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Abstract—The society’s insatiable appetites for personal data are driving the emergence of data markets, allowing data consumers to

launch customized queries over the datasets collected by a data broker from data owners. In this paper, we study how the data broker

can maximize its cumulative revenue by posting reasonable prices for sequential queries. We thus propose a contextual dynamic

pricing mechanism with the reserve price constraint, which features the properties of ellipsoid for efficient online optimization and can

support linear and non-linear market value models with uncertainty. In particular, under low uncertainty, the proposed pricing

mechanism attains a worst-case cumulative regret logarithmic in the number of queries. We further extend our approach to support

other similar application scenarios, including hospitality service and online advertising, and extensively evaluate all three use cases

over MovieLens 20M dataset, Airbnb listings in U.S. major cities, and Avazu mobile ad click dataset, respectively. The analysis and

evaluation results reveal that: (1) our pricing mechanism incurs low practical regret, while the latency and memory overhead incurred is

low enough for online applications; and (2) the existence of reserve price can mitigate the cold-start problem in a posted price

mechanism, thereby reducing the cumulative regret.

Index Terms—Personal data market, revenue maximization, contextual dynamic pricing, reserve price, ellipsoid

Ç

1 INTRODUCTION

NOWADAYS, tremendous volumes of diverse data are col-
lected to seamlessly monitor human behaviors, such as

product ratings, electrical usages, social media data, web
cookies, health records, and driving trajectories. However,
for the sake of security, privacy, or business competition,
most of data owners are reluctant to share their data, result-
ing in a large number of data islands. Because of data isola-
tion, potential data consumers (e.g., commercial companies,
financial institutions, medical practitioners, and researchers)
cannot benefit from private data. To facilitate personal data
circulation, more and more data brokers have emerged to
build bridges between the data owners and the data consum-
ers. Typical data brokers in industry include Factual [2],
DataSift [3], Datacoup [4], CitizenMe [5], and CoverUS [6].
On the one hand, a data broker needs to adequately compen-
sate the data owners for the breach of their privacy caused
by using their data to answer any data consumer’s query,
thereby incentivizing active data sharing. On the other hand,
the data broker should properly charge the online data con-
sumers for their sequential queries over the collected data-
sets, because both underpricing and overpricing may result

in loss of revenue for the data broker. The data circulation
ecosystem is conventionally called “data market” in the
literature [7].

In this paper, we study how to trade personal data for reve-
nuemaximization from the data broker’s standpoint in online
data markets. We summarize three major design challenges
as follows. The first and the thorniest challenge is that the
objective function for optimization is quite complicated. The
principal goal of a data broker in data markets is to maximize
its cumulative revenue, which is defined as the difference
between the prices of queries charged from the data consum-
ers and the privacy compensations allocated to the data own-
ers. Let’s examine one round of data trading. Given a query,
the privacy leakages together with the total privacy compen-
sation, regarded as the reserve price of the query, are virtually
fixed. Thus, for revenue maximization, an ideal way for the
data broker is to post a price, taking the larger value of the
query’s reserve price and market value. However, the reality
is that the data broker does not know the exact market value
and can only estimate it from the context of the current query
and the historical transaction records. Of course, a loose esti-
mation will lead to different levels of regret: (1) if the reserve
price is higher than themarket value, implying that the posted
price must be higher than the market value, the query defi-
nitely cannot be sold, no matter whether the data broker
knows the market value or not. Thus, the regret is zero; and
(2) if the reserve price is no more than the market value, a
slight underestimation of the market value incurs a low
regret, whereas a slight overestimation causes the query not
to be sold, generating a high regret. Therefore, the initial goal
of revenue maximization can be equivalently converted to
minimizing the cumulative regret, particularly, the difference
between the data broker’s cumulative revenues with and
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without the knowledge of the market values. Considering
even the single-round regret function is piecewise and highly
asymmetric, it is nontrivial to perform optimization for multi-
ple rounds.

Another challenge lies in how to model the market values
of the customized queries from the data consumers. For
regret minimization in pricing online queries, the pivotal
step for the data broker is to gain a good knowledge of their
market values. However, markets for personal data signifi-
cantly differ from conventional markets in that each data
consumer as a buyer rather than the data broker as a seller
can determine the product, namely, a query. In general, each
query involves a concrete data analysis method and a tolera-
ble level of noise added to the true answer, which are both
customized by a data consumer [8], [9]. Hence, the queries
from different data consumers are highly differentiated and
are uncontrollable by the data broker. This striking property
further implies that most of the dynamic pricing mecha-
nisms, which target identical products or a manageable
number of distinct products, cannot apply here. In addition,
existing work on data market design either considered a sin-
gle query [10] or investigated the determinacy relation
among multiple queries [9], [11], [12], [13], [14], [15], [16],
[17], but ignoredwhether the data consumers accept or reject
the marked prices. Thus, these work omitted modeling the
market values of queries and is parallel to this work.

The ultimate challenge comes from the novel online pric-
ing with reserve price setting. For the estimation of a quer-
y’s market value, the data broker can exploit only the
current and historical queries. Thus, the pricing of sequen-
tial queries can be viewed as an online learning process.
Besides the usual tension between exploitation and explora-
tion, our pricing problem has three atypical aspects: (1) the
feedback after trading one query is very limited. The data
broker can observe only whether the posted price for the
query is higher than its market value or not, but cannot
obtain the exact market value, which makes standard online
learning algorithms [18] inapplicable; (2) the reserve price
essentially imposes a lower bound on the posted price
beyond the market value estimation, while the ordering
between the reserve price and the market value is unknown.
In addition, the impact of such a lower bound on the whole
learning process has not been studied as of yet; and (3) the
online mode requires our design of the posted price mecha-
nism to be quite efficient. In other words, the data broker
needs to choose each posted price and further update its
knowledge about the market value model with low latency.

We outline the key contributions in this work1 as follows.

� To the best of our knowledge, we are the first to study
trading personal data for revenue maximization from
the perspective of a data broker in online datamarkets.
In addition, we formulate it into a contextual dynamic
pricing problemwith the reserve price constraint.

� The proposed pricing mechanism features the prop-
erties of ellipsoid to exploit and explore the market

values of sequential queries effectively and effi-
ciently. It supports both linear and non-linear market
value models and tolerates some uncertainty. The
worst-case cumulative regret under low uncertainty
is Oðmaxðn2log ðT=nÞ; n3log ðT=nÞ=T ÞÞ, where n is
the dimension of feature vector and T is the total
number of rounds. The time and space complexities
are both Oðn2Þ. Further, our market framework can
also support trading other similar products, which
share customization, existence of reserve price, and
timeliness with online queries.

� We evaluate three use cases over three real-world
datasets. The major results are: (1) for the pricing of
noisy linear query under the linear model, when
n ¼ 100 and the number of rounds t is 105, the regret
ratio of our pricing mechanism with reserve price
(resp., with reserve price and uncertainty) is 7.77
percent (resp., 9.87 percent), reducing 57.19 percent
(resp., 45.64 percent) of the regret ratio than a risk-
averse baseline, where the reserve price is posted in
each round; (2) for the pricing of accommodation
rental under the log-linear model, when n ¼ 55,
t ¼ 74; 111, and the ratio between the natural loga-
rithms of the reserve price and market value is set to
0.6, the regret ratio of our pricing mechanism is 3.83
percent, reducing 77.46 percent of the regret ratio
compared with the baseline; (3) for the pricing of
impression under the logistic model, when n ¼ 1024
and t ¼ 105, the regret ratios of our pure pricing
mechanism are 8.04 and 0.89 percent in the sparse
and dense cases, respectively; and (4) the latency of
three applications per round is each in the magni-
tude of millisecond (ms for short), while the memory
overhead is each less than 160 MB.

� We instructively demonstrate that the reserve price
can mitigate the cold-start problem in a posted price
mechanism, thereby reducing the cumulative regret.
Specifically, (1) for the pricing of noisy linear query,
when n ¼ 20 and t ¼ 104, our pricing mechanism
with reserve price (resp., with reserve price and
uncertainty) reduces 13.16 percent (resp., 10.92 per-
cent) of the cumulative regret than without reserve
price; and (2) for the pricing of accommodation rental,
as the reserve price approaches the market value, its
impact onmitigating cold start is more evident.

2 TECHNICAL OVERVIEW

In this section, we introduce system model, problem formu-
lation, and design principles.

2.1 System Model

As shown in Fig. 1, we consider a general system model for
online personal data markets. There are three kinds of enti-
ties: data owners, a data broker, and data consumers.

The data broker first collects massive personal data from
the data owners. Then, the data consumers come to the data
market in an online fashion. In round t 2 ½T �, a data con-
sumer arrives and makes a customized query Qt over the
collected dataset. Specifically, the query Qt comprises a con-
crete data analysis method and a tolerable level of noise

1. An early version of thisworkwith the same title appeared as a 4-page
poster paper in IEEE ICDE 2020 [1]. This journal version has added the
principles, details, and analysis of our design, the evaluation results, the
relatedwork, aswell as substantial illustrations and revisions.

