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Abstract—With the commoditization of personal privacy, pricing private data has become an intriguing problem. In this paper, we study
noisy aggregate statistics trading from the perspective of a data broker in data markets. We thus propose ERATO, which enables
aggrEgate statistics pRicing over privATe cOrrelated data. On one hand, ERATO guarantees arbitrage freeness against cunning data
consumers. On the other hand, ERATO compensates data owners for their privacy losses using both bottom-up and top-down designs.
We further apply ERATO to three practical aggregate statistics, namely weighted sum, probability distribution fitting, and degree
distribution, and extensively evaluate their performances on MovieLens dataset, 2009 RECS dataset, and two SNAP large social
network datasets, respectively. Our analysis and evaluation results reveal that ERATO well balances utility and privacy, achieves
arbitrage freeness, and compensates data owners more fairly than differential privacy based approaches.
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1 INTRODUCTION

IN today’s big data economy, a common practice for In-
ternet giants, like Google, Facebook, and Twitter, is to

provide free online services in exchange for private infor-
mation [1]. Nevertheless, when data owners become more
aware of the economic values of personal data and the po-
tential consequences of privacy disclosure, they would have
stronger motivations to receive monetary compensations in
return [2]. In particular, a study by JPMorgan Chase found
that each unique user is worth roughly $4 to Facebook and
$24 to Google [3]. Furthermore, several startup companies,
including Datacoup [4], CitizenMe [5], and CoverUS [6],
have already paid data owners for access to their private
data. In a nutshell, data privacy has become a commodity
to be bought and sold in practice.

To facilitate private data circulation, many open informa-
tion platforms have emerged to bridge the gap between data
owners and data consumers. For example, according to an
FTC’s survey on the nine typical data markets [7], Acxiom,
which is the largest data broker, collects personal data from
about 700 million users worldwide, and then sells aggregate
statistics to top companies, such as Microsoft, Oracle, AT&T,
etc. However, as further investigated by CBS News [8],
such a multibillion-dollar industry has raised great attention
together with serious doubt. One critical concern is that the
data brokers make huge profits from private information,
whereas they do not properly compensate data owners for
their privacy losses. This criticism prompts the intermediate
data brokers to devise a feasible privacy compensation
mechanism for the data owners. In addition, the pricing
strategy for the data consumers, which initially neither
respects privacy nor provides economic guarantee [9], also
requires new design.

To design a pricing framework for practical data markets
trading aggregate statistics over private data, there are three
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major challenges. The first and the thorniest challenge is
to rigorously quantify privacy loss. Markets for sensitive
personal data significantly differ from those for ordinary
information goods in privacy compensation. To compensate
each data owner properly, it is necessary to quantify her
privacy loss during the usage of her data. In the context
of aggregate statistics, differential privacy [10], [11] has
a natural utility-theoretic interpretation, which makes it a
compelling measure to quantify individual privacy loss [12].
However, if the ubiquitous data correlations are further
taken into account, there are two striking differences: (1)
Due to data correlations, data owners, who are not involved
in an aggregate statistic, may still suffer privacy losses. For
example, if Alice is not but one of her friends is involved in
the counting statistic about how many people have infected
a contagious disease, Alice’s status can still be leaked to
an attacker who knows her social network [13], [14]. (2)
Data owners with different sets of correlated data owners, or
even the same set but with different correlation coefficients,
can have distinct privacy losses. For example, in degree
distribution, if Bob’s degree is larger than Charlie’s, which
implies that Bob has more social connections, Bob thus can
suffer a higher risk of privacy leakage [15]. If differential
privacy is adopted for privacy loss quantification in two
cases, the privacy loss of Alice is zero, and the privacy
losses of Bob and Charlie are the same, which are both
unreasonable in practice.

Yet, another challenge comes from the rich and complex
formulas of common aggregate statistics. The data con-
sumers in data markets are normally permitted to purchase
multiple statistics. As a consequence, a critical concern is
that they may circumvent the advertised price of a statistic
through buying a bundle of cheaper ones. This economic
practice is called arbitrage, while desirable pricings should
be arbitrage free. Besides, the key issue in investigating
arbitrage freeness is to determine whether a certain statistic
can be derived from others. Such a concept of the deter-
minacy relation has been well studied in queries/views
answering from the database community [1], [16], [17].
Nevertheless, aggregate statistics tend to take different and
even more complicated forms, such as linear polynomial
in weighted sum [18], quadratic polynomial in Gaussian



1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2934100, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXX 2019 2

Data Broker

Price
Personal Data

Privacy 
Compensation

Aggregate Statistics

Noise Perturbation

0.2
0.3
0.1
0.4

0
2
1
4

Payment

Answer

Data OwnersData Consumers

Service 
Request

Fig. 1. A general system model for aggregate statistics based data markets.

distribution [19], [20], and nonlinear comparison in degree
distribution [21]. Hence, it is highly nontrivial to design
universal pricing functions for diverse aggregate statistics.

