasks.
Besides, we notice that in mobile crowdsensing, there are a
large number of tasks, where different tasks may require dif-
ferent data collection behaviors, thus a user’s reliability may
vary towards different tasks. For example, a user who often
puts her smartphone in the bag may fail to provide accurate
data in measuring the surrounding noise, while can still have
high reliability level in monitoring traffic congestions [33].
There are two major paradigms in mobile crowdsensing,
namely opportunistic sensing and participatory sensing. In
opportunistic sensing, the smart devices automatically collect
sensing data at some pre-defined Points of Interest, and in
participatory sensing, mobile users involve in the process of
data acquisition. In these two behavior paradigms, users’ reli-
ability could be quite different. Thus, a more fine-grained reli-
ability profiling method is needed to character the users’
multi-dimensional reliability.

Scalability. One natural idea to address the multi-dimen-
sional reliability problem is to apply existing truth discov-
ery algorithms to each task independently and generate
each user i a reliability measure ¢; ; for each task j. How-
ever, due to the large number of tasks, calculating a
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reliability parameter per user per task is not scalable.
Besides, estimating each user’s reliability based only on her
data to a single task may be susceptible to noise, and thus
cannot accurately reflect the user’s reliability level. There-
fore, our reliability profiling method should not only pro-
vide a fine-grained reliability estimation, but also be
scalable under a large number of tasks.

Robustness. Most truth discovery algorithms start with a
uniform initialization of truth values or reliability values.
As a result, their performance relies on the assumption
that the most users’ are reliable. However, when this
assumption fails, the iterative computation of truth estima-
tion and reliability estimation may move towards incorrect
directions, leading to poor estimation accuracy. This prob-
lem, referred as “initialization problem” could often occurs
in mobile crowdsensing scenarios, due to the uncertainty
of each individual human contributor. Thus, it is crucial to
design a reliability estimation algorithm that is robust to
such scenarios.

Complete Reliability Characterization. Note that the users’
reliability values are estimated based on the relative accu-
racy of the their data. In consequence, a user’s reliability for
certain dimension cannot be estimated if the user did not
provide data to that dimension. This may not be a problem
in many truth discovery scenarios where their main goal is
to infer the unknown ground truths. However, in the con-
text of personalized task recommendation, we have to
obtain a complete characterization of the users’ reliability
levels. Thus, we need to propose a method to predict each
user’s reliability for those dimensions that the user did not
provide data to.

Different Data Types. Different sensing tasks may have
different data types. For example, a traffic congestion task
may require categorical data (e.g., no congestion, medium
congestion, or high congestion), while a noise monitoring
task may require continuous numerical data (i.e., the noise
levels of the users’ surrounding environment). Thus, the
reliability profiling algorithm needs to be carefully designed
to handle both categorical and continuous data types.

Our proposed user reliability profiling methods are care-
fully designed to address the above requirements. Specifi-
cally, for the multi-dimensional reliability and the scalability
issues, we classify tasks into a number of categories and esti-
mate the users’ reliability for each category independently. As
for the robustness issue, we propose a semi-supervised learn-
ing framework that exploits few available truth knowledge to
improve the estimation accuracy. We also propose a matrix
factorization method to predict the missing entries in reliabil-
ity estimation. The issue of different data types is taken care of
by considering different loss functions. In the subsequent sec-
tions, we present the problem formulation and algorithm
design of our user reliability profiling problem respectively.

3 PROBLEM FORMULATION

In this section, we formalize the user reliability profiling
problem. We first present the problem model, and then pro-
pose a preliminary version and two enhancements of our
problem. One enhancement is to incorporate the informa-
tion of failed tasks, and the other is to integrate a small por-
tion of truth data to improve the estimation accuracy.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 16,2022 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.



WU ET AL.: FINE-GRAINED USER PROFILING FOR PERSONALIZED TASK MATCHING IN MOBILE CROWDSENSING

3.1 Problem Model

To model the users’ multi-dimensional reliability, we tend
to take the similarities among the tasks into consideration
by classifying the tasks into different categories, where the
tasks within each category focus on a similar sensing target.
For example, some category only focuses on noise monitor-
ing tasks, and an other focuses on traffic congestion moni-
toring. The classification of the tasks is common in current
crowdsensing applications, e.g., Waze [12]. It can be done
by the platform’s direct designation in the task publication
phase, or by applying text classification techniques [34] to
automatically analyze the descriptions of the tasks. Specifi-
cally, we categorize the M tasks into C categories (C' < M).
For each category c € {1,...,C}, the set of the tasks belong
to the category is denoted by S. (S, C S). For simplicity, we
assume that each task j € S only belongs to one category,
thus the sets Sy, ...,S¢ are mutually disjoint. More general
situations will be discussed in Section 6. For each task cate-
gory ¢, let ¢; . denote each user s reliability of the task cate-
gory. The user reliability profiling problem is to infer the
users’ reliability for each category. More formally:

Definition 1 (User Reliability Profiling Problem). Given
a set of users N, a set of crowdsensing tasks S, and the users’
contributed data {x;;li € N, j € S}, the user reliability profil-
ing problem aims to estimate the unknown ground truths
{z:|j € S}, and the users’ reliability matrix Q € R"*“, where
C'is the dimension of each user i’s reliability.

3.2 Preliminary Problem Formulation

We assume that the tasks in different categories are inde-
pendent, s.t., we can estimate the users’ reliability for each
category separately. Let N, denote the set of users who con-
tributed data to tasks in category c. To estimate the users’
reliability, for each category ¢, we aim to solve the following
optimization problem.

min > i L, &),

{Qi‘(:}~{i;} i€N, jeS¢ (5)
sit. 8({aic}) =1,

where y; ; indicates if the user ¢ has contributed data to the
task j, :i’l‘ is our estimation for the task j’s ground truth, and
8() is a regularization function. Following the convention of
truth discovery literature [29], we adopt the exponential
regularization function, i.e., 8({¢;.}) = ZieNF exp(—gi.). The
loss function L() measures the distance between a user’s
data and the estimated truth. For continuous data, L() can
be defined as the squared distance, i.e., L(x,2*) = (z — *)?,
while for categorial data, L() can be defined as the 0/1 dis-
tance, i.e., L(z,%*) = 0 if z = 2*, and 1 otherwise. An intui-
tive interpretation of the problem formulation is that the
ground truth should be close to the data contributed by reli-
able users, and the users whose data are close to the ground
truth should have high reliability levels.