NIU ET AL.: ONLINE PRICINGWITH RESERVE PRICE CONSTRAINT FOR PERSONAL DATA MARKETS 1929

Authorized licensed use limited to: ON Semiconductor Inc. Downloaded on December 20,2022 at 02:32:26 UTC from IEEE Xplore.  Restrictions apply. 



added to the true answer [8], [9]. Here, the noise perturba-
tion not only can allow the data consumer to control the
accuracy of a returned answer but also can preserve the pri-
vacy of the data owners.

Depending on Qt and the underlying dataset, the data
broker quantifies the privacy leakage of each data owner
and needs to compensate it if a deal occurs. The data broker
then offers a price pt to the data consumer. If pt is no more
than the market value vt of Qt, this posted price will be
accepted. The data broker charges the data consumer pt,
returns the noisy answer, and compensates the data owners
as planned. Otherwise, this deal is aborted, and the data
consumer goes away. To guarantee non-negative utility for
the data broker no matter whether a deal occurs in round t
or not, the posted price pt should be no less than the total
privacy compensation qt. qt functions as the reserve price and
can be pre-computed when given Qt.

We next give the online trading of noisy linear queries for
example. A static market framework for trading the same
products with marked prices was studied in [9].

Example 1. A data broker, called Bob, maintains a vector
ð2; 1; 4; 3Þ, where each value is contributed by a data owner
(e.g., denoting a student’s rating for some course). Each
data owner also signs a digital contract with Bob with
respect to different levels of privacy leakage and corre-
sponding compensations. In round 1, a data consumer,
called Alice, launches a query Q1, including “How many
data owners have values higher than 3?” and “The variance
of tolerable noise is no more than 0.1.”. The level of noise
guarantees an error of 1 with 90 percent confidence for the
counting answer by Chebyshev’s inequality. GivenQ1, Bob
quantifies the privacy leakage of each data owner (e.g.,
using differential privacy-based method in [9]) and com-
putes its privacy compensation under the contract. For
example, the privacy compensations of 4 data owners are
ð0:3; 0:25; 0:2; 0:25Þ. Bob obtains the total privacy compensa-
tion q1 ¼ 1 and posts a price p1 to Alice. Here, p1 must be
higher than the reserve price q1 (e.g., p1 ¼ 1:2). If Alice
accepts (resp., rejects) p1, Bob will know that the posted
price is no more than (resp., higher than) the market value
of Q1, namely, p1 � v1 (resp., p1 > v1). In round t, another
data consumer launches another queryQt, comprising a dif-
ferent type of statistic analysis (e.g., “What is the mean?”)
and a different tolerable variance of noise (e.g., 0.01). The
holistic trading process is the same as that of round 1.

2.2 Problem Formulation

We now formulate the regret minimization problem for
pricing sequential queries in online personal data markets.

We first model the market values of customized and
highly differentiated queries. We use an elementary
assumption from contextual pricing in computational eco-
nomics [19], [20], [21] and hedonic pricing in marketing [22],
[23], which states that the market value of a product is a
deterministic function of its features. Here, the product is a
query, and the function can be linear or non-linear. To make
the pricing model more robust, we allow for some uncer-
tainty in the market value of each query. In particular, for a
query Qt, we let xt 2 Rn denote its n-dimensional feature
vector, let f : Rn 7! R denote the mapping from the feature
vector xt to the deterministic part in its market value, and
let dt 2 R denote the random variable in its market value,
which is independent of xt. In a nutshell, vt ¼ fðxtÞ þ dt.

We next identify the features of a query for measuring its
market value. One naı̈ve way is to directly encode the con-
tents of the whole query, including the data analysis method
and the noise level. However, the query alone, especially the
abstract data analysis method, is hard to embody its eco-
nomic value. Let’s examine the same type of simple queries
in Example 1 for easy illustration: it is nontrivial to directly
compare the economic values of the counting and mean sta-
tistics, let alone incorporating different levels of accuracy.
Thus, we turn to leveraging the underlying valuations of the
data owners about the query, namely, the privacy compensa-
tions, as the feature vector. We explain the rationality and
feasibility of this feature representation: (1) the market value
of a query depending on the privacy compensations inherits
the core principle of cost-plus pricing [24], [25] and has been
widely used in personal data pricing under the static market
framework [9], [16], [17]. In particular, cost-plus pricing
states that the market value of a product is determined by
adding a specific amount of markup to its cost. Here, the cost
is the total privacy compensation, the determinacy is
reflected in the feature representation, and the markup is
realized by setting the reserve price constraint; (2) the pri-
vacy compensations are observable by the data broker and
can help it to discriminate the economic values of distinct
queries. For example, the privacy compensations are higher,
which implies that the privacy leakages of the data owners
are larger, the knowledge discovered by the data consumer
is richer, and thus the market value of the query to the data
consumer should be higher; and (3) considering the scale of
individual data owners can be large in practice, the dimen-
sion of the feature vector call be high as well. We can apply
some celebrated dimension reduction techniques (e.g., Prin-
cipal Components Analysis (PCA) [26]). We can also apply
aggregation/clustering to the privacy compensations and
regard the aggregate results as the feature vector, where the
dimension n controls the granularity of aggregation. One

Fig. 1. A general system model of online personal data markets. The smile indicates that the posted price is accepted and a deal is made.
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extreme case is n ¼ 1, where the only feature is the total
privacy compensation; the other extreme case is n equal to
the number of data owners, where every feature corresponds
to a data owner’s individual privacy compensation. Intui-
tively, we can interpret the aggregation technique as the
introduction of n “master” data owners. Each master data
owner represents and manages a group of “child” data own-
ers for unified privacy compensation. We still examine
Example 1 and set n ¼ 2. We assume that one master data
owner manages the first two data owners, while the other
master data owner manages the last two data owners. Then,
the feature vector ofQ1 is x1 ¼ ð0:55; 0:45Þ.

We finally define the cumulative regret of the data broker
due to its limited knowledge of market values. We consider
a game between the data broker and an adversary. During
this game, the adversary chooses the sequence of queries
Q1; Q2; . . . ; QT , selects the mapping f , but cannot control
the uncertainty dt in each round t, namely, the adversary
can determine the part fðxtÞ in the market value vt. In con-
trast, the data broker only can passively receive each query
Qt and then post a price pt. If the posted price is no more
than the market value (i.e., pt � vt), a deal occurs, and the
data broker earns a revenue of pt. Otherwise, the deal is
aborted, and the data broker gains no revenue. We define
the regret rt in round t as the difference between the
adversary’s revenue and the data broker’s revenue for trad-
ing the query Qt. The detailed formula of rt is

rt ¼
0 if qt > vt;
maxp�t p

�
t Pr

dt
p�t � vt
� �� pt1 pt � vtf g otherwise:

(

In the first branch (as qt > vt), if the reserve price and thus
the posted price are higher than the market value, there is
no regret. This is because under such a circumstance, no
matter whether the adversary knows the market value in
advance or the data broker does not, there is definitely no
deal and zero revenue. Let’s consider Q1 in Example 1: if
the reserve price q1 ¼ 1 is higher than the market value
v1 ¼ 0:8, then the posted price p1 > q1 ¼ 1 must be higher
than v1 ¼ 0:8, implying that Alice certainly rejects p1. In the
second branch (as qt � vt), p�t is the adversary’s optimal
posted price to maximize its expected revenue in round t,
where the expectation is taken over dt. When dt is omitted,
the adversary will just post the market value if the reserve
price is no more than the market value (i.e., qt � p�t ¼ vt),

and rt will change to

rt ¼ 0 if qt > vt;
vt � pt1 pt � vtf g otherwise:

�
(1)

At last, considering the sequential queries can be chosen
adversarially (e.g., by other competitive data brokers or
malicious data consumers), our design goal is to minimize
the total worst-case regret accumulated over T rounds.

2.3 Design Principles

We overview our pricing framework and illustrate its key
principles. We first consider the deterministic linear market
value model, where f is a linear function, parameterized by
a weight vector u� 2 Rn. In other words, the market value of
the query Qt is vt ¼ xt

T u�. We then consider extensions to
the uncertain setting and non-linear models.

We start with a special case of the linearmodel, where each
feature vector xt is one-dimensional (i.e., n ¼ 1). For example,
the single feature can be the total privacy compensation or the
reserve price qt, and the weight u� denotes some fixed but
unknown revenue-to-cost ratio. We note that to minimize the
regret in pricing the queryQt, the data broker needs to have a
good estimation of its market value vt, which can be equiva-
lently converted to gaining a good knowledge of the observ-
able feature xt’s market value, namely u�. We let Kt denote
the data broker’s knowledge set of u� in round t. In addition,
the initial knowledge set K1 can be an interval ½‘; u� for some
‘; u 2 R. Moreover, after round t, if the posted price pt is
rejected (resp., accepted), the data broker will update its
knowledge set Kt to Ktþ1 ¼ Kt

Tfu 2 Rjpt � xt
T ug (resp.,

Ktþ1 ¼ Kt

Tfu 2 Rjpt � xt
T ug). Now, the key problem for the

data broker is how to set the posted price pt. In fact, the knowl-
edge set Kt can impose a lower bound p

t
¼ minu2Ktxt

T u and
an upper bound �pt ¼ maxu2Ktxt

T u on estimating the market
value vt and thus on the posted price pt, while the reserve
price qt imposes the other lower bound on the posted price pt.
If the posted price pt ismaxðqt; ptÞ, the data broker can sell the
query Qt with the highest probability. However, in the worst
case, where qt � p

t
, this deal will not refine the knowledge set

(i.e.,Ktþ1 ¼ Kt) and thus cannot benefit the following rounds.
We call such a price maxðqt; ptÞ a conservative price. On the
other hand, as shown in Fig. 2a, inspired by bisection, we
define the larger value of the reserve price and the middle
price (i.e., maxðqt; ptþ�pt