Last but not least challenge is to avoid the arbitrage
opportunities in varying degrees of perturbation. For the
sake of privacy issues, e.g., the successive Facebook data
scandals [22], [23], it is necessary for the data broker to
sell noisy answers of aggregate statistics. Besides, to allow
different prices for the same statistic but with diverse accu-
racies, the data consumer can specify her customized noise
level, e.g., the variance of noise used in [24]. In particular,
if more noise is added to the true answer, the price should
be lower. However, this setting makes reasoning about arbi-
trage freeness even harder. For example, a hidden arbitrage
attack is that a clever data consumer is interested in an
aggregate statistic with low variance of noise, while she
is reluctant to pay its full price. She may instead turn to
buying the same statistic multiple times but with diverse
high variances. She can reduce the variance by averaging
the returned answers. Therefore, economically-robust data
markets have to rule out such arbitrage opportunities.

In this paper, by jointly considering above three chal-
lenges, we propose ERATO, which is an aggrEgate statistics
pRicing framework over privATe cOrrelated data. ERATO
consists of a service pricing mechanism (Section 3) and a
privacy compensation mechanism (Section 4). For service
pricing, ERATO first models common aggregate statistics as
a set of dot product operations, where the dot product is
between a weight vector and a data vector. ERATO then
ensures arbitrage freeness with respect to both the variance
of noise and the weight vector. On one hand, by combating
the arbitrage attack as mentioned above, ERATO finds that
arbitrage-free pricing functions cannot decrease faster than
linearly with the variance of noise. On the other hand,
ERATO establishes the equivalency between basic arbitrage-
free pricing functions and semi-norms of the weight vector.
Besides, ERATO constructs new composite pricing functions
by means of subadditive and nondecreasing functions. In
particular, activation functions from neural networks are
introduced to allow high but finite prices for unperturbed
answers. For balanced privacy compensation, ERATO offers
both bottom-up and top-down designs. In the bottom-up
design, the broker first needs to compensate each data
owner for her privacy loss at bottom, and then to determine
the price of a service request at top, by scaling up the
total privacy compensation. Conversely, in the top-down
design, the broker first determines the service price charged
from the data consumer, and then spares some fraction of
the payment for privacy compensation. Moreover, ERATO
borrows key principles from dependent differential privacy
to quantify individual privacy loss over correlated data, and
further tightens its upper bound by distinguishing negative
or positive weights and correlations. At last, ERATO extends

the conventional fairness to a general dependent fairness,
which clarifies the counterintuitive problem that a data
owner, who is not involved in the service, can still receive
privacy compensation, if at least one of her correlated data
owners is involved.

We summarize our key contributions as follows.
• To the best of our knowledge, ERATO is the first pric-

ing framework for trading aggregate statistics over private
correlated data from the perspective of a data broker.
• ERATO features the properties of norms and activation

functions to avoid arbitrage in pricings. Considering per-
vasive data correlations, ERATO quantifies privacy losses
with dependent differential privacy, and compensates data
owners in either a bottom-up or top-down manner.
•We instructively instantiate ERATO with three different

kinds of aggregate statistics. Besides, we extensively evalu-
ate their performances on four practical datasets (Section 5).
Our analysis and evaluation results demonstrate that ERA-
TO improves the utility of aggregate statistics, guarantees
arbitrage freeness, and compensates data owners in a fairer
way than the classical differential privacy based approaches.
Specifically, when the privacy budget is 0.01 and the dimen-
sion of weight vector is 1000, ERATO improves 10.67% and
4.20% of accuracies than dependent differential privacy and
differential privacy based approaches, respectively. Besides,
when the pricing functions decrease quadratically with the
variance of noise, there exist arbitrage opportunities with
probability 53.91%. Moreover, compared with differential
privacy based approaches, the number of data owners with
no privacy compensation decreases by 17.7% for weighted
sum; the data owners receive distinct privacy compen-
sations rather than the same compensation for Gaussian
distribution fitting and degree distribution.

2 PROBLEM FORMULATION

In this section, we present system model and technical pre-
liminaries for data markets providing aggregate statistics.
For clarity, we list the frequently used notations in Table 1.

2.1 System Model
As shown in Fig. 1, we consider a general system model for
data markets. The model has a data acquisition layer and a
data trading layer. There are three major kinds of entities,
including data owners, a data broker, and data consumers.

In the data acquisition layer, the data broker procures
massive personal data, denoted by d = (d1, . . . , dn), from
n distinct data owners. Typical examples of personal data
include product ratings, electrical usages, social media data,
location data, and health records. Due to social, behavioral,
and genetic interactions in practice [25], there exist correla-
tions among the collected data items.
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TABLE 1
FREQUENTLY USED NOTATIONS.