3.3 Incorporating Information of Failed Tasks

We observe that in practice, the users may select certain tasks,
but did not successfully complete them (e.g., decide to termi-
nate the sensing procedure half way, or fail to report the col-
lected data before deadline). The phenomenon, referred as
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failed tasks, is likely to reflect the users’ unreliability in per-
forming certain tasks. We note that users’ reliability/data
quality highly depends on personal efforts spent in data col-
lection campaign and hardware quality. Thus, we further con-
sider two types of failures, namely intentional failure and
inherent failure, to distinguish different failure causes. Due to
the concern of high data acquisition costs, mobile users may
not spend their best efforts in executing tasks, resulting in the
intentional failure. For example, mobile users would transmit
the collected data at a low communication speed, to save
transmission fee. In contrast, the cause of inherent failure
comes from the fact that the hardware quality of mobile users,
e.g., the speeds of communication or the accuracy of sensors,
are inherently low. The mobile users could also fail to accom-
plish the tasks due to the low quality of hardware. In this sce-
nario, the mobile users, experiencing inherent failures, may
still be reliable in some sense, but is less reliable compared
with the users who have high quality hardware and spend
much effort in data acquisition. We consider these two types
of failures during the evaluation of users’ reliability, taking
hardware quality and invested personal efforts into account.
We note that we could detect these two types of failure by ver-
ifying hardware quality, e.g., evaluating the performance of
data transmission from the historical networking log data. In
this part, we improve the above problem formulation by tak-
ing the task failures into account.

We first introduce some notations. Among the set of tasks
in each category c, we let S; . denote the set of tasks the user i
selected, ;. the set of successfully accomplished tasks and
D, the set of tasks with inherent failure. We introduce a met-
ric d; . to evaluate the overall contributions of data from the
tasks D;. and ]D)ZC on user i's reliability evaluation, i.e.,
die = [Dic| + 7 x |D;,|. We require 0 < 7 < 1 to reflect the
fact that the tasks with inherent failure have positive contribu-
tion, but less contribution compared with the successfully
accomplished tasks, to users’ reliability. For each category c,
we calculate each user ¢’s task completion ratio 7; ., which is
defined as the overall contribution metric d; . normalized by
the total number of tasks the user i has selected, i.e., ;. = %
We revise the original formulation by multiplying a penalty
term to g; .. The revised problem is presented as follows.

min > i e 9(rie) Lwij, &),
{Qi.r:}‘{'r]'} i€N, jES,
©)
s.t. Z exp(—ql-,(, g(rz',c)) = 17
€N,

where g(z) =1 —log(z) is a function mapping each user’s
completion ratio to a penalty. We can see that the users who
have either intentional failure tasks or inherent failure tasks,
will receive a completion ratio less than 1, and thus their
reliability outputs should be less than the ones estimated by
the previous method shown in Equation (5). An extreme
case is that some user 7 may select multiple tasks but inten-
tionally fail all the tasks, i.e., S;, > 0 and d;. = 0). In this
case, the system cannot generate a reliability estimation for
the user. We discuss this problem in Section 4.2.

3.4 Incorporating Available Ground Truths

The above formulation extends the basic truth discovery
problem, which is built upon an underlying assumption

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 16,2022 at 17:04:03 UTC from IEEE Xplore. Restrictions apply.



2966

that the majority of data are reliable. Unfortunately, it may
suffer from the initialization problem, i.e., when most of the
data are unreliable, the above estimation procedure may
have bad performance [19]. To tackle this issue, we propose
a semi-supervised learning framework, which incorporates a
small number of ground truths to improve the estimation
accuracy. To this end, the platform may intentionally add a
few tasks with known ground truths into the task corpus to
collect additional information on the users’ reliability,
whereas the users have no idea which tasks are inserted by
the platform. The platform may also sample a few tasks,
and employ some trusted workers to obtain their ground
truths. Several heuristic methods can be applied to choose
the sampled set of tasks. For example, we may choose the
sampled tasks randomly, choose the tasks whose data have
the largest variations, or choose the tasks which have the
most data contributors.

We let S denote the set of tasks with unknown ground
truths, and O denote the set of tasks that are intentionally
inserted by the platform with known truth information. For
each category c of tasks, we let S, and O, denote the set of
the tasks without and with prior ground truths respectively.

Having the ground truths of some tasks in hand, we pro-
pose to leverage those information to further enhance our
estimation accuracy. To distinguish the notations, we let 77
denote the estimation of the ground truth (j € S), and z
denote the known truth (o € 0). Then, for each category c,
the modified learning optimization problem is given by

> Gicgric) ( > iy Liwij, &)

min
faich{#}}

i€N, JESe
+o Z yi7o L(mipa .ZE:)) ) (7)
0€0,
s.t. Z exp(—qic g(ric)) =1,

€N

where « is a hyper parameter controlling the relative weight
of the second loss terms. We can see that the second loss term
Zoe@p Yio L(; 0, }) is constant for each user 7 in each task cat-
egory c. We let ¢; . denote the term 3°, o ¥io L(2i0, ), and
the problem presentation can be simplified as follows.

min Z Qic 9(Tic) Z Yij L(zi, i’;) +acic
{‘Ii,c}v{wj} (8)

i€N, JE€Se
s.t. Z exp(—gicg(rie)) = 1.
€N,

We summarize the frequently used notations in Table 1.

4 USER RELIABILITY PROFILING ALGORITHM

In this section, we first propose an algorithm to solve the
user reliability profiling problem formulated above. Then,
we further propose a matrix factorization method to esti-
mate each user’s reliability for the task categories that lack
the user’s historical performance.