2 Þ) as an exploratory price. In the worst

Fig. 2. Illustrations of (effective) exploratory posted prices under the linear market value model.
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case, the feedback from posting this price can narrow down
the knowledge setKt bymost and thus can benefit the follow-
ing rounds most. Of course, compared with the conservative
price, the exploratory price would suffer a higher risk of no
sale or losing the current revenue. We note that both the con-
servative price and the exploratory price have adequately
exploited the experience from the previous rounds (i.e., the
latest knowledge set Kt), and the difference is that these two
types of posted prices give distinct biases to the immediate
rewards (exploitation) and the future rewards (exploration).
Accompanied with the key problem of setting posted prices,
another problem is when the data broker should choose
which price. Our strategy is to measure the size of the knowl-
edge set Kt (e.g., the width of interval in the one-dimensional
case). If it exceeds some threshold, the data broker chooses the
exploratory price to further improve its knowledge set; other-
wise, its knowledge set is near optimal, and the data broker
chooses the conservative price. In our real design, we use
�pt � p

t
to capture the size of Kt and let � > 0 denote the

threshold.
We next take Example 1 as a running instance of our one-

dimensional design. We set the revenue-to-cost ratio u� ¼ 1:4,
set Bob’s initial knowledge set K1 ¼ ½1; 2�, and set � ¼ 0:07. In
round 1, given the feature of Q1 (i.e., x1 ¼ q1 ¼ 1), Bob com-
putes the lower bound and the upper bound on estimating
the market value, namely, p

t
¼ 1� 1 ¼ 1 and �pt ¼ 1� 2 ¼ 2.

Thus, the conservative price is maxð1; 1Þ ¼ 1, and the explor-
atory price is maxð1; 1þ2

2 Þ ¼ 1:5. Considering �pt � p
t
¼ 1 > �,

Bob posts the exploratory price pt ¼ 1:5, which is higher than
the market value v1 ¼ 1� 1:4 ¼ 1:4 and is rejected by Alice.
Bob has a regret of r1 ¼ 1:4, but narrows its knowledge setK1

to K2 ¼ ½1; 1:5Þ, significantly benefiting the following T � 1
rounds. Assume that Bob posted the conservative price 1,
which is lower than v1 and would be accepted by Alice. Bob
would have a lower regret of 1:4� 1 ¼ 0:4, but cannot refine
its knowledge set to benefit the following rounds.

We further consider the general linear model with multi-
ple features (i.e., n � 2). The holistic process is the same. The
difference lies in the concrete form of the knowledge set Kt.
In the one-dimensional case,Kt is an interval, while themini-
mum and maximum possible market values (i.e., p

t
and �pt)

can be efficiently computed from Kt. However, when
extended to the multi-dimensional case, we assume that the
initial knowledge set isK1 ¼ fu 2 Rnj‘i � ui � ui; ‘i; ui 2 Rg.
After each round, the knowledge set is updated by adding a
linear inequality. Thus, the knowledge set Kt can be viewed
as a set of linear inequalities, the cardinality of which is non-
decreasing with the number of rounds t. To post a price in
round t, it suffices to solve two linear programs under Kt,
which is quite time-consuming and can be computationally
infeasible in online mode. Therefore, we turn to borrowing
some key principles from the celebrated ellipsoidmethod for
solving online linear programs, which was first proposed by
Khachiyan in 1979 [27]. The key idea is to replace the raw
knowledge set Kt, viewed as a polytope in geometry, with
the ellipsoid Et of the minimum volume that contains Kt. Et

is called the L€owner-John ellipsoid of the convex bodyKt. By
leveraging the property that every ellipsoid is an image of
the unit ball under a bijective affine transformation [28], the
data broker can efficiently determine the posted price and
further update its knowledge set in each round, requiring

only a few matrix-vector and vector-vector multiplications.
Fig. 2b gives an illustration of the exploratory posted price in
the two-dimensional case.

Algorithm 1. An Online Pricing Mechanism for Personal
Data Markets

Input: A1 ¼ R2In�n, c1 ¼ 0n�1, an uncertainty parameter
d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2logC
p

slogT , a threshold �.
Output: The posted price pt in each round t 2 ½T �.

1 for t ¼ 1; 2; . . . ; T do
2 Et ¼ fu 2 Rnj u � ctð ÞTA�1

t u � ctð Þ � 1g;
3 Receives a query Qt with the feature vector xt 2 Rn;
4 Determines the reserve price qt of Qt;
5 bt ¼ Atxtffiffiffiffiffiffiffiffiffiffiffiffiffi

xtTAtxt
p ;

6 p
t
¼ minu2Etxt

T u ¼ xt
T ct � btð Þ;

7 �pt ¼ maxu2Etxt
T u ¼ xt

T ct þ btð Þ;
8 if qt � �pt þ d then
9 Atþ1 ¼ At; ctþ1 ¼ ct;
10 continue;
11 else
12 if �pt � p

t
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xtTAtxt

p
> � then

13 Posts a price pt ¼ max qt;
p
t
þ�pt

2 ¼ xt
T ct

n o
;

14 if pt is rejected then

15 at ¼
p
t
þ�pt
2 � ptþdð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
xtTAtxt

p ¼ xt
T ct�pt�dffiffiffiffiffiffiffiffiffiffiffiffiffi
xtTAtxt

p ;

16 if � 1
n � at � 1 then

17

Atþ1 ¼n2 1� at
2ð Þ

n2 � 1

�
At

� 2 1þ natð Þ
nþ 1ð Þ 1þ atð Þbtbt

T

�
;

ctþ1 ¼ct � 1þ nat

nþ 1
bt;

18 else
19 Atþ1 ¼ At; ctþ1 ¼ ct;
20 else

21 at ¼
p
t
þ�pt
2 � pt�dð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
xtTAtxt

p ¼ xt
T ct�ptþdffiffiffiffiffiffiffiffiffiffiffiffiffi
xtTAtxt

p ;

22 if � 1
n � �at � 1 then

23

Atþ1 ¼n2 1� at
2ð Þ

n2 � 1

�
At

� 2 1� natð Þ
nþ 1ð Þ 1� atð Þbtbt

T

�
;

ctþ1 ¼ ct þ 1� nat

nþ 1
bt;

24 else
25 Atþ1 ¼ At; ctþ1 ¼ ct;
26 else
27 Posts a price pt ¼ max qt; pt � d

n o
;

28 Atþ1 ¼ At; ctþ1 ¼ ct;

We finally consider the uncertain setting and non-linear
models. First, for tractability, we make a common assump-
tion on the randomness dt in the market value vt, where the
distribution of dt belongs to subGaussian. We thus bound
the absolute value of any dt in all T rounds by d with proba-
bility near 1. We regard d as a “buffer” in posting the price
and updating the knowledge set, which can circumvent the
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randomness dt in each round. Second, we mainly investigate
four classic non-linear models in market value estimation,
whose pattern is first applying an inner feature mapping to
the feature vector, then performing dot product with the
weight vector, and finally applying an outer non-decreasing
and continuous function. By still focusing on the discovery of
the weight vector rather than the inner and outer non-linear
functions, we can extend our pricing mechanism to support
this class of non-linearmarket valuemodels.

3 FUNDAMENTAL DESIGN UNDER LINEAR MARKET

VALUE MODEL

In this section, we propose an ellipsoid-based pricingmecha-
nism under the deterministic linear model and then extend it
to tolerate uncertainty. We also analyze the time and space
complexities as well as the worst-case cumulative regret.

3.1 Ellipsoid-Based Pricing Mechanism

As an appetizer, we first briefly review the definition of an
ellipsoid and some of its key properties.

Definition 1. E 	 Rn is an ellipsoid, if there exists a vector
c 2 Rn and a positive definite matrix A 2 Rn�n such that

E ¼ u 2 Rn

���� u � cð ÞTA�1 u � cð Þ � 1

� 	
: (2)

Intuitively, c represents the center of the ellipsoid E,
while A portrays its shape. In particular, there are some use-
ful connections between the geometric properties of E and
the algebraic properties of A. We let giðAÞ > 0 denote the
ith largest eigenvalue of A. Then, the ith widest axis (resp.,
its width) of the ellipsoid E corresponds to the ith eigenvec-
tor (resp., 2

ffiffiffiffiffiffiffiffiffiffiffiffi
giðAÞp

). In addition, the volume of the ellipsoid
E, denoted as V ðEÞ, depends only on the eigenvalues of A

and the dimension n. Specifically, V ðEÞ ¼ Vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
i2½n� giðAÞ

q
;

where Vn is the volume of the unit ball in Rn and is a con-
stant that hinges only on n.