Notation Remark

d = {d1, . . . , dn} Original database contributed by n data owners
S = (f, v) Data consumer’s service request, including a con-

crete statistic and a tolerable variance of noise
εi Data owner i’s privacy loss due to S
ψi(S) Data owner i’s privacy compensation in S
π(S) Price of S
x A data vector by preprocessing d
w A weight vector over x to specify f
M A randomized mechanism
7→ Service determinacy relation
L Dependent size of x
R Probabilistic dependence relationship over x
ε A privacy budget
Ci Index set of xi’s correlated data items
ρij ∈ [0, 1] Dependence coefficient of xj on xi
DSf

i Dependent sensitivity of f at xi
∆fj Sensitivity of f at xj
Lap(λ) Laplace distribution centered at 0 with scale λ
g A semi-norm, e.g., `p norm
Γ A non-decreasing and subadditive function
x,x(i) A pair of dependent neighboring databases, ini-

tially differing in xi

¯
βi, β̄i Infimum and supremum of xi’s domain
ξi A contract function between data broker and data

owner i with respect to privacy compensation
B Total privacy compensation
σij = −1 or 1 xi, xj are negatively or positively correlated

In the data trading layer, we consider that the data bro-
ker tends to trade aggregate statistics, e.g., histogram count,
weighted sum, mean, standard deviation, and probability
distribution fitting, rather than directly offering sensitive
raw data to the data consumers. Besides, each data con-
sumer can request her customized service S = (f, v), where
f is a concrete statistic, and v denotes a tolerable variance
of noise added to the true answer. We note that the self-
defined variance of noise allows the data consumer to adjust
the statistic’s accuracy with a certain confidence based on
Chebyshev’s inequality. Formally, we let Ō denote the true
answer, and let O denote the returned answer, then we have
P (|O− Ō| ≤ t

√
v) ≥ 1− 1

t2 , i.e., the returned answer has at
least 1 − 1

t2 probability to be no more than t
√
v away from

the true answer.
Depending on the service S = (f, v), on one hand, the

data broker charges the data consumer with the price π(S);
on the other hand, the data broker compensates the data
owner i with ψi(S) for her privacy leakage εi. Specifically,
if the variance of perturbing noise v is higher, the returned
answer is less accurate, the price π(S) should be lower, the
privacy loss εi is smaller, and thus the privacy compensation
ψi(S) would be lower. Furthermore, a pricing framework
is balanced if the utility of the data broker is no less than
zero, i.e., the price is sufficient to cover all the privacy
compensations, namely π(S) ≥

∑n
i=1 ψi(S).

2.2 Technical Preliminaries
In this section, we introduce the underlying mathematical
operation of common aggregate statistics and the funda-
mental economic property of the pricing framework, namely
dot product and arbitrage freeness, respectively. Besides, we
briefly review dependent differential privacy.

Dot Product: We first identify the elementary mathe-
matical operation underlying common aggregate statistics.
Without loss of generality, we consider the following three
practical aggregate statistics in detail.

Example 1. A commercial company wants to capture the popu-
larity of its product among customers. Besides, it assigns a weight
wi to each customer’s rating di. The final score takes the form of
a weighted sum

∑n
i=1 widi [18].

Example 2. A researcher would like to learn the Gaussian
distribution over U.S. residential energy consumptions. The key
parameters are mean and variance. It suffices to compute the sum∑n
i=1 di and the sum of squares

∑n
i=1 di

2 [19], [20].

Example 3. A traffic analyst intends to count the drivers exceed-
ing a certain speed limit δ. She needs to compare di with δ, and
then do summation

∑n
i=1 1{di ≤ δ} [26].

Given the above three application scenarios, we model
common aggregate statistics as a set of dot product opera-
tions. In particular, the dot product operation is conducted
between a weight vector w and a data vector x, namely
wTx =

∑n
i=1 wixi. Here, xi represents any general func-

tion of the original data di, e.g., quadratic polynomial in
Example 2 and nonlinear comparison in Example 3. Besides,
the weight wi, set by the data consumer, indicates her
preference/importance over xi. Moreover, the purpose of
introducing an interfaced database x by preprocessing the
original database d is to simplify and unify statistic models.
This concept originates from practical aggregate statistics
over encrypted data, where homomorphic encryption can
be applied over a general function of the original data,
mainly to reduce time-consuming homomorphic multiplica-
tions [19], [20], [26]. Furthermore, the preprocessing from d
to x can be viewed as a sort of feature mapping in learning
theory [27]. In addition to manual engineering utilized by
the above three examples, the feature mapping can also be
realized by kernel tricks, deep learning, and so on. In the
following context of a clear service type, for brevity, we
use the weight vector w to specify the data consumer’s
requested statistic f , i.e., S = (w, v).

Arbitrage Freeness: We next introduce a fundamental
and desirable property of pricing functions, namely arbi-
trage freeness. Before investigating arbitrage freeness, we
first establish the key concept of service determinacy. A sim-
ilar concept has been studied in randomized query/view
answering from the database community [1]. Under our
data market model, the noisy answers can still be regarded
as random variables. In particular, given a service request
S = (w, v) over the database x, the data broker answers
using a randomized mechanism M, and returns the result
M(x), where its expectation is wTx, and its variance is
no more than v. We give the formal definition of service
determinacy as follows.

Definition 1. The service determinacy relation is between a ser-
vice S = (w, v) and a multiset of services Q = {S1, . . . , Sm}.
We say that Q determines S, denoted as Q 7→ S, if the following
rules are satisfied:
• Summation:

{(w1, v1) , . . . , (wm, vm)} 7→

 m∑
j=1

wj ,
m∑
j=1

vj

 .
• Scalar Multiplication: ∀c ∈ R, (w, v) 7→

(
cw, c2v

)
.