4.1 Estimating Users’ Reliability
In the problem formulated in Equation (8), two sets of varia-
bles need to be estimated, i.e., the users’ reliability levels
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TABLE 1

Frequently Used Notations
Notation Description
i, N,N User, number of users, and the set of users
3, M,S Task, number of tasks, and the set of tasks
Score(i, j) Recommendation score for user ¢ and task j
c,C Task category, and number of categories
Dij User i’s preference for task j
Qie User i’s reliability in task category ¢
S, The set of tasks in category ¢
N, The set of users contributed data to S,
Tij User i’s data for task j
x; Ground truth of task j
z; Estimation of the task j’s ground truth
Yij If user i contributed data to task j
Sic The set of tasks user i selected in S,.
D; . The set of tasks user 7 finished in S,
Tie User i’s task completion ration in S,
(@) The set of tasks with known ground truths
0, The set of tasks belong to O and in S,
N¢ The set of users contributed data to O,

and unknown ground truths. We propose an efficient block
coordinate descent algorithm to solve it. The idea of the
algorithm is to fix one set of variables to solve the other, and
repeat this process until convergence. Since the estimation
process for each user and category pair can be done inde-
pendently, parallel computing can be adopted to speed up
the entire calculation process. For each task category ¢, we
perform the following three steps: parameter initialization,
truth update, and reliability estimation.

4.1.1  Parameter Initialization

In the parameter initialization phase, we assign initial val-
ues to one set of the variables to give the learning algorithm a
starting point. Existing truth discovery algorithms either ini-
tialize the unknown ground truths using a simple majority
voting or averaging scheme, or uniformly initialize the reli-
ability parameters. As pointed out in [19], [33], random or uni-
form initialization may result in poor estimation performance,
which is especially true when most data are unreliable.

To mitigate this problem, we propose to enhance the
initialization of the users’ reliability parameters {¢;.} by
incorporating the prior knowledge of available ground
truths. The idea is to leverage the known truth knowledge
to give related users good initial estimations of their reli-
ability. Specifically, for each category ¢, let N? denote the
set of users who contributed data to tasks in Q.. For the
users in NY, we initialize their reliability by solving the fol-
lowing problem.

argmin Z Z YioQic 9(Tic) L(Tio, T,),
{4i,c}i€N? 1€N? 0€0¢
) ©
st Y exp(—gic g(ric)) = N

PIS\
The above problem is convex, thus we can apply the method
of Lagrangian multipliers to solve it.

As for the remaining users in N, \ N?, since they did not
contribute data to tasks whose ground truths are known, no
prior knowledge can be applied. Thus, their reliability
parameters are uniformly initialized such that
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INg|
IN|

7 exp(—gicglric) =1 - (10)

i€N,\N9

Solving Equation 9 and Equation 10, we have the initiali-
zation of the users’ reliability parameters as follows:

log INeTD o D e, Vio Hoios)
INETD e, VioL@io))
Qic = ifi € N¢,

9(ric)

log(|N|)

9(ric) ifl € NC \ N?'

an

4.1.2 Truth Update

After obtaining an initial estimation of the users’ reliability, we
can update the estimation of truths by treating the estimated
reliability parameters {¢;.} as fixed values. Then, the truth of
each task j € S. can be updated using the following rule.

{27} « argmin Z Gic 9(Tic) < Z Yij L(@ij, 25) + ozem)

{7 }.j€8¢ ieN, Jj€Se
(12)

Theorem 1. Given the users’ reliability parameters, the optimi-
zation problem in Equation 12 can be optimally solved. For con-
tinuous data type, the optimal solution is given by

_ ZieNc i Yij Tij 9(Tic)

T = (13)

g D ien, Gie Yij 9(Tic)

As for categorial data type, the solution is
; ngaxszpyu g(rlc) l(xiﬁj71';')7 (14)

T E{T/J} 1€N,
where 1(x,y) = 1 if x = y, and 0 otherwise.

Proof. For each task j, we first consider the case of continu-
ous data, where L(z;;,}) = (zi; — f:}‘)z Then, the objec-
tive function can be formalized as follows

+ aE;. (> .

= Z Qi,[ag(ﬁ c (Z Yij IZJ
i€Ne JeESe

We take the partial derivative of the function with

respect to ij‘ and set it to zero, i.e.,

Zq“’g Tl{‘ y7]

S\

— ;) =0

Solving the above equation, we get Equation (13).
For some task j, if its data x; ; is of categorical type, the
loss function is

Lz, 2}) = {0 £y, =

J 1 otherwise . (15)

Taking the loss function into Equation (12), we can get
the optimal solution to #} shown in Equation (14). 0

4.1.3 Reliability Estimation

After updating the estimation of the ground truth, we now
fix the values of {i}}, and calculate the users” data qualities
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{¢i} by solving the following optimization function. Intui-
tively, the users whose data are close to the ground truth
will have high reliability estimations, and vice versa.

{Qi,c} — argmiﬂ Z Qi,cg(ﬂ ¢ (Z Yi.j xz }7 + oE;, L)

(16)

{¢ic}  ieN, =
s.t. Z exp(—¢qicg(ric)) = 1.
ieN,

Theorem 2. Given fixed truth estimation {i}}, the problem in
Equation 16 can be optimally solved. The optlmal value of each
Gic, % € N is given by

o= 1 log Zz‘eNg (ZjESC i L(zij, i;) + af'i«,c)
ic (7“7‘ p) ZjeSc yiﬂjL(JZiﬁj, i‘j) + e .