We now present the ellipsoid-based posted price mecha-
nism with the reserve price constraint for online personal
data markets in Algorithm 1 (omitting the uncertainty
parameter d here, also called “the version with reserve
price” in our evaluation part). We recall that the initial
knowledge set of the data broker about the weight vector u�

is K1 ¼ fu 2 Rnj‘i � ui � ui; ‘i; ui 2 Rg. We choose a ball

centered at the origin with radius R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2½n� maxð‘i2; ui
2Þ

q
to enclose K1. This ball can serve as the initial ellipsoid E1,
where A1 ¼ R2In�n and c1 ¼ 0n�1 (Input). In what follows,
we focus on a concrete round t.

The data broker receives a queryQt with the feature vector
xt from a data consumer. Without loss of generality, we
assume that 8t 2 ½T �; kxtk � S for some S � 1. Then, the data
broker virtually computes the total privacy compensation allo-
cated to the data owners as the reserve price qt, which imposes
a strict lower bound on the posted price pt. Based on the
knowledge set Et, the data broker can elicit that the market
value of the query Qt falls into a certain interval, namely,
vt ¼ xt

T u� 2 ½p
t
; �pt� (Lines 5–7). If the reserve price is no less

than the maximum possible market value, implying that the
posted price should be no less than the market value, namely,

pt � qt � �pt � vt, the queryQt cannot be sold (Lines 8–10); oth-
erwise, the data broker judges whether the difference between
the maximum and minimum possible market values (i.e.,
�pt � p

t
) exceeds a threshold �. If yes, the data broker posts the

exploratory price (Lines 12–13); otherwise, it posts the conser-
vative price (Lines 26–27). In fact, the posted price places a cut
on the ellipsoid Et and splits it into twoparts,where the cutting
hyperplane is fu 2 Rnjpt ¼ xt

T ug. In addition, the data broker
can compute a parameter at to locate the position of the cut
(Line 15 or 21). Formally, at is interpreted as the signed dis-
tance from the center ct to the cutting hyperplane,measured in
the space Rn endowed with the ellipsoidal norm k 
 kAt

�1 . For
example, if the posted price is the middle price (i.e.,

pt ¼ p
t
þ�pt

2 ¼ xt
T ct), the center ct is on the cutting hyperplane,

and at ¼ 0. Moreover, according to the feedback from the data
consumer, the data broker can decide to retain which side of
the ellipsoid Et and update to its L€owner-John ellipsoid Etþ1

by computing the new shape Atþ1 and center ctþ1 (Lines 14–
25). In particular, Gr€otschel et al. [28] have offered the formulas
ofAtþ1 and ctþ1, when the remaining part of Et is contained in
the halfspace like fu 2 Rnjpt � xt

T ug. This corresponds to the
rejection branch (Lines 14–19). By the symmetry of ellipsoid,
we can obtain the formulas in the acceptance branch (Lines
20–25). Furthermore, if the remaining part after a cut is exactly
half of the ellipsoid Et, we call the cut a central cut; if the
remaining part is less than half, we call it a deep cut; and if the
remaining part is more than half, we call it a shallow cut. Last, it
is worth noting that the data broker is prohibited from refining
the ellipsoid with the conservative price (Line 28). The reason
is that �pt � p

t
essentially probes the ellipsoid’s width along the

direction given by the feature vector xt (Please see Fig. 2b for
an intuition.), which is very small (� �) when posting the con-
servative price. Suppose the data broker is allowed to cut along
this direction. By adversarially setting the reserve prices, the
width of ellipsoid along this direction can shrink successively,
while the widths along the other directions can expand expo-
nentially, which can result in OðT Þ worst-case cumulative
regret. Details about the adversarial example and its regret
analysis are reserved in our technical report [29].

We finally discuss a special case by executing the above
pricing mechanism without the reserve price constraint
(omitting both d and qt in Algorithm 1, also called “the pure
version” in our evaluation part). First, the exploratory
posted price takes the middle price

p
t
þ�pt

2 and poses a central
cut over the ellipsoid Et. Second, the conservative posted
price takes the minimum possible market value p

t
, which is

definitely no more than the real market value vt and must
be accepted by the data consumer. In addition, the conser-
vative posted price does not refine Et and incurs a shallow
cut. In a nutshell, there is no deep cut in this special case.

3.2 Incorporating Uncertainty

We extend our online pricing mechanism under the deter-
ministic linear model to the uncertain setting. We make an
assumption on the random variable dt in the market value
model. We assume that the distribution of dt is s-subGaus-
sian, i.e., there exists a constant C 2 R such that

8z > 0;Pr jdtj > zð Þ � Cexp � z2

2s2

� �
: (3)
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This is a common assumption widely used in modeling
uncertainty [30], [31]. In particular, many celebrated proba-
bility distributions, including normal distribution, uniform
distribution, Rademacher distribution, and bounded ran-
dom variables are subGaussian. For example, normal distri-
bution is s-subGaussian for its standard deviation s and for
C ¼ 2 [30]. By assigning a value d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2logC
p

slogT to the
variable z in Equation (3), we obtain

Pr jdtj > dð Þ � T�logT : (4)

We further apply Boole’s inequality to the above inequality
for all t 2 ½T � and derive

9t 2 ½T �;Pr jdtj > dð Þ � T 1�logT

) 8t 2 ½T �;Pr jdtj � dð Þ � 1� T 1�logT � 1� 1=T;
(5)

where the last inequality holds for T � 8.
From Equation (5), we can draw that in each round t, the

randomness dt in the market value vt is bounded by d in abso-
lute value with probability at least 1� 1=T . Therefore, when
posting the price and updating the knowledge set, we let the
data broker introduce a “buffer” of size d to circumvent the
randomness dt. Specifically, if the data broker posts the price pt
and observes a rejection, it can no longer infer that pt � xt

T u�.
Instead, it should infer that pt � vt ¼ xt

T u� � dt � xt
T u� � d. In

a similar way, if the data broker observes an acceptance, it
will infer that pt � vt ¼ xt

T u� þ dt � xt
T u� þ d rather than

pt � xt
T u�. Intuitively, in the case of rejection (resp., accep-

tance), the data broker imagines that it had posted pt þ d

(resp., pt � d). We call pt þ d (resp., pt � d) the effective posted
price in the case of rejection (resp., acceptance).

We now present the robust pricing mechanism in Algo-
rithm1 (called “the versionwith reserve price anduncertainty”
in our evaluation part). For conciseness, we illustrate the differ-
ences after introducing uncertainty. First, in Lines 8–10, the
condition for a certain no deal changes into qt � �pt þ d. Only
under this condition, the posted price must be no less than the
market value, since pt � qt � �pt þ d � vt ¼ xt

T u� þ dt. Second,
in Lines 15 and 21, we use the effective exploratory prices to
compute the positions of the cutting hyperplanes. In particular,
due to the uncertainty in the market value, if the data broker
posts the same price, the feedback from the data consumer can
result in a smaller refinement of the knowledge set.Weprovide
Fig. 2c for a visual comparison with Fig. 2b. Third, in Line 27,
the conservative posted price, involving p

t
, decreases by d to

keep its high acceptance ratio.
We finally investigate Algorithm 1 without the reserve

price constraint, denoted asAlgorithm1* (also called “the ver-
sion with uncertainty” in our evaluation part). First, the

exploratory posted price is themiddle price
p
t
þ�pt

2 . The effective
exploratory price used in refining the ellipsoid is

p
t
þ�pt

2 þ d

(resp.,
p
t
þ�pt

2 � d) in the case of rejection (resp., acceptance), and
the corresponding position parameter at is �d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xtTAtxt

p
(resp., d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xtTAtxt

p
). As d > 0, the effective exploratory prices

will refine the ellipsoid less than half. Second, the conserva-
tive posted price is p

t
� d and can be either rejected or

accepted. Here, the rejection case happens when the market
value is outside the interval ½p

t
� d; �pt þ d� and has probability

no more than 1=T by Equation (5). In addition, the conserva-
tive price keeps the ellipsoid unchanged. Jointly considering

two types of posted prices, we can find that Algorithm 1* only
has shallow cuts.

3.3 Performance Analysis

We analyze the time and space complexities, and the worst-
case cumulative regret of Algorithm 1.

3.3.1 Time and Space Complexities

Considering the data broker needs to run the posted price
mechanism online, Algorithm 1 should be quite efficient. We
analyze single-round time and space complexities. First, the
computation overhead of the data broker in round t mainly
comes from two parts: (1) determining the posted price pt,
which roughly consumes 2matrix-vector and 3 vector-vector
multiplications; and (2) updating the shape and the center of
the ellipsoid, which roughly consumes 1 vector-vector multi-
plication in the worst case. Thus, the time complexity is
Oðn2Þ. Second, the memory overhead of the data broker is
mainly caused by maintaining the knowledge set Et, or alter-
natively, the shape and the center of the ellipsoid, which
requires 1 n� n matrix and 1 n� 1 vector, respectively.
Hence, the space complexity isOðn2Þ.