• Relaxation: ∀v ≥ v′, (w, v′) 7→ (w, v) .
• Transitivity:

If Q1 7→ S1, . . . ,Qm 7→ Sm and {S1, . . . , Sm} 7→ S,

then
m⋃
j=1

Qj 7→ S.
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We now explain the key intuitions behind Definition 1.
(1) The rules of summation and scalar multiplication inherit
basic mathematical operations over random variables. For
example, a data consumer requests two services S1 =
(w1, v1), S2 = (w2, v2), and obtains noisy answers O1, O2.
Here, O1 (resp., O2) can be viewed as a random variable
with mean w1

Tx (resp., w2
Tx) and variance v1 (resp., v2).

Besides, if the data consumer adds O1 to O2, she can obtain
another random variable O3 with mean (w1 + w2)Tx and
variance v1 + v2, which is in fact the answer of another ser-
vice S3 = (w1+w2, v1+v2). Moreover, if the data consumer
multiplies O1 by 1/2, she can obtain a random variable O4

with mean w1
Tx/2 and variance v1/4, which is the answer

of the service S4 = (w1/2, v1/4). Therefore, S1, S2 can
determine S3, and S1 can determine S4. Here, “determine”
is kind of “derive”. (2) We clarify the relaxation rule from
expected accuracy. When answering the same statistic, if less
noise is added to the true answer, the returned answer will
be more accurate in expectation. Here, “determine” is kind
of “more accurate than”. (3) Transitivity is an important rule
of both partial order relations and equivalence relations [28],
and has been widely used in defining the determinacy
relation among database queries [29], [30].

Based on the service determinacy relation, we define
arbitrage freeness in a formal way.

Definition 2 (Arbitrage Freeness). A pricing function π(·) is
arbitrage free, if ∀m ≥ 1, {S1, . . . , Sm} 7→ S implies:

π (S) ≤
m∑
j=1

π (Sj) . (1)

The intuition behind the above definition is that if there
exists arbitrage in the pricing function π(·), e.g., π (S) >∑m
j=1 π (Sj), then the data consumer would never pay the

full price of the service S. Instead, she would turn to buying
a cheaper set of services {S1, . . . , Sm} to answer S.

Dependent Differential Privacy: We now introduce de-
pendent differential privacy [31] from the privacy preserva-
tion perspective, i.e., we focus on the randomized mecha-
nism M itself. Yet, some of its disciplines will be used to
mathematically quantify the privacy losses of data owners.

Dependent differential privacy is essentially a variant
of the celebrated differential privacy [10]. In particular,
differential privacy imposes a bound on the maximum ratio
between the probabilities of returning a certain aggregate
result with and without any individual’s record, and thus
limits the adversary’s ability to infer private information.
As an enhanced version, dependent differential privacy fur-
ther considers data correlations. We introduce its technical
notations as follows.

Given the statistical database x = (x1, . . . , xn), if any
data item in x is dependent on at most L − 1 other items,
the dependent size of x is defined to be L. Besides, the prob-
abilistic dependence relationship over the whole database x
is denoted as R. For example, to capture social, temporal,
and spatial correlations, R can be some probabilistic graph-
ical models, such as Bayesian networks and Markov chains.
In addition, the existence of R may be due to a certain
data generation process, or some other social, behavioral,
and genetic relationships. For example, as illustrated in [31],
R in the Gowalla location dataset was introduced from its
relevant social network dataset [25]. Moreover, a pair of
dependent neighboring databases is defined as follows.

Definition 3 (Dependent Neighboring Databases). Two
databases x(L,R),x′(L,R) are dependent neighboring databas-

es, if the modification of one data item in x(L,R) (e.g., xi changes
to x′i) causes changes in at most L−1 other data items in x′(L,R)
due to the probabilistic dependence relationship R.

For the sake of brevity, when the dependent/correlated
context is clear, we omit the parameters L,R, and write x,x′
instead. Based on dependent neighboring databases, the
definition of dependent differential privacy is formalized as:

Definition 4 (ε-Dependent Differential Privacy). A random-
ized algorithmM provides ε-dependent differential privacy, if for
any pair of dependent neighboring databases x and x′ and any
possible output O, we have:

exp(−ε) ≤ max
x,x′

P (M (x) = O)

P (M (x′) = O)
≤ exp(ε), (2)

where ε is the privacy budget. Smaller ε provides better privacy
and worse utility guarantees.

To achieve ε-dependent differential privacy, a matching
dependent perturbation mechanism was proposed in [31].
The key idea is to carefully add Laplace noise by introducing
fine-grained dependence coefficients between data items. In
particular, ρij denotes the dependence relationship between
xi and xj , which quantifies the dependence of xj on the
modification of xi. With the help of ρij ’s, the dependent
sensitivity of a numeric function f over the database x
caused by the modification of xi can be expressed as:

DSfi =
∑
j∈Ci

ρij∆fj , (3)

where Ci denotes the index set of the data items that are
correlated with xi. Besides, Ci contains i itself, and the
dependence coefficient ρii = 1. Moreover, ∆fj denotes the
sensitivity of f with respect to the modification of xj itself,
i.e., ∆fj = maxxj1 ,xj2

‖ f (. . . , xj1 , . . .)−f (. . . , xj2 , . . .) ‖1.
Furthermore, when focusing on the individual data item
xi, the dependent size L and the probabilistic dependence
relationship R, which outline the dependent structure of the
whole database x as mentioned earlier, are now reflected
in two concrete parameters Ci and ρij . Specifically, the
cardinality of Ci is no more than L, while ρij measures
the dependence relationship between two data items, and
can be computed from R. We finally present the dependent
perturbation mechanism as follows.