17

Proof. The problem is convex, since the objective term is
linear and the constraint set is convex. Therefore, we can
apply the method of Lagrangian multipliers to solve the
problem. The Lagrangian of Equation 16 is given as:

Z qzrg Tic (Zy7a] L('r7j’j:;) +Ol€7',7c>
1€N, JeSe
+ A ( Z exp(_(ﬁ,c 9(7“-)) - 1) ’

i€Ne

{Q1 r} >‘

(18)

where ) is a Lagrange multiplier. Taking the partial
derivative of Equation 18 with respect to ¢; ., we have

a o
quu =9(ric) ( D yiiL(wi, &) + am)

= (19)
= Ag(ric) exp(=gic g(ric))-
Letting Equation 19 to zero, we get
> i iL(wij, ) + aciec = Aexp(—gic g(ric)). (20)

JESe

Summing both sides over i, we get

Z(Zyu IU, +0161(>)\Z€Xp %cQ(ru))
ieNe \ jes,

1€N,
(21)
Since >y, exp(—gic9(ric)) = 1, we have
-y (zyu +) @2
1EN, JES,

Taking Equation (22) into Equation 20, we obtain a closed

form solution of reliability ¢; . shown in Equation (17). O
The pseudo-code of the algorithm is presented in Algo-
rithm 1. We first initialize the users’ reliability parameters,
and then keep iterating the steps of truth update and reli-
ability estimation until the change of the users’ reliability is
below a certain threshold. Due to the convexity of our
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problem and the ability to achieve the optimal solution for
each step (Theorems 1 and 2), our algorithm is guaranteed
to converge to some local optimum, according to the propo-
sition of the block coordinate descent [35]. The total time
complexity of reliability profiling is O(m(|N.| + [S.|)), where
m is the number of iterations. We can also set a large con-
stant iteration number (e.g., m = 10,000), s.t., the algorithm
is likely to converge. Further improvements can be made to
find a 2-approximation of the global optimum within nearly
linear time [36].

Algorithm 1. User Reliability Estimation (Category c)

input: Tasks S, and Q, users N, and data {z; ;}
output: Reliability {g; .}, and truth estimation {2}
// Parameter Initialization:

s else g — N/A;
: while not converged do
// Truth Update
: foreach task j € S, do
if the task j is of continuous data type then

Py Z,EN[' Qi Yij Tij .(J(H.u);
J D ien, i Yi 9(ric)
10:  if the task j is of categorical data type then
11: i« argmaqu“y”q(r”)l(xu x; )
€T E{Ilj} 1€Ne
// Rel:Lab:Ll:Lty Estimation
12: foreach user i € N, do
: s YijL(zi .25 ic
13: g — ‘<71‘ )10g<zzeNﬁ (Z-JES bty et >;
I\Tie Zjesp Yi i L(wi j, j)+af“
// Reliability Normalization

14: Vi € N, qi o — IO‘;‘N ;

15: return {g; .} and {x/}

1: if i € N, then

2: ifi € N2 then :

A (\ | Pieng Dooeo, Viok WID))
: Qi g(”f) g IN9| Zoe@ Yi o L(xi 0,2) ;
. OZ(IN¢).

4 elseq . — =255

5

6

o * N

4.1.4  Reliability Normalization

Until now, we have obtained the estimations of the users’
reliability levels and unknown ground truths. However,
there is a problem in our model, i.e., each user i’s reliability
estimations for different categories are in different scales.
From the regularization term } ;. exp(—gi g(ri.)) = 1, we
can see that the average value for Gic9(ri.) is log|N.|, which
is proportional to the number of data contributors for cate-
gory c. This means that a user is likely to receive a higher
reliability score when she is among a large number of data
contributors, which is not reasonable. In order to guarantee
each user’s reliability estimations for different tasks are in
the same scale, we normalize each user i’s reliability estima-

tion ¢; . into loé\{l\w

4.2 Estimating Missing Entries:

A Latent Factor Model
From the above subsection, we have obtained each user’s
reliability information over the task categories that she has
contributed data to. However, we observe that if a user ¢
did not contribute data to some category c (i.e., ¢ ¢ N,), then
Algorithm 1 is not able to estimate the user i’s reliability
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over c. In this part, we propose a matrix factorization
method to address this problem.

We use @ to denote the users’ reliability matrix, where each
entry ¢, . is the user s reliability for task category c. We map
both users and task categories to a joint latent factor space of
dimensionality k. Specifically, we assume that each user ¢ is
associated with a vector w; € R*, and each category is associ-
ated with 6, € R*. The vector w; = [w; 1, w; 2, ..., w; k] can be
interpreted as the user i’s capabilities in k& dlfferent dimen-
sions, and the vector 6, = [0.1,0.2, ... Lk] can be seen as
the weight of each capability needed by the category c. Then,
each user i’s reliability for each category c can be calculated as
Qic = wLTO(

To estimate the missing entries in matrix ¢, we tend to
calculate each user i’s latent vector w; and each category’s
latent vector .. Let YW and O denote the sets of users’ and
categories’ latent vectors, respectively. Then, the objective
function can be formalized as follows.

C N
22215 ch_ )2’

c=1 i=1

1

w,0

(23)

N

where z; . indicates if user ¢ has contributed data to category
¢ (1 means yes, and 0 otherwise). To prevent over-fitting, we
add regularization terms in Equation 23.

Y 2 Mol 2
Im(I)l 522‘1“— Qic — c) 52”71%“ +EZ 1241
c=1 i= i=1 c=1
(24)

where [[w;[|* = 321, w?, and [|6]* = Y7, 62, A; and A, are
parameters controlling the weights of regularization terms.