3.3.2 Worst-Case Cumulative Regret

We analyze the worst-case cumulative regret of Algorithm 1,
which is Oðmaxðn2log ðT=nÞ; n3log ðT=nÞ=T ÞÞ under the low
uncertain setting d ¼ Oðn=T Þ, namely, Theorem 1. We first
prove that the existence of reserve price cannot increase the
regret of a posted price mechanism in single round
(Lemma 1). Thus, we can use Algorithm 1 without the
reserve price constraint, namely, Algorithm 1*, as a spring-
board. In particular, to get an upper bound on the cumula-
tive regret of Algorithm 1, we need to derive an upper
bound on the number of rounds where the exploratory pri-
ces are posted, denoted as Te. We derive this upper bound
in a roundabout way: we first obtain the upper bound in
Algorithm 1* (Lemma 5) and further prove that it still holds
in Algorithm 1 by reduction and analyzing the impact of
reserve price (Lemma 6). We elicit Lemma 5 in a squeezing
manner, particularly, through constructing an upper bound
and a lower bound on the final volume of the ellipsoid. For
the upper bound, we adopt a core technique in proving the
convergence of the traditional ellipsoid method: the ratio
between the volumes of an ellipsoid and the L€owner-John
ellipsoid after a cut has an upper bound (Lemma 2) [28].
Regarding the lower bound, we resort to the formula for
computing an ellipsoid’s volume by multiplying all the
eigenvalues of its shape matrix. Thus, we can find a lower
bound on the volume, by constructing a lower bound on the
smallest eigenvalue (Lemmas 3 and 4). We present the
detailed lemmas and theorem as follows, while reserving
the proofs of Lemmas 3, 4, and 5 in our technical report [29].

Lemma 1. The existence of reserve price cannot increase the
regret of a posted price mechanism in single round.

Proof. For round t, we still let vt denote the market value
and let qt denote the reserve price. We introduce p0t as the
pure posted price and still let pt denote the posted price
with the reserve price constraint, where pt ¼ maxðqt; p0tÞ.
We can express the regret of the posted price mechanism
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without reserve price in round t as

r0t ¼ vt � p0t1 p0t � vt

 �

: (6)

After introducing the reserve price constraint, the regret
changes to rt given in Equation (1). We now prove rt � r0t
in two complementary cases: qt > vt and qt � vt.

Case 1 (qt > vt): We can derive that rt ¼ 0 � r0t.
Case 2 (qt � vt): We can derive that

rt ¼ vt � pt1 pt � vtf g
¼ vt �max qt; p

0
t

� �
1 max qt; p

0
t

� � � vt

 �

¼ vt �max qt; p
0
t

� �
1 p0t � vt

 � (7)

� vt � p0t1 p0t � vt

 � ¼ r0t; (8)

where Equation (7) follows from that under the anteced-
ent qt � vt, the conditional statement fmaxðqt; p0tÞ � vt ,
qt � vt and p0t � vtg can be simplified to p0t � vt. Addition-
ally, the inequality in Equation (8) follows from the maxi-
mum function and takes equal sign when qt � p0t.

Jointly considering two cases, we complete the proof.tu
Lemma 2. Let Etþ1 denote the L€owner-John ellipsoid obtained

after a cut over the ellipsoid Et with the position parameter at.

If at 2 ½�1=n; 0�, then V ðEtþ1Þ
V ðEtÞ � exp � ð1þnatÞ2

5n

� 

:

Lemma 3. In Algorithm 1* (� � 4nd), there exists t 2 R such
that gnðAtÞ � t�2; xt

TAtxt > �2=4 ) gnðAtþ1Þ � gnðAtÞ. In
addition, t ¼ 1

400n2S4
is a feasible solution.

Lemma 4. For any round t in Algorithm 1* (� � 4nd) where the

exploratory price is posted, gnðAtþ1Þ � n2ð1�atÞ2
ðnþ1Þ2 gn Atð Þ.

We interpret the intuitions behind Lemmas 3 and 4.
Lemma 3 says that if the smallest eigenvalue is below some
threshold (i.e., t�2), it can no longer decrease. Lemma 4 says
that in each round, the smallest eigenvalue cannot decrease

sharply, to its n2ð1�atÞ2
ðnþ1Þ2 at most. Therefore, the smallest eigen-

value is bounded below by t�2 n2ð1�atÞ2
ðnþ1Þ2 . In terms of geome-

try, these two lemmas follow from that the difference �pt � p
t

monitors the width of the ellipsoid along the direction given
by the feature vector xt, and if it is below the threshold �, the
data broker will post the conservative price rather than the
exploratory price to avoid shortening the width along this
direction. Hence, the smallest eigenvalue, having a corre-
spondence with the width of the ellipsoid’s narrowest axis,
cannot become too small.

By combining all above three lemmas, we can derive an
upper bound on Te in Algorithm 1*.

Lemma 5. Algorithm 1* (� � 4nd) chooses the exploratory prices
in at most 20n2log ð20RS2ðnþ 1Þ=�Þ rounds.
We restate Lemma 5 for Algorithm 1, by analyzing the

impact of the reserve price constraint on Te.

Lemma 6. Algorithm 1 (� � 4nd) chooses the exploratory prices
in at most 20n2log ð20RS2ðnþ 1Þ=�Þ rounds.

Proof. For conciseness, we here focus only on the rejection
branch of Algorithm 1. The analysis of the acceptance
branch can be derived by the symmetry of ellipsoid. We

recall that if the reserve price qt is introduced in round t,
the exploratory posted price is pt ¼ maxðqt; ptþ�pt

2 Þ, the
effective exploratory price is pt þ d in the rejection case,
and its position parameter can be computed via at ¼
ðptþ�pt

2 � ðpt þ dÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xtTAtxt

p
(Algorithm 1, Line 15). We

now prove Lemma 6 in two complementary cases:

Case 1 ðptþ�pt

2 � qtÞ: The posted price is the middle price

(i.e., pt ¼ p
t
þ�pt

2 ). Algorithm 1 degenerates to Algorithm 1*,

and Lemma 6 holds from Lemma 5.

Case 2 ðqt >
p
t
þ�pt

2 Þ: The posted price is the reserve
price (i.e., pt ¼ qt). Given the reserve price is rejected, we
can draw that the reserve price is higher than the market
value (i.e., pt ¼ qt > vt), which further implies rt ¼ 0
from Equation (1). Suppose the data broker does not use
the reserve price to refine the ellipsoid in this round. The
analysis of Algorithm 1 can be reduced to analyzing
Algorithm 1* with the total number of rounds T � 1 plus
one dummy round inserted in the tth round. Considering
Lemma 5 does not rely on the total number of rounds,
Te � 20n2log ð20RS2ðnþ 1Þ=�Þ still holds in Algorithm 1.
However, in Algorithm 1 (Lines 14–19), the data broker
needs to cut the ellipsoid using the effective exploratory
price (i.e., qt þ d here). We thus need to analyze the
impact of such a cut on Te. Following the guidelines in
proving Lemma 5, to prove Lemma 6, it suffices to prove
that this cut cannot increase the upper bound on the final
volume of the ellipsoid, and meanwhile, cannot decr-
ease the lower bound. First, the effective exploratory
price imposes a cut over the ellipsoid and thus cannot
increase the final volume together with the upper bound
on the final volume. Second, the lower bound on the
smallest eigenvalue of the final ellipsoid’s shape matrix

(i.e., t�2 n2ð1�atÞ2
ðnþ1Þ2 ) takes its minimum at at ¼ 0. This corre-

sponds to the lower bound on the ellipsoid’s final vol-

ume used in proving Lemma 5. Additionally, a negative

at can increase the lower bound. Thus, the effective

exploratory price qt þ d here, holding a negative at ¼
ðptþ�pt

2 � ðqt þ dÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xtTAtxt

p
< �d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xtTAtxt

p
< 0, cannot

decrease the lower bound on the final volume.
By summarizing two cases, we complete the proof. tu

We finally obtain Theorem 1 as follows.

Theorem 1. If d ¼ Oðn=T Þ, then the worst-case cumulative
regret of Algorithm 1 isOðmaxðn2log ðT=nÞ; n3log ðT=nÞ=T ÞÞ.

Proof. First, as we illustrated below Equation (5): in each
round t, the absolute value of the random variable dt has
probability at most 1=T outside d. Thus, the cumulative
regret incurred by removing the weight vector u� from
the knowledge set is at mostmaxxt;u�xt

T u�T=T ¼ RS.

Second, we analyze the cumulative regret due to the
posted prices. In round t, the regret incurred by posting
the exploratory (resp., conservative) price can be
bounded above by �pt þ d (resp., ð�pt þ dÞ � ðp

t
� dÞ), which

can be further bounded above by RS þ d (resp., �þ 2d).
Thus, the cumulative regret is no more than TeðRSþ
dÞ þ ðT � TeÞð�þ 2dÞ. When d ¼ Oðn=T Þ, Te takes its
upper bound 20n2log ð20RS2 ðnþ 1Þ=�Þ from Lemma 6,
and � is set to maxðn2=T; 4ndÞ ¼ Oðn2=T Þ, the worst-case
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cumulative regret incurred by the posted prices is
Oðmaxðn2log ðT=nÞ; n3log ðT=nÞ=T ÞÞ.

By adding two parts, the worst-case cumulative regret
of Algorithm 1 is Oðmaxðn2log ðT=nÞ; n3log ðT=nÞ=T ÞÞ. tu

4 EXTENSIONS

In this section, we extend the proposed pricing mechanism
under the fundamental linear model to support some com-
mon non-linear models. We also discuss how to support
several other similar application scenarios.