Theorem 1 (Dependent Perturbation Mechanism). The ran-
domized mechanism

M (x) = f(x) + Lap

(
maxiDS

f
i

ε

)
(4)

guarantees ε-dependent differential privacy.

3 SERVICE PRICING
In this section, we consider the first component of ERA-
TO, namely the pricing mechanism for common aggregate
statistics. It should be arbitrage free not only to the statistic
w itself but also to the variance of perturbing noise v.

3.1 Design Rationale
Given service determinacy and arbitrage freeness in Def-
inition 1 and Definition 2, respectively, we first list some
intuitive properties that any arbitrage-free pricing function
π(w, v) should satisfy: (1) The service with zero weight
vector is free: π(0, v) = 0; (2) The service with higher
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variance is cheaper: ∀v ≥ v′, π(w, v) ≤ π(w, v′); (3) The
service with zero variance is the most expensive: ∀v >
0, π(w, 0) > π(w, v); (4) The service with infinite noise is
free: if π(·) is continuous at w = 0, then π(w,+∞) = 0.

Proof. For (1), by the summation rule of Definition 1, when
m = 0, ∅ 7→ (0, 0), and further by the relaxation rule,
(0, 0) 7→ (0, v). Thus, by Definition 2, 0 ≤ π(0, v) ≤
π(0, 0) ≤ 0, which implies π(0, v) = 0. For (2), first by the
relaxation rule, (w, v′) 7→ (w, v), and then by Definition 2,
π(w, v) ≤ π(w, v′). For (3), it directly follows from (2). For
(4), by the scalar multiplication rule, (1/c ·w, 1) 7→ (w, c2),
then if c is towards positive infinity, we have: π(w,+∞) =
limc→+∞ π(w, c2) ≤ limc→+∞ π(1/c ·w, 1) = π(0, 1) = 0.
Here, the first inequality follows from Definition 2, and the
last equality follows from (1).

We next discuss the existence of arbitrage-free pricing
functions. First, we give a trivial example of zero-price
function, i.e., ∀π(w, v) = 0. This function is arbitrage
free. Second, we give a nontrivial example of widely used
constant-price function, i.e., ∀π(w, v) = c for some c > 0.
There exists arbitrage in this function. A simple counter
example is π(0, v) = 0. Third, the general construction of
non-trivial arbitrage-free pricing functions has been proven
to be a hard problem [1]. Therefore, we turn to exploring
sufficient conditions for arbitrage-free pricing functions.

We further divide an arbitrage-free pricing function into
two parts, namely the variance of noise v and the weight
vector w, and conquer each part step by step. On one hand,
from the above properties (2) and (4), we know that any
nontrivial, continuous, and arbitrage-free pricing function
should monotonically decrease with v, but the thorniest
problem is how fast it can decrease with v. We determine
the boundary function 1/v by thwarting the arbitrage attack
as illustrated in Section 1. On the other hand, we associate
service determinacy with norms of the weight vector w, e.g.,
`p norms. Besides, we establish the equivalency between
arbitrage-free pricing functions and semi-norms. Moreover,
we synthesize new pricing functions by applying subaddi-
tive and non-decreasing functions. In particular, to allow a
high but finite price for the unperturbed answer, we utilize
activation functions from neural networks.

3.2 Detailed Design
Following the guidelines given above, we now introduce the
detailed design of arbitrage-free pricing functions.

3.2.1 Incorporating Variance of Noise
We start with the first part of an arbitrage-free pricing
function π(w, v) involving the variance of noise v. We
formulate the arbitrage attack in a formal way to figure out
how π(w, v) can decrease with v:

Example 4. A data consumer, who wants to obtain the service
(w, v) but with a lower price, may turn to buyingm other cheaper
services of the same statistic but with higher variances, denoted
as {(w, vj)|j ∈ {1, . . . ,m}, vj > v}. The data consumer first
applies summation and then scalar multiplication by 1/m in Def-
inition 1, i.e., {(w, v1), . . . , (w, vm)} 7→ (mw,

∑m
j=1 vj) 7→

(w, 1
m2

∑m
j=1 vj). In other words, the data consumer computes

the average of m answers, and gets an unbiased answer but with a
lower variance. If the pricing function π(·) is arbitrage free, then
the following conditional statement must hold:

1

m2

m∑
j=1

vj ≤ v ⇒
m∑
j=1

π (w, vj) ≥ π (w, v) . (5)

We give Theorem 2 to thwart the above attack.

Theorem 2. For any arbitrage-free pricing function π(w, v) that
depends on two independent parts w and v, it cannot decrease
faster than 1/v.