Algorithm 2. Unknown Reliability Estimation

input: Users reliability matrix @
output: Unknown reliability parameters {g; .|z = 0}

1: Initialize {w;} and {6.} to small random values;

2: while not converged do

3: foreachi=1,..,N, c=1,...,C do

4: Wit < Wit — ﬁ( Z(Cz1 Zi‘u(qi‘u - w,Te() + /\1wi,t>/
gcﬁt — 90,t - ,3( Zf\;l Zi,c(qiﬁc - szec) + /\290,t>;

5: foreach ¢;. = N/A do

6: Qi < 'w1T -6,

7: return {¢; .|z = 0}

We propose to use a simple gradient descent method to
solve the above problem. The pseudo-code is presented in
Algorithm 2. We first initialize {w;,;} and {0.,} to small ran-
dom values. After that, we apply gradient descent algo-
rithm, ie., for every ¢ and t, we update {w;;} and {6.;}
using the following rules

C

Wiy — Wiy — B ( Z Zie(gic —w] 6,) + )\lwi,t) ; (25)
c=1
N

Qot — 9(3,1, - /3 ( Z Zi,(’,(qi,ﬁ - w7T9(’) + )\290,7‘,> ) (26)
i=1
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TABLE 2
Sensing Task Overview

Category Monitored target # of tasks Data type

C1 noise 8 continuous
2 air pollution 9 categorical
C3 traffic congestion 11 categorical
C4 human flow 20 categorical
C5 temperature 20 continuous
Co weather 9 categorical
c7 price 12 continuous
C8 question 17 categorical
C9 accident 17 categorical

where g is the learning rate. Finally, we can predict a user i’s
reliability for a task category c even if the user 7 did not pro-
vide any data to ¢, i.e., fori ¢ N, q; . < w!6..

5 EVALUATION

In this section, we implement and evaluate the performance
of our proposed methods. We first conduct a small-scale
real-world crowdsensing experiment, and then simulate a
crowdsensing scenario to further examine the performance
of our methods.

5.1 Experiment Setup
We recruit 10 users (8 males and 2 females) to participate in
our experiment. In the experiment, we manually create 123
sensing tasks for 9 different categories. An overview of the
tasks is presented in Table 2. The tasks within the same cate-
gory focus on the same sensing target (such as noise, traffic,
or weather), but with different attributes, including time,
locations, and payments. Each task category has a data type
requirement. For instance, noise monitoring requires contin-
uous data type, while weather monitoring requires categori-
cal data type. The entire task corpus is shown to the users
through the browsers on the users’ smartphones. Each user
can browse through these tasks, and choose their interested
tasks to work on. The ground truth of each task is monitored
by the authors themselves, and unavailable to the users. We
collect the users’ sensing data, as well as their operation
records, including each user’s task browsing history, task
selection history, and task completion history.

According to our collected data, each user contributes data
to about 60 perent of the tasks in average. The parameter o
used in our semi-supervised learning model is set to 1. And
for each task category, we use the ground truths of 10 perent
of the tasks. The parameters k, A1 and )\ used in our matrix
factorization method are set to 3,5 and 5, respectively.

5.2 Experiment Results on User Reliability Profiling
In the experiment, we evaluate the performance of our pro-
posed user profiling algorithm. To differentiate the nota-
tions, we use “URP-BA” to denote the basic version shown
in Section 3.2, and “URP-E1” and “URP-E2” to denote the
first enhancement and the second enhancement, respec-
tively. We compare our algorithms with two benchmarks.
One is a heuristic method that treats each user’s data
equally, i.e., simple average (“Avg.”) for continuous data
and majority voting (“Voting”) for categorical data. The
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Fig. 1. Performance comparison on estimation accuracay.

other benchmark is a general truth discovery framework,
called “CRH” [29], which uses a single parameter to model
each user’s reliability level. We adopt the following two
metrics to measure the performance of the algorithms.

e RMSE: For continuous data, we use Root Mean Square
Error (RMSE) to measure the distance between the
estimation result and the ground truth. Mathemati-
cally, the RMSE is defined as \/ > jes(@i — i’j)Q JIM|.

e Error Rate: For categorical data, we use Error Rate to
quantify the performance of an algorithm. The Error
Rate of an algorithm is defined as the percentage of
the tasks to which the algorithm’s estimations are
different from the ground truth, ie., 1 — ]\I;T] % >.

Fig. 1 presents the performance comparison between our

algorithms and the benchmarks. We can see that for either
data type, the truth discovery-based algorithms can achieve
higher estimation accuracy than the simple average or
majority voting, indicating the effectiveness of truth discov-
ery algorithms. However, the performance of Avg./Voting,
CRH, URP-BA, and URP-E1 tends to be similar. The main
reason is that under the crowdsensing scenarios, these usu-
ally exist many tasks to which the majority of the users’
data are inaccurate, thus the traditional unsupervised learn-
ing models may have trouble identifying the users’ true reli-
ability levels. In this case, as we can see that URP-E2 has
superior performance to the other four algorithms, incorpo-
rating even a small number of ground truths can greatly
improve the estimation accuracy.

Zjes

5.3 Experiment Results on Personalized

Task Matching
Besides profiling the users’ reliability, we also profile each
user’s preference towards each task using the methods pro-
posed in Section 2.2. In Figs. 2a and 2b, we present the reli-
ability profiles and preference profiles of two representative
users respectively, where the user’s preference towards a

M users M User7

(a) Reliability

M users M Users

(b) Preference

Fig. 2. User profiling.
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Fig. 3. Comparison on different task matching strategies.

task category is calculated as the user’s average preference
score of the tasks in the category. We normalize the users’
preferences to [0,5] for better graphical presentation.

To evaluate the performance of our personalized task
recommender system, we provide each user a list of 20 rec-
ommended tasks, and ask each user to choose their inter-
ested tasks. Recall that our personalized task recommender
system recommends tasks to the users based on both the
users’ reliability and preference. Specifically, for each user
and task pair (¢, ), we calculate a recommendation score
Score(i, j) = ypi; + (1 — ¥)q ;. Suppose task j belongs to cat-
egory c, then we set p; j to p; .. Weuse y = 0.4 and n = 0.5 in
our experiment. The choices of the hyperparmeters are
done by grid search. Researchers are encouraged to do fine-
tuning with their own data. Our system recommends each
user 20 tasks with the highest recommendation scores.
Three benchmarks are adopted, including random recom-
mendation, preference-only recommendation, and reliabil-
ity-only recommendation. Random task recommendation
strategy provides each user a list of 20 randomly chosen
tasks, while the preference- or reliability-only recommenda-
tion strategies provide each user 20 tasks with highest pref-
erence or reliability scores, respectively.