4.1 Supporting Non-Linear Market Value Models

We mainly investigate four kinds of non-linear models com-
monly used in measuring market values. The first two are the
log-log and log-linear models in hedonic pricing from real
estate and property studies [22], [23], which can be formalized
as log vt ¼

P
i2½n� log ðxt;iÞu�i and log vt ¼ xt

T u�, respectively.
Here, xt;i and u�i denote the ith elements of the feature vector
xt and the weight vector u�, respectively. The other two mod-
els are the logistic model [32], [33] and the kernelized
model [34] in online advertising, which can be formalized as
vt ¼ 1=ð1þ expðxtT u�ÞÞ and vt ¼

Pt�1
k¼1 Kðxt; xkÞu�k, respec-

tively. Here,Kð
; 
Þ is aMercer kernel operator.
We can further observe that the above four non-linear

models can be unified to a general class of non-linear mod-
els vt ¼ gðfðxtÞT u�Þ. Here, g : R 7! R is a non-decreasing
and continuous function. For example, in the two hedonic
pricing models, g is the natural exponential function; in the
logistic model, g is the logistic sigmoid function; and in the
kernelized model, g is the identity function. Additionally,
f : Rn 7! Rm represents a feature mapping of the original
feature vector xt and intends to capture non-linear correla-
tions/dependencies among the different features of xt and
the different feature vectors within t rounds. For example,
in the log-log model, f denotes applying the natural loga-
rithm function to each element of xt; in the kernelized
model, m ¼ t� 1, and f stands for the kernel function K;
and in the other two models, f denotes the identity map.
Furthermore, we note that both g and f are public knowl-
edge, and only the weight vector u� is unknown. Therefore,
by regarding the domain of u� as the knowledge set to be
refined, our proposed pricing mechanism under the linear
model can still apply to the above class of non-linear mod-
els. Specifically, fðxtÞ now functions as the new feature vec-
tor, and the threshold � is used to control �pt � p

t
, which

denotes the difference between the maximum and mini-
mum possible values of fðxtÞT u, where u belongs to the data
broker’s knowledge set. In addition, the data broker will
post the price gðptÞ rather than the original pt. Due to the
limitation of space, the worst-case regret analysis of the
adapted Algorithm 1 under the above class of non-linear
models is put into our technical report [29].

4.2 Supporting Other Application Scenarios

We first summarize the characteristics of the pricing prob-
lem in online personal data markets. We then point out
some other similar application scenarios in practice and fur-
ther illustrate how to support them with our proposed pric-
ing mechanism under different market value models.

In personal data markets, the data broker is the seller,
and each data consumer is a buyer. The sequential
queries, as the products to be sold, have three atypical
characteristics: (1) Customization: The queries, requested
by different data consumers, are highly differentiated; (2)
Existence of reserve price: The total privacy compensation,
allocated to the underlying data owners, serves as the
reserve price of a query; and (3) Timeliness: If no deal
occurs in a round, the query will vanish, generating
regret for the data broker.

Several other products in practice share one or more
characteristics listed above, which implies that our pro-
posed pricing mechanism for personal data markets can
be extended to support these scenarios. One example is
the hospitality service on booking platforms (e.g., Airbnb,
Wimdu, and Workaway). A tourist can raise some require-
ments on his/her desirable accommodation, such as loca-
tion, the numbers of bedrooms and bathrooms, amenities,
reviews, historical occupancy rate, and so on. Meanwhile,
the host of the house can set a minimum/reserve price for
the accommodation. If the house is not rented out at a cert-
ain date, it may cause regret for both the host and the
booking platform. We note that the host, the booking plat-
form, and the tourist play similar roles to the data owner,
the data broker, and the data consumer in data markets,
respectively. In addition, the market value of the accom-
modation can be well interpreted by the linear or log-lin-
ear model [23]. Another example is the online advertising
on web publishers. We consider a novel scenario, where
the impressions are traded through posting prices rather
than the ad auctions already adopted by Internet giants
(e.g., Google, Microsoft, Facebook, and Alibaba). In partic-
ular, an advertiser can customize its/his/her need of an
impression (e.g., position and target audience). If the
impression is not sold within a given time frame, it will
generate regret for the web publisher. We note that the
web visitors who generate impressions, the web publisher,
and the advertiser play similar roles to the data owners,
the data broker, and the data consumer in data markets,
respectively. In addition, the market value of an impres-
sion is normally measured by its click-through rate (CTR),
which can be effectively captured by the logistic [32], [33]
or kernelized model [34].

In conclusion, our proposed pricing mechanism is not
just limited to online personal data markets and can also
support other similar application scenarios.

5 EVALUATION RESULTS

In this section, we present the evaluation results of our pric-
ing mechanism from practical regret and overhead.

We use three real-world datasets, including MovieLens
20M dataset [35], Airbnb listings in U.S. major cities [36],
and Avazu mobile ad click dataset [37], to evaluate our
pricing mechanism over noisy linear queries, accommo-
dation rentals, and impressions under the linear, log-lin-
ear, and logistic market value models, respectively. First,
the MovieLens dataset contains 20,000,263 ratings of
27,278 movies made by 138,493 users. Second, the Airbnb
dataset provides 74,111 booking records in 6 U.S. cities
(e.g., New York and Los Angeles). Each record contains a
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user id, the logarithmic lodging price, house type, loca-
tion, amenities, host response rate, cancellation policy,
and so on. Third, the Avazu dataset comprises 10 days of
click-through data, in total 404,289,670 ad displaying sam-
ples. Each sample covers information of an ad and the
corresponding mobile user (e.g., the ad id, click or non-
click reaction, position, device id, device ip, and internet
access type).

5.1 Pricing of Noisy Linear Query

We first introduce our setup details for trading noisy lin-
ear queries, the workflow of which has been briefly intro-
duced in Example 1. On the one hand, we regard the
MovieLens users, who contributed the ratings, as the data
owners in data markets. We adopt the differential pri-
vacy-based privacy leakage quantification mechanism
and the tanh-based privacy compensation functions
from [9] for each data owner. On the other hand, we sim-
ulate the noisy linear queries from online data consumers.
To validate the adaptability of our pricing mechanism,
the parameters of each linear query are randomly drawn
either from a multivariate normal distribution with zero
mean vector and identity covariance matrix or from a uni-
form distribution within the interval ½�1; 1�. Meanwhile,
the variance of Laplace noise added to the true answer is
randomly selected from f10kjk 2 Z; jkj � 4g. For each
noisy linear query Qt, we compute the privacy compensa-
tions of all data owners and then generate an n-dimen-
sional feature vector with the aggregation technique: we
first sort the privacy compensations, then evenly divide
them into n partitions, and finally sum the privacy com-
pensations falling into a certain partition, thereby obtain-
ing a feature. For the sake of normalization, we scale

each feature vector such that its L2 norm is 1 (i.e.,
8t 2 ½T �; kxtk ¼ 1 and S ¼ 1). Additionally, we set the
reserve price of a query to be the total privacy compensa-
tion (i.e., qt ¼

P
i2½n� xt;i here). In nature, the L2 norm of

the weight vector for deriving qt is
ffiffiffi
n

p
. Moreover, we

draw the weight vector u� for modeling the market values
of queries in a similar way to sample the query’s parame-
ters. The difference is that we further scale u� such that its
L2 norm is

ffiffiffiffiffiffi
2n

p
(i.e., ku�k ¼ ffiffiffiffiffiffi

2n
p

). This guarantees that
the market value of each query vt ¼ xt

T u� is no less than
its reserve price qt with a high probability. Furthermore,
we set the data broker’s initial knowledge set of u� to
E1 ¼ fu 2 Rnjkuk � 2

ffiffiffi
n

p g, geometrically, the ball centered
at the origin with radius R ¼ 2

ffiffiffi
n

p
.

In Fig. 3, we plot the cumulative regrets of four versions
of our pricing mechanism under the linear model, including
the pure version (omitting the reserve price qt and the
uncertainty parameter d in Algorithm 1), the version with
uncertainty (Algorithm 1*), the version with reserve price
(omitting d in Algorithm 1), and the version with reserve
price and uncertainty (Algorithm 1). Here, the dimension of
feature vector n first takes 1 and then increases from 20 to
100 with a step of 20. In addition, d is fixed at 0.01, which is
in the pre-analyzed order of Oðn=T Þ for n ¼ 1, but is much
larger than Oðn=T Þ for n 6¼ 1. Moreover, in each round t, the
randomness dt in the market value vt is drawn from the nor-
mal distribution with mean 0 and standard deviation
s ¼ d=ð ffiffiffiffiffiffiffiffiffiffiffiffi

2log 2
p

logT Þ. Furthermore, the threshold � is set to
n2=T . As a complement to Fig. 3, Table 1 lists some precise
statistic information about the version with reserve price,
where the market value column can work as a baseline for
relatively measuring the levels of uncertainty (particularly,
in the magnitude of 0.1 percent of the market value) and
regret.

Fig. 3. Cumulative regrets with varying dimensions of feature vector in pricing of noisy linear query.
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We first observe Fig. 3 holistically. We can see that under
a specific version, the cumulative regret after a certain num-
ber of rounds increases with the dimension n. The reason is
that as n grows, the data broker needs to post exploratory
prices in more rounds to obtain a good knowledge of the
weight vector u�, thus accumulating more regret. This con-
forms to our theoretic regret analysis.