Proof. We first prove 1/v is the boundary function, i.e.,
π(w, v) = g(w)/v is arbitrage free for some positive func-
tion g(w) that depends only on w. We utilize the antecedent
in Equation (5) to show the correctness of its consequent:

m∑
j=1

π (w, vj) = g (w)
m∑
j=1

1

vj
≥ g (w)

m2∑m
j=1 vj

(6)

≥ g (w)
m2

m2v
=
g (w)

v
= π (w, v) . (7)

Here, the inequality in Equation (6) follows from that the
harmonic mean of a list of non-negative real numbers is less
than or equal to the arithmetic mean of the same list, namely

m∑m
j=1

1
vj

≤
∑m
j=1 vj

m
⇒

m∑
j=1

1

vj
≥ m2∑m

j=1 vj
. (8)

Besides, the inequality in Equation (7) follows from the
antecedent in Equation (5). Furthermore, when these two
inequalities simultaneously take the equal signs, we can
obtain boundary variances {vj = mv|j ∈ {1, . . . ,m}},
which implies that requesting the service with the same
variance multiple times is the most possible way to obtain
an arbitrage.

We next show that if π(w, v) decreases faster than 1/v,
we would derive an arbitrage. We consider a sequence of
variances {vj |j ∈ {1, . . . ,+∞}}, such that limj→+∞ vj =
+∞ and limj→+∞ vjπ(w, vj) = 0. Thus, we can find j0 > 1
such that vj0π(w, vj0) < π(w, 1)/2. Now, we can answer
the service (w, 1), through requesting dvj0e times the same
service (w, vj0) and averaging their answers. However, for
these dvj0e services, we pay

dvj0eπ (w, vj0) < 2vj0π (w, vj0) < π (w, 1) , (9)

which yields an arbitrage, and completes the proof.

In what follows, for simplicity, we fix the part of π(w, v)
related to the variance v at 1/v by default, while investigate
other functions, e.g., 1/

√
v, in our evaluation part.

3.2.2 Incorporating Weight Vector
We continue to consider the other part of an arbitrage-free
pricing function π(w, v), namely the weight vector w.

By carefully studying the rules of the service determina-
cy in Definition 1, we find a metric in linear algebra with
analogous properties, called norm, more precisely semi-
norm. In particular, a norm of a vector w can be viewed as
a measure of its “length”. Formally speaking, a norm is any
function g : Rn → R that satisfies the following properties:

• Subadditivity:

∀w1,w2 ∈ Rn, g (w1 + w2) ≤ g (w1) + g (w2) .

• Homogeneity: ∀c ∈ R,w ∈ Rn, g(cw) = |c|g(w).
• Non-negativity: ∀w ∈ Rn, g(w) ≥ 0.
• Definiteness: w = 0⇔ g(w) = 0.

If the last property relaxes to w = 0⇒ g(w) = 0, we call it
semi-norm. Besides, the most commonly used norms in the
machine learning and data mining algorithms are a family
of `p norms for some real number p ≥ 1. Furthermore,
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considering that the trivial example of zero-price function
is arbitrage free, we utilize semi-norms to devise our basic
arbitrage-free pricing functions:

Theorem 3 (Basic Arbitrage-free Pricing Functions). Let
π(w, v) = g(w)2/v be the pricing function for some positive
function g(w) that only depends on w. Then, π(w, v) is arbitrage
free iff g(w) is a semi-norm.

Proof. Due to space limitations, we put the proof into our
technical report [32].

We next consider how to construct more arbitrage-free
pricing functions by combining basic/existing ones. We
resort to a general class of nondecreasing and subadditive
functions. We recall that a function Γ : Rφ → R over
∀y, z ∈ Rφ is nondecreasing, if y ≤ z,Γ(y) ≤ Γ(z). Besides,
it is subadditive, if Γ(y + z) ≤ Γ(y) + Γ(z).

Theorem 4 (Composite Arbitrage-free Pricing Functions).
Let Γ : Rφ → R be a nondecreasing and subadditive function. For
any set of arbitrage-free pricing functions {π1(S), . . . , πφ(S)},
the composite pricing function π(S) = Γ(π1(S), . . . , πφ(S)) is
also arbitrage free.

Proof. We consider the general form of service determinacy,
i.e., {S1, . . . , Sm} 7→ S. Since π1, . . . , πφ are arbitrage free,
we have:

∀k ∈ {1, . . . , φ} , πk (S) ≤
m∑
j=1

πk (Sj) . (10)

Besides, due to the nondecreasing and subadditive proper-
ties of the function Γ, we further have:

Γ (π1 (S) , . . . , πφ (S)) ≤ Γ

 m∑
j=1

π1 (Sj) , . . . ,
m∑
j=1

πφ (Sj)


≤

m∑
j=1

Γ (π1 (Sj) , . . . , πφ (Sj)) . (11)

This completes the proof.