The performance of task matching strategies is measured
on two different perspectives, i.e., task acceptance ratio and
estimation accuracy. The task acceptance ratio is defined as
the percentage of the recommended tasks that the users
have selected, and the estimation accuracy is measured
using RMSE or Error Rate depending on the data types of
the tasks. The performance comparison of different task
matching strategies is presented in Fig. 3. We can see that
the preference-only strategy has the highest task acceptance
ratio, while the reliability-only strategy outputs the most
accurate estimation results. That is because these two strate-
gies match tasks to the users with the tendency of facilitat-
ing the match of one certain perspective. Comparing with
other task matching strategies, we can see that our proposed
hybrid recommendation strategy can achieve a good bal-
ance between the acceptance ratio and the estimation
accuracy.

5.4 Evaluations on A Simulated Scenario

In this subsection, we examine the performance of our user
profiling algorithms through a comprehensive crowdsens-
ing experiment. We first briefly introduce the simulator
CrowdSensim [37] used in this experiment, and present our
experiment settings. We then report our evaluation results
in both medium-scale and large-scale settings. As the inac-
curate data from unreliable users would have a significant
effect on the ground truth estimation when the number of
users is not so large, we evaluate the performance of our
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algorithms within a medium-scale setting. We also conduct
the experiments in a large-scale setting to demonstrate the
scalability of our algorithms and the superiority of our algo-
rithms in broad crowdsensing scenarios.

CrowdSensim is a discrete-event simulator for the per-
formance evaluation of various crowdsensing algorithms in
large urban areas. In CrowdSensim, the participants move
along the streets of a selected city, following certain mobility
distributions, and collect different kinds of sensory data by
the available sensors in an opportunistic manner. The simu-
lator can support various types of crowdsensing-related
analysis [38], [39], [40], such as energy-efficient data collec-
tion, reward distribution, user profiling, ground truth dis-
covery, task allocation, etc. The latest version of this
simulator: CrowSensim 2.0 [41] can further support the
chronological order of sensing events, high-precision and
fine-grained models for urban environments and parallel
execution of algorithms.

We have implemented our three algorithms “URP-BA”,
“URP-E1” and “URP-E2”, and compare them with two base-
lines “Average” and “CRH” in the CrowdSensim 2.0 simula-
tor. We consider two types of simulation settings: a medium-
scale setting, in which the number of users varies from 10 to
100 with an increment of 10; a large-scale setting, in which the
number of users is fixed at either 5000 or 10000. We also con-
duct the experiments when the number of tasks varies from
1000 to 10000 with an increment of 1000. We divide the tasks
into 20 categories, and randomly distribute the tasks on a cer-
tain region. Each task is associated with a coordinate vector
< latitude, longitude, altitude >, and the required sensory
data to collect. Each participant has a mobility model, includ-
ing an initial location, the length of walking time and the aver-
age speed. The mobility model can be generated from
practical human mobility traces, such as ParticipAct data-
set [42] and pedestrian walking traces [43], or some pre-
defined mobility patterns. In our experiment, the participants
start walking from a randomly chosen location with an aver-
age speed uniformly distributed between [1,1.5] m/s, and the
period of walking time follows an uniform distribution over
[10,60] minutes. During the walking, participants collect and
contribute data when a user-task contact happens. By defini-
tion, a user and a task are in contact when the distance
between them is below a radius R = 1m. The data collection
process is as follows: for each participant i, if she contributes
data to the task j of category c, then her data x; ; is generated
based on a Gaussian distribution with the mean #} and vari-
ance i, ie, x;; ~ N(3, i) The ground truth #; of each task
j is randomly distributed within [30,100]. In URP-E2, we ran-
domly choose 1 perent of tasks, and incorporate their ground
truths in the user reliability profiling process.

To model the reliability of users, we classify the users
into three groups: reliable users, normal users, and unreli-
able users, where the users’ reliability distributions in these
three groups are A (0.75,0.1), A'(0.5,0.1), and N(0.25,0.1),
respectively. To evaluate the impact of user’s reliability on
system performance, we consider three different settings. In
the first setting, the users are classified into the three groups
randomly. In the second setting, each user has 60 perent
probability of being classified into reliable users, 30 perent
normal users, and 10 perent unreliable users, while in
the third setting, each user has 10 perent being reliable,
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Fig. 4. Comparisons on estimation accuracy with varying number of users.

30 perent being normal, and 60 perent being unreliable. We
assume that for each user, if her reliability for certain task is
below 0.2, then the user will have 50 perent probability of
failing the task.

We next present our evaluation results on a small-scale
simulation. Fig. 4 presents the estimation accuracy of different
algorithms with a varying number of the users, from 10 to 100
with the increment of 10. We fix the number of tasks as 1000.
We can see that the simple average has the worst estimation
accuracy, while URP-E2 achieves the lowest RMSE in all the
three settings. In Fig. 4c, we observe that the RMSE first grows
as the number of users increases, and then decrease when the
number of users is getting larger. This is because that when
the number of users is small, slightly increasing the number of
users, especially unreliable users, may bring extra errors to
the estimation results. As the number of users increases, the
platform can access to more information, and thus can reduce
the estimation errors.

We also examine the effect of the number of incorporated
ground truths on the estimation accuracy. The results are
shown in Fig. 5. We can see that having more ground truth
data can improve our estimation results. Besides, compar-
ing the different settings, we can see that Setting 2 achieves
the best estimation accuracy, since most users in Setting 2
are reliable.

We now show the evaluation results in a large-scale setting,
i.e., a large number of tasks or users. Fig. 6 shows the estima-
tion accuracy of different algorithms with varying number of
task, from 1000 to 10000 with the increment of 1000. It can be
seen that our proposed user profiling algorithm achieves the
lowest RMSE, indicating the effectiveness of our algorithm.
Besides, we can observe that the RMSE decreases as the num-
ber of tasks increases. This is because that more tasks usually
means having more data, s.t., the platform can identify the
users’ reliability levels more accurately. A similar phenome-
non was also observed in [28]. We also evaluate our algo-
rithms and baselines when the number of users is 5000 and
10000, respectively, the number of tasks is fixed as 1000, and

Selling‘ 1 ——
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=)
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0 20 40 60 80
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Fig. 5. The effect of available truth on estimation accuracy.