We then observe the one-dimensional case in Fig. 3a and
the multi-dimensional cases from Figs. 3b, 3c, 3d, 3e, and 3f
more carefully. We start with the one-dimensional case.
From Fig. 3a, we can see that the introduction of the reserve
price constraint has no effect on the pure version of our pric-
ing mechanism. When n ¼ 1, the reserve price and the mar-
ket value of each query are constants 1 and

ffiffiffi
2

p
,

respectively. In addition, the data broker’s initial knowledge
of the market value is the interval ½0; 2�. Thus, in the first
round, no matter the data broker considers or ignores the
reserve price 1, it posts the exploratory price 1, which is less
than the market value

ffiffiffi
2

p
and is accepted by the data con-

sumer. After this round, the interval is refined to ½1; 2�,
which indicates that the reserve price 1 can no longer affect
the posted prices. From Fig. 3a, we can also see that the
introduction of low uncertainty will slightly increase the
cumulative regrets in the pure version and the version with
reserve price.

We next focus on the multi-dimensional cases. Once
again, we examine how the reserve price constraint can
affect our posted price mechanism. We can find that the
incorporation of reserve price can dramatically reduce the
cumulative regret. In particular, when n ¼ 20 and the
number of rounds t is 104, the version with reserve price
(resp., the version with reserve price and uncertainty)
reduces 13.16 percent (resp., 10.92 percent) of the cumula-
tive regret than the pure version (resp., the version with

uncertainty). We further examine the impact of uncer-
tainty. We can see that the existence of uncertainty accu-
mulates more regret, especially when t is large. This is
because in the case of a large t, the data broker already
has a good knowledge of the weight vector u� and posts
the conservative price with a high probability. In addi-
tion, we recall that to circumvent uncertainty, the conser-
vative price, involving the minimum possible market
value p

t
, decreases by d to keep its acceptance ratio, which

can generate a higher regret.
We finally provide an intuition of the regret level of our

pricing mechanism. We introduce a metric, called regret ratio,
defined as the ratio between the cumulative regret and the
cumulativemarket value, namely,

Pt
k¼1 rk=

Pt
k¼1 vk at the end

of t rounds. For example, in Table 1, we can divide the mean
values in the regret column by those in the market value col-
umn and obtain the regret ratios of the version with reserve
price for different n’s at the end of T rounds. Coupled with
Fig. 3f, which depicts the cumulative regrets of four versions
for n ¼ 100 at the end of different rounds, Fig. 4a further plots
the regret ratios.

One key observation from Fig. 4a is that when the
number of rounds t is small, the regret ratio of the version
with reserve price (resp., the version with reserve price
and uncertainty) is much lower than that of the pure ver-
sion (resp., the version with uncertainty). This reflects a
critical functionality of reserve price: it can mitigate the
cold-start problem in a posted price mechanism. More
specifically, in the beginning, the data broker holds a
broad knowledge set of the weight vector u�, and thus the
estimation of a query’s market value is coarse, which
implies a high regret ratio. However, with the help of
reserve price, the data broker can improve the market
value estimation, through imposing an additional lower
bound and refining the knowledge set more quickly. The
mitigation of cold start can be a factor underlying our
aforementioned observation that the reserve price con-
straint reduces the cumulative regret.

The second key observation from Fig. 4a is that as t
grows, the difference between the regret ratios of the ver-
sions with and without reserve price shrinks. In addition,
when t is very large, the regret ratios of all four versions are
very low. In particular, at the end of T ¼ 105 rounds, the
regret ratios of the pure version, the version with uncer-
tainty, the version with reserve price, and the version with
reserve price and uncertainty are 8.48, 11.19, 7.77, and 9.87
percent, respectively. The reason is that after enough

Fig. 4. Regret ratios in pricings of noisy linear query, accommodation rental, and impression.

TABLE 1
Statistics Over Pricing of Noisy Linear Query Per Pound

Under the Version With Reserve Price

n T Market Value Reserve Price Posted Price Regret

1 102 1.414 1 1.409 (0.045) 0.035 (0.202)
20 104 �3.874 (1.278) 3.388 (0.776) 3.685 (1.631) 0.166 (0.824)
40 104 5.246 (1.616) 4.739 (1.188) 5.254 (1.614) 0.743 (1.933)
60 105 7.098 (1.910) 5.733 (1.491) 7.089 (1.912) 0.220 (1.257)
80 105 7.266 (2.046) 6.531 (1.761) 7.243 (2.091) 0.387 (1.690)
100 105 8.824 (2.235) 7.221 (1.985) 8.820 (2.242) 0.686 (2.461)

*The entry is stored in the format: mean (standard deviation).
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rounds, the data broker will have a good estimation of any
query’s market value, and the effect of reserve price on the
posted price diminishes. An extreme example happens in
the one-dimensional case presented above, where after the
first round, the reserve price has already been excluded
from the estimated interval. At last, we provide a risk-
averse baseline, which consistently posts the reserve price
in each round, for the versions involving the reserve price
constraint. The regret ratio of such a baseline is 18.16 per-
cent. Compared with this baseline, our pricing mechanism
can further reduce 57.19 percent (resp., 45.64 percent) of the
regret ratio in the version with reserve price (resp., the ver-
sion with reserve price and uncertainty).

These results demonstrate that our pricing mechanism
under the fundamental linear model can indeed reduce
the practical regret of the data broker in online data
markets.

5.2 Pricing of Accommodation Rental

We first describe how to preprocess the Airbnb dataset and
then present the setup details for pricing accommodation
rentals under the log-linear model. First, to obtain the fea-
ture vector of each booking record, we process the categori-
cal features with the pandas library in Python, which can
handle the missing values and return an integer array of
codes for all categories. In addition, we add some interac-
tion features to enhance model capacity. The final dimen-
sion of each feature vector n is 55. Second, to obtain the
weight vector u� in modeling the market values of accom-
modations, we regard the logarithmic lodging prices as tar-
get variables in supervised learning and then apply linear
regression to learn the coefficients of different features,
which play the role of u� here. Specifically, the mean
squared error (MSE) over the test set, which occupies 20
percent of the Airbnb dataset, is 0.226. Third, to investigate
how different settings of reserve price can affect the posted
price mechanism, we vary the ratio between the natural log-
arithms of reserve price and market value (i.e., log qt=log vt).
Fourth, when computing the regret ratios, we use the real
rather than the logarithmic posted prices and market val-
ues. Fig. 4b depicts the regret ratios of the pure version of
our pricing mechanism under the log-linear model, as well
as the version with reserve price where log qt=log vt ranges
from 0.4, to 0.6, and to 0.8.

From Fig. 4b, we can see that when the reserve price is set
to be closer to the market value, the regret ratio decreases,
especially when the number of rounds t is small. In other
words, as the reserve price approaches the market value, its
impact on mitigating the cold-start problem in a posted
price mechanism is more evident. We can also see from
Fig. 4b that at the end of T ¼ 74; 111 rounds, the regret
ratios are very low. In particular, the regret ratios of the
pure version and the version with reserve price where
log qt=log vt ¼ 0:4; 0:6; and 0.8, are 4.57, 4.01, 3.83, and 3.79
percent, respectively. We still consider the risk-averse base-
line, where the reserve price is posted in each round, for
comparison. The regret ratios of this baseline are 23.40,
17.00, and 9.33 percent in the version with reserve price
where log qt=log vt = 0.4, 0.6, and 0.8, respectively. Com-
pared with this baseline, our pricing mechanism can further

reduce 82.88, 77.46, and 59.39 percent of the regret ratios
when log qt=log vt = 0.4, 0.6, and 0.8, respectively.

The above fine-grained evaluation results provide a
deeper understanding of the reserve price’s role in reduc-
ing the practical regret of a posted price mechanism. In
addition, our proposed pricing mechanism significantly
outperforms the baseline which merely exploits the
reserve price.

5.3 Pricing of Impression in Advertising

We first introduce data preprocessing and setup for pricing
impressions under the logistic model. First, to handle the
categorical data fields in ad displaying samples, we use
one-hot encoding with the hashing trick, where the dimen-
sion of the feature vector n serves as the modulus after
hashing. Second, we regard the click/non-click states as tar-
get variables, further apply Follow The Proximally Regular-
ized Leader (FTRL-Proximal)-based logistic regression
(which has been deployed at Google’s advertising plat-
form [33]), thereby obtaining the weight vector u� for cap-
turing CTRs. In particular, FTRL-Proximal is an online
learning algorithm with per-coordinate learning rates and
L1; L2 regularizations, and it can preserve excellent perfor-
mance and sparsity. When testing over the samples in the
last two days, the logistic loss is 0.420 (resp., 0.406) for
n ¼ 128 (resp., n ¼ 1024). Additionally, the learnt weight
vector u� is quite sparse. Specifically, the number of nonzero
elements in u� is 21 (resp., 23) for n ¼ 128 (resp., n ¼ 1024).
In what follows, we investigate two different cases to vali-
date the feasibility of our pricing mechanism over both
sparse and dense feature vectors. In the sparse case, all the
features are kept no matter whether their corresponding
weights are zero or not. In the dense case, the features are
omitted if their corresponding weights are zero.