We give some typical examples of composite arbitrage-
free pricing functions as follows. If π1(S), . . . , πφ(S) are
arbitrage free, then

• Linear Combination: ∀c1, . . . , cφ ≥ 0,
∑φ
k=1 ckπk(S);

• Geometric Mean:
√∏φ

k=1 πk(S);
• Maximum: max(π1(S), . . . , πφ(S));
• Power: π1(S)c for 0 < c ≤ 1;
• Logarithmic: log(π1(S) + 1);
• Cut-off: min(π1(S), c) for c ≥ 0;
• Sigmoid: tanh(π1(S)), arctan(π1(S)), π1(S)√

π1(S)2+1
;

are arbitrage free as well. We note that the basic arbitrage-
free pricing functions and the first five composite arbitrage-
free pricing functions set an infinite price for the unper-
turbed answer, i.e., the variance of noise v = 0. However,
these functions may be impractical in data markets, since the
data broker tends to sell unperturbed aggregate statistics for
high but finite prices. Nevertheless, we can turn to applying
some bounding functions for composition, e.g., cut-off and
sigmoid functions. In particular, sigmoid functions are com-
monly used as activation functions in neural networks [27].
At last, we give a sufficient condition to check whether a
function Γ is nondecreasing and subadditive.
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Fig. 2. Three typical sigmoid functions and their first derivatives.

Lemma 1. Let Γ : Rφ → R be a continuous and twice-
differentiable function such that Γ(0) = 0. Then, if each element
of Γ’s gradient (i.e., partial derivative) is no less than zero, Γ is
nondecreasing; if each element of Γ’s Hessian matrix (i.e., second
partial derivative) is no greater than zero, Γ is subadditive.

To provide an intuitive view of Lemma 1, we plot three
typical sigmoid functions and their first derivatives in Fig.2.
From Fig. 2, we can see that these functions are increasing
and bounded above, while their first derivatives are decreas-
ing. Therefore, according to Theorem 4, they are composite
arbitrage-free pricing functions.

4 PRIVACY COMPENSATION

In this section, we consider the other component of ERATO,
i.e., the privacy compensation mechanism for individual
privacy loss. We propose both bottom-up and top-down
designs. In the bottom-up design, the sum of privacy com-
pensations determines the service price, while this relation
is inverse in the top-down design. Besides, another major
difference is that the bottom-up design allows each data
owner to actively select a privacy compensation function
according to her privacy strategy, which is instead not
required in the top-down design.

4.1 Privacy Loss for General Function
When the data broker answers aggregate statistics with a
randomized mechanism M, some private information of
each data owner would be leaked. Based on the disciplines
of dependent differential privacy, we formally define the in-
dividual privacy loss εi for an arbitrary real-valued function
f , and further give its upper bound related to the dependent
sensitivity DSfi and the variance of noise v.

We first consider a pair of dependent neighboring
databases x and x(i), which initially differs in the data
item xi. In fact, x and x(i) can simulate the presence and
absence of the data owner i. By comparing the output of
the randomized mechanism M over x and x(i), we define
individual privacy loss as follows.

Definition 5 (Individual Privacy Loss). The privacy loss of the
data owner i in the randomized mechanismM over the database
x is defined as:

εi(M) = sup
x,O

∣∣∣∣∣log
P (M (x) = O)

P
(
M
(
x(i)

)
= O

) ∣∣∣∣∣ , (12)
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where x ranges over all possible database instances, and O ranges
over all possible outputs.

We discuss the relationship between the individual pri-
vacy loss εi(M) and the privacy budget ε in Definition 4.
(1) The privacy budget ε, normally preset by the data broker
over the randomized mechanismM, applies to all the data
owners. In other words, each data owner is promised to
suffer privacy loss no more than ε, i.e., ε = maxi εi(M). By
comparison, in the context of privacy compensation, we turn
this around. Now, the randomized mechanismM, given the
variance of perturbing noise v from the data consumer, has
already breached privacy, and Definition 5 quantifies the
privacy loss for each data owner. (2) From ε = maxi εi(M),
we can see that if the randomized mechanism M is ε-
dependent differentially private for a tiny ε, then the in-
dividual privacy loss εi(M) would be very small as well.

We further give an upper bound of the individual pri-
vacy loss εi(M), when the randomized mechanism M is
known to be the dependent perturbation mechanism de-
fined in Theorem 1. In particular, this upper bound depends
on the variance of Laplace noise v and the dependent
sensitivity of f at xi.

Theorem 5. LetM be dependent perturbation mechanism, f be
any numeric function, DSfi be the dependent sensitivity of f at
xi, and v be the variance of Laplace noise. The privacy loss of the
data owner i is bounded above by:

εi(M) ≤ DSfi√
v/2

. (13)

Proof. In the dependent perturbation mechanism, the noise
η is drawn from the Laplace distribution Lap(λ). Here,
the scaling factor λ can be computed from the variance v,
namely λ =

√
v/2. We then derive that:

εi(M) = max
O,x

∣∣∣∣log
P (M(x) = O)

P (M(x(i)) = O)

∣∣∣∣
= max

O,x

∣∣∣∣∣log
P (f (x) + η = O)

P
(
f
(
x(i)

)
+ η = O

) ∣∣∣∣∣
= max

O,x

∣∣∣∣∣log
exp (− |O − f (x)| /λ)

exp
(
−
∣∣O − f (x(i)

)∣∣ /λ)
∣∣∣∣∣ (14)

= max
O,x

∣∣∣∣∣∣
|O − f (x)| −

∣∣∣O − f (x(i)
)∣∣∣

λ

∣∣∣∣∣∣
≤ max

x

∣∣∣f (x)− f
(
x(i)

)∣∣∣
λ

≤ DSfi
λ

=
DSfi√
v/2

. (15)

Here, Equation (14) follows from the probability density
function of Lap(λ). Besides, in Equation (15), the first in-
equality follows from the triangle inequality, and the second
inequality follows from the definition of the dependent
sensitivity of f at xi [31].