Number of Users
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Number of Users
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users’ reliability follows the Settingl. The evaluation results
from Fig. 7 are consistent with those in the medium-scale set-
ting. The RMSE of all algorithms decreases when the number
of users increases, and again the RMSE of "URP-E2“ is the
smallest among all algorithms. In the large-scale setting, more
(reliable) data due to the increase of tasks or users can still sig-
nificantly increase the accuracy of ground truth estimation.

6 DISCUSSION

In this section, we discuss several practical issues and
potential extensions of our proposed personalized task rec-
ommendation methods.

Objectives of Mobile Crowdsensing Application. There are
diverse objectives of mobile crowdsensing in practice. In
this paper, we focus on user reliability profiling and ground
truth discovery to improve task-user matching efficiency in
mobile crowdsensing. Considering the tasks in mobile
crowdsensing usually span over a certain area and continue
through multiple time slots, other objective could be the
guarantee of Quality of Service (QoS), which is defined as
the coverage requirements of data acquisition in both spa-
tial and temporal dimensions. For such diverse objectives,
we may have different definitions of task accomplishment
and various sufficient amount of data for user reliability
evaluation. For personalized task recommendation, we
need to estimate the user preference and reliability within a
certain accuracy. The accuracy of preference and reliability
estimation highly depend on the appropriate user profiling
and ground truth discovery, which is related to the number
of users assigned to each task. We can use the history data
of the tasks with available ground truth to estimate the
required number of users for each task. To complete tasks
in this context, the platform needs to recruit enough number
of users for each task. For the objective of QoS guarantee,
the platform needs to acquire data from different locations
and time slots, achieving the coverage requirements of the
tasks, under which we call a task is accomplished. With dif-
ferent definitions of task accomplishment, the amount of
data needed to evaluate the reliability of users also varies.

New User Problem. For a user that is new to our system,
we may have very little information (browsing history and
data contribution) on the user. In this case, it is difficult to
get an accurate preference or reliability profile of the user.
Fortunately, this new user problem has been widely studied
in traditional recommender system literature, e.g., [44], [45],
where their ideas can also be applied in our problem sce-
nario. For example, we can recommend the most informa-
tive tasks to the new user, so as to gain knowledge of the
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Fig. 6. Comparisons on estimation accuracy with varying number of tasks.

user’s preference and reliability. Heuristics may include
random recommendation, recommending most popular
tasks, and recommending tasks among different categories.

Content-Based Reliability Prediction. In this work, we pro-
pose a matrix factorization method to predict the missing
entries in each user’s reliability estimation. This method is
able to capture inherent subtle characteristics of the users’
reliability without the need of extracting features of the
users and the tasks. However, one drawback of the
approach is that we may not be able to interpret what fac-
tors influence the users’ reliability. In situations where
interpretability matters, using content-based methods such
as building a classification model to predict the users’ reli-
ability can be a good alternative.

General Reliability Profiling Problem. In our reliability pro-
filing model, we assume that each task only belongs to one
category and tasks in different categories are independent.
Sometimes, these assumptions may not hold. In these cases,
a general reliability profiling problem can be considered,
ie., given the users’ contributed data, we aim to estimate
the unknown ground truths {x}|j € S}, each user’s reliabil-
ity vector ¢; € RY, and each task’s weight vector v; € R,
where C'is a hyperparameter determining the dimension of
the vectors.

Having estimated ¢, and vj, each user i’s reliability for
each task j can be calculated as ¢; ; = ¢! - v;. We can see that
the model we proposed in Section 3.1 is a simplified version
of the general reliability profiling problem, where we spec-
ify C to be the number of task categories, and each entry ¢;
of the task vector is 1 if task j belongs to category ¢, and
zero otherwise. Note that in the general reliability profiling
problem, we now have three sets of unknown variables that
need to be estimated, which is more difficult. We tend to
leave this problem to our future work.

Context-based User Profiling. We observe that a user’s pref-
erence and reliability can be dependent on the contextual
situation of the user. For example, a user’s preference may
be dependent on time (e.g., time of a day, or season of the
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Fig. 7. Results on large scale simulation.
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year) [46]. Also, as pointed out in [47], a user’s reliability
could also be influenced by her activity (e.g., sitting, walk-
ing, or running) and her surrounding environment (e.g.,
home, office, shopping mall). Thus, we think the problem of
profiling the users’” preference and reliability in a context-
aware situation could also be an interesting future work.

Other Task Matching Models. Though this work focuses on
the user-centric model, the estimated preference and reli-
ability parameters of the users can be readily integrated into
platform-centric model, allowing the platform to make cen-
tralized decisions based on them, such as selecting most
reliable users to perform a sensing task [48], determining
the payments of the users based on their reliability levels
[33], [49], [50], or integrating the preference or reliability
information into the design of incentive mechanisms [10].

Reputation System. Note that this work focuses on estimat-
ing the users’ reliability, which may only characterize the
users’ performance within a short time period. A long-term
quality characterization of each user is also needed sometimes
for determining monetary incentives [10]. To that end, Wu
et al.[51] proposed an endorsement-based reputation calcula-
tion and prediction method based on users’ short-term quality
ratings. Yang et al.[33] proposed a Shapley value-based repu-
tation system. Our work serves as an underlying building
block that provides accurate user performance estimations for
the upper-level reputation systems.