In Fig. 4c, we plot the regret ratios of the pure version of
our pricing mechanism in both sparse and dense cases for
n ¼ 128 and n ¼ 1024. We can observe from Fig. 4c that the
regret ratio in the sparse case decreases more slowly than
that in the dense case, especially when the number of
rounds t is smaller than 103. This outcome stems from that
the starting rounds are mainly dedicated to eliminating
those zero elements in the weight vector, which implies a
larger regret ratio in the beginning. This reason can also
account for the phenomenon that in the sparse case, the
regret ratio for n ¼ 1024 decreases more slowly than that for
n ¼ 128. Even so, after 105 rounds, the regret ratios are 2.02
and 0.41 percent (resp., 8.04 and 0.89 percent) for n ¼ 128
(resp., n ¼ 1024) in the sparse and dense cases, respectively.

These evaluation results reveal that our pricing mecha-
nism performs well over both sparse and dense feature
vectors. By further combining with the pricing of accom-
modation rental, we can conclude that our pricing mecha-
nism has a good extensibility to non-linear market value
models.

5.4 Details on Implementation and Overhead

We implemented our pricing mechanism in Python 2.7.15.
The running environment is a Broadwell-E workstation
with 64-bit Ubuntu 16.04.5 OS. In particular, the processor
is Intel(R) Core(TM) i7-6900K with 8 cores, the base
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frequency is 3.20 GHz, the memory size is 64 GB, and the
cache size is 20 MB. Our source code is online available
from [38].

We report the computation and memory overhead of three
use cases: (1) for the pricing of noisy linear query under the ver-
sion with reserve price, when n ¼ 100, the latency of the data
broker in determining the posted price andupdating its knowl-
edge set is 0.115 ms per query. In addition, the memory over-
head is 151 MB; (2) for the pricing of accommodation rental
under the version with reserve price where log qt=log vt ¼ 0:6,
the latency is 0.019 ms per booking request, and the memory
overhead is 105 MB; and (3) for the pricing of impression,
when n ¼ 1024, the latency is 3.509 ms (resp., 0.024 ms) per ad
displaying sample in the sparse (resp., dense) case. Addition-
ally, the memory overhead is 106 MB (resp., 75 MB) in the
sparse (resp., dense) case.

In a nutshell, our pricing mechanism has a light load
under both linear and non-linear models. It can be
employed to dynamically price the products with customi-
zation, existence of reserve price, and timeliness properties.

6 RELATED WORK

In this section, we briefly review related work.

6.1 Data Market Design

An explosive demand for sharing data contributes to grow-
ing interest in data market design. We here focus only on
the design of pricing mechanisms. We direct interested
readers to the comprehensive surveys [39], [40], [41] and the
vision papers [7], [42] for more perspectives. For example,
Fernandez et al. [42] provided a vision for the design and
implementation of data markets mainly from data sharing,
discovery, and integration.

First regards general (insensitive) data trading. The rese-
archers from the database community (e.g., Koutris et al. [11],
[12], [13], [14], Lin and Kifer [15]) mainly focused on arbitrage
freeness in pricing queries over the relational databases. The
existence of arbitrage means that the data consumer can buy a
query with a lower price than the marked price through com-
bining a bundle of other cheaper queries. Thus, the data bro-
ker needs to rule out arbitrage opportunities to preserve its
revenue. Stahl et al. surveyed several empirical pricing strate-
gies in practical data markets [43]. Their later work [44], [45],
[46] introduced data quality as a criterion of pricing and
allowed the data consumers to suggest their own prices.
Chawla et al. [47] considered the static revenue maximization
problem with the prior knowledge of the data consumers’
queries and valuations, while leaving the online setting as an
open problem. They mainly adopted two static pricing stra-
tegies, called uniform bundle pricing and item pricing.
Agarwal et al. [48] proposed a combinatorial auction mecha-
nism to trade data formachine learning tasks.

Specific to personal data trading, the researchers rou-
tinely adopted the cost-plus pricing strategy, where the
data broker first compensates each data owner for its pri-
vacy leakage and then scales up the total privacy compen-
sation to determine the price of query for the data
consumer. Different researchers investigated distinct
types of queries from the data consumers. Ghosh and
Roth [10] considered single counting query. The follow-

up work by Li et al. [9] further extended to multiple noisy
linear queries. We considered the queries of noisy aggre-
gate statistics over private correlated data [16], [17].
Hynes et al. [49] investigated model training requests.
Chen et al. [50] studied how to price a trained model with
different levels of noise perturbation, by an analogy to
the queries over personal data. They also considered how
to statically optimize the data broker’s revenue under the
assumption that the error demands and corresponding
valuations of the data consumers are known.

Our work advances previous data trading work in that:
(1) we model the unknown valuations and demands of
the data consumers, namely, the market values of custom-
ized and highly differentiated queries, which were
assumed as priors in previous work; (2) we consider a
posted price setting and incorporate the response of
either an acceptance or a rejection from each data con-
sumer in sequence, whereas the previous work normally
used a marked price setting and ignored the responses;
and (3) we optimize the data broker’s cumulative revenue
in an online and dynamic manner, whereas previous
work optimized in a static way.

6.2 Contextual Dynamic Pricing

The dynamic pricing problem has been extensively studied
in diverse contexts. The pioneering work by Kleinberg and
Leighton [51] considered markets for identical products
and designed several optimal posted pricing strategies.
However, the products in practical markets (e.g., online
commerce and advertising) tend to differ from each other.
This further motivated the emergence of contextual pric-
ing, where the seller intends to sell a sequence of highly
differentiated products, posts a price for each product, and
then observes whether the buyer accepts or not. More spe-
cifically, each product is represented by a feature vector
for differentiation, while its market value is typically
assumed to linear in the feature vector. The researchers
thus turned to online learning the weight vector from feed-
backs and further converted this task to a multi-dimen-
sional binary search problem. Amin et al. [34] first
proposed a stochastic gradient descent (SGD)-based solu-
tion, which can attain OðT 2=3Þ strategic regret by ignoring
logarithmic terms. However, their solution requires an
independent and identically distributed (i.i.d.) assumption
on the feature vectors. Cohen et al. [19] abandoned this
strict requirement. They approximated the polytope-
shaped knowledge set with ellipsoid and provided
Oðn2logT Þ worst-case cumulative regret, which is essen-
tially the pure version of our pricing mechanism.
Lobel et al. [20] further reduced regret to OðnlogT Þ by pro-
jecting and cylindrifying the polytope. Leme et al. [21] bor-
rowed a key concept from geometric probability, called the
intrinsic volumes of a convex body, and achieved a regret
guarantee of Oðn4log log ðnT ÞÞ. The key principle behind
this line of work is to identify the centroid of the knowl-
edge set or its projection/transformation, such that each
exploratory posted price can roughly impose a central cut
in terms of different measures (e.g., volume, surface area,
and width). In addition, although the most recent two
work optimized the regret, they are too computationally
complex to be deployed in practical online markets.

1940 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 4, APRIL 2022

Authorized licensed use limited to: ON Semiconductor Inc. Downloaded on December 20,2022 at 02:32:26 UTC from IEEE Xplore.  Restrictions apply. 



It is still worth noting that the contextual dynamic
pricing mechanisms significantly differ from the classical
cutting-plane or localization algorithms in the field of
convex optimization (e.g., the original ellipsoid method
[27] and the analytic center cutting-plane method [52]). In
particular, the purpose of a cutting-plane method is to
find a point in a convex set for optimizing a preset objec-
tive function. In contrast, the goal of a contextual
dynamic pricing mechanism is to minimize the cumula-
tive regret during the process of locating a preset point
(i.e., the weight vector here). Furthermore, under contex-
tual dynamic pricing, the direction of each cut is fixed by
the feature vector of a product requested by a buyer,
while the seller can choose only the position of the cut
through posting a certain price. This setting distinguishes
contextual dynamic pricing from a majority of ellipsoid-
based designs [53], [54], [55], which allow the seller to
control the direction of each cut. In fact, the contextual
dynamic pricing problem can also be modeled into con-
textual multi-armed bandit (MAB), where the arms/
actions to be exploited and explored are the domain of
the weight vector. However, given the domain of the
weight vector is continuous, we need to apply the discre-
tization technique, which makes the number of bandits
extremely large. In addition to inefficiency, since the pay-
off/regret function is piecewise and highly asymmetric,
this sort of solutions can be oracle-based (e.g., [56], [57],
[58], [59], [60], [61]) and inevitably incurs polynomial
rather than logarithmic cumulative regret in the total
number of rounds T [20].

Our work advances contextual dynamic pricing in that:
(1) we, for the first time, incorporate the reserve price con-
straint; (2) due to the existence of reserve price, we support
an arbitrary position of the cut over the ellipsoid-shaped
knowledge set, whereas previous designs normally adopted
central cuts; and (3) we analyze and verify the impact of
reserve price on a posted price mechanism, particularly,
mitigating the cold-start problem and thus reducing the
cumulative regret.

7 CONCLUSION

In this paper, we have proposed the first contextual
dynamic pricing mechanism with the reserve price con-
straint, for the data broker to maximize its cumulative reve-
nue in online personal data markets. Our posted price
mechanism features the properties of ellipsoid to perform
online optimization effectively and efficiently and can sup-
port both linear and non-linear market value models, while
allowing some uncertainty. We further have illustrated how
to support two other similar application scenarios and
extensively evaluated all three use cases over three practical
datasets. Empirical results have demonstrated the feasibility
and extensibility of our pricing mechanism as well as the
functionality of the reserve price constraint.
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