4.2 Bottom-up Design
In this section, we consider the bottom-up design of privacy
compensation. The data broker first needs to satisfy each
individual privacy compensation ψi(S), and then determine
the price π(S) for the data consumer. For example, to
guarantee the property of balance, the relationship between
the service price and the sum of individual privacy compen-
sation can be π(S) = c

∑n
i=1 ψi(S) for some c > 1.

First, the individual privacy compensation ψi(S) should
hinge on the individual privacy loss εi(M). Besides, the
data broker needs to evaluate/approximate εi(M) from the
service S itself, including the weight vector w and the vari-
ance of noise v. However, the original εi(M) in Definition 5
not only depends on the actual randomized mechanismM,
but also needs to consider all the database instances and
all the possible outputs, which can be infeasible to compute
in practice [1], [33]. Therefore, we turn to focusing on the
specific dependent perturbation mechanism in Theorem 1,
and utilize the upper bound of privacy loss in Theorem 5 to
do compensation. We note that the bounded privacy loss in
Theorem 5 is given as a function of the variance v and the
dependent sensitivity DSfi . Here, we can compute DSfi in
the context of aggregate statistics. We let

¯
βi, β̄i ∈ R denote

the infimum and supremum of the data item xi’s domain,
respectively. Then, according to Equation (3), we can get:

DSfi =
∑
j∈Ci

ρij |wj |
(
β̄j −

¯
βj
)
. (16)

Suppose we ignore data correlations by setting ρij = 0 for
all j ∈ Ci\i. The dependent sensitivity in Equation (16)
will degenerate to the sensitivity defined in the classical
differential privacy [10]:

DSfi = |wi|
(
β̄i −

¯
βi
)
. (17)

After quantifying the individual privacy loss in aggre-
gate statistics, we now consider how to compensate each
data owner in an appropriate manner. We first identify two
desirable properties in the bottom-up design:

Definition 6 (Bottom-up Privacy Compensation). Let ψi(S)
be a privacy compensation function over the service S = (w, v)
in the bottom-up design. ψi(S) should satisfy:
• Dependent Fairness: ∀j ∈ Ci, wj = 0⇒ ψi(S) = 0.
• Micro Arbitrage Freeness: ψi(S) is arbitrage free.
We give some comments on these two properties as

follows. (1) Dependent fairness is an extension of fairness
defined in the conventional query-based pricing [33] by
further incorporating data correlations. The original fairness
says that the data owner whose data is not queried should
not expect reward. In contrast, our dependent fairness says
that only if the data owner and her correlated data owners
are not involved in the service, she will receive no privacy
compensation. Although the case, where a data owner who
is not involved in the service but may still be compensated,
seems counterintuitive, it makes sense from the perspective
of privacy loss due to data correlations. (2) Micro arbitrage
freeness is a necessity in the bottom-up design. The reason
is that the service price at top hinges on the total privacy
compensations at bottom. Therefore, the data consumer
may have strong motivations to circumvent the due privacy
compensations, and thus the payment, by asking other al-
ternative services. Besides, the definition of micro arbitrage
freeness is identical to that of arbitrage freeness, but the
former needs to be verified over the whole data owners.

In a similar way to service pricing, we design basic
bottom-up privacy compensation functions directly from
the privacy losses, which set infinite compensations for
unperturbed answers. This kind of functions are suitable for
the data owner, who values her privacy highly, and would
never accept full disclosure of personal data.1

1. By querying two consecutive unperturbed aggregate statistics with
and without a data owner’s data item, the data consumer can have full
knowledge of the data owner’s data item.
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Theorem 6. The privacy compensation functions

ψi(S) = ci
DSfi√
v/2

= ci

∑
j∈Ci

ρij |wj |
(
β̄j −

¯
βj
)

√
v/2

(18)

for some constant ci > 0 and for all i ∈ {1, . . . , n}, are basic
bottom-up privacy compensation functions.

Proof. First, we prove dependent fairness. We can check that
∀j ∈ Ci, wj = 0 ⇒ ψi(S) = 0. Second, we prove micro
arbitrage freeness. We view ψi(S) as a linear combination of
{|wj |/

√
v/2|j ∈ Ci}, where the corresponding coefficients

are {ciρij(β̄j −
¯
βj)|j ∈ Ci}. By Theorem 4 (Linear Com-

bination), to prove the micro arbitrage freeness of ψi(S),
it suffices to prove that |wj |/

√
v/2 is arbitrage free. By

Theorem 4 (Geometric Mean), it further suffices to prove the
arbitrage freeness of 2wj

2/v. Now, by using the weighted `2
norm and setting those weights, whose indexes are not j, to
be zeros, it completes the proof.

Analogous to Theorem 