7 RELATED WORK

Crowdsensing Applications. The concept of mobile crowd-
sensing has attracted broad attention from both industry
and academia, and has been applied in various application
domains, including but not limited to environment monitor-
ing [52], [53], [54], indoor localization [55], [56], indoor floor-
plan construction [57], [58], [59], traffic and navigation [60],
[61], and image sensing [62]. Several crowdsensing testbeds
and simulators have been proposed to assess the perfor-
mance of mobile crowdsensing systems, such as [63], [64].
Platform-Centric Crowdsensing. Many researchers have
studied the user selection problem in mobile crowdsensing.
They usually modelled the problem from a game-theoretical
perspective like [5]. For example, Zhao et al.[6] considered
the problem of budget feasible mechanism design for
crowdsensing, and proposed mechanisms for both offline
and online scenarios. Karaliopoulos et al.[8] addressed the
user recruitment problem for opportunistic network sce-
nario, and proposed two efficient algorithms to maximize
the overall location coverage. Zhang et al.[9] proposed a
double auction mechanism for proximity-based mobile
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crowdsensing. In these works, the platform’s main concern
was to determine the set of selected users and their corre-
sponding payments so as to maximize a certain optimiza-
tion metric. They only considered the heterogeneity of the
users and assumed that the tasks are of no differences.
Some researches have also studied the task assignment
problem in mobile crowdsensing. For example, He et al. [65]
studied the optimal task allocation problem for location-
dependent crowdsensing. Zhao et al. [7] considered the task
allocation problem in crowdsensing with the objective of
optimizing the energy efficiency of smartphones. Cheung
et al. [66] considered the distributed task selection problem
for time-sensitive and location-dependent tasks. However,
these works were all based on a platform-centric model.
Besides, none of these work took the issue of data quality
into consideration.

User-Centric Crowdsensing. Few researches have studied
the user-centric model in crowdsensing. Karaliopoulos et al.
[11] adopted logistic regression techniques to estimate a
user’s probability of accepting a task, and tend to match
tasks to users based on the information. However, they did
not consider the users’ data quality or reliability in perform-
ing the sensing tasks. Although Jin et al. [10] and Han et al.
[50] considered the problem of quality-aware task matching,
they were based on the platform-centric model, and were
unable to recommend personalized tasks for the users. In
contrast, our work considers a user-centric task matching
model by taking both the users’ preference and data quality
into consideration. A preliminary version of this work
appears at INFOCOM 2018 [67], while this work has sub-
stantial revision over the previous one including additional
technical materials and discussions.

Truth Discovery. The problem of truth discovery has been
widely studied to handle the situation where data collected
from multiple sources tend to be conflicting and the ground
truths are unknown [18]. Wang et al. [68] considered the prob-
lem of truth detection in social sensing based on EM algo-
rithm. Wang et al. [69] proposed a truth discovery algorithm
to handle streaming data. Ouyang et al.[31] proposed a truth
discovery method to detect spatial events based on a graphical
model. Su et al. [30] designed a generalized decision aggrega-
tion framework for distributed sensing scenarios. Wang et al.
[70] studied the truth discovery problem in cyber-physical
systems. Wang et al. [71] further exploited the problem of
truth discovery for interdependent phenomena in social
sensing. Meng et al. [32] exploited the spatial correlations to
improve the estimation accuracy. CRH [29] is a general truth
discovery framework that can handle both continuous and
categorical data. Li et al. [28] considered truth discovery prob-
lem for long-tail data, and proposed a confidence-aware
approach. Peng et al. [49] proposed an EM algorithm to quan-
tity the users’ data qualities in mobile crowdsensing. How-
ever, all of these works are based on unsupervised learning
models, and thus may suffer from the initialization problem
when most data are inaccurate [19]. Pouryazdan ef al. [72]
introduced a new metric collaborative reputation scores to
quantify crowd-sensed data trustworthiness. Luo et al. [73]
addressed the truth estimation problem from a different per-
spective. They adopted a group of validating users to assess
the data provided by contributing users, and then generated
an accurate posterior estimation of the ground truth based on
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the validation result. Yin and Tan ef al. [74] proposed a semi-
supervised learning model to identify true facts from false
ones. However, their work tended to focus on the truth esti-
mation part, but did not output the reliability levels of the
data sources, thus cannot address the need of user reliability
profiling.

Recommender System. Recommender system has been a hot
topic in recent decades. Generally, recommendation techni-
ques can be classified into the following three categories:
content-based recommendation, collaborative filtering-based
recommendation, and hybrid recommendation [15]. Besides
various recommendation techniques, many practical issues in
recommender systems have also been widely studied, includ-
ing exploiting implicit feedback [27], [75], addressing negative
feedback [26], [76], context-aware recommendation [46], group
recommendation [77], and so on. Nevertheless, these works
only focused on the users’ preferences, without considering
the users’ reliability. In contrast, in mobile crowdsensing, the
users’ reliability plays an important role in the effectiveness of
the system, and thus should be taken into account in recom-
mending tasks. To that end, we extend the traditional recom-
mender systems by taking the users’ reliability into the
consideration and proposing to recommend tasks based on
both the users’ preference and reliability.

8 CONCLUSION

In this paper, we have studied the problem of personalized
task matching in mobile crowdsensing. We have proposed a
personalized task recommender framework that can recom-
mend tasks to users based on a fine-grained characterization
on both the users” preference and reliability. We have pro-
posed methods to measure each user’s preferences and reli-
ability of different tasks, respectively. In particular, the
proposed user reliability profiling algorithm originates from
truth discovery problem, but surpasses existing truth discov-
ery algorithms in three ways, i.e., by proposing a fine-grained
multi-dimensional reliability profiling model, by exploiting
the information of failed tasks, and also by incorporating a
small number of ground truths to improve the estimation
accuracy. Further more, we proposed a matrix factorization
method to address a critical limitation of the existing truth dis-
covery algorithms in estimating the users’ reliability for the
uninvolved tasks. Both a real-world experiment and a crowd-
sensing simulation have been conducted to evaluate our pro-
posed methods. The evaluation results have demonstrated
the good performance of our methods. As for our future
work, we are interested in considering the user profiling prob-
lem in streaming data scenarios.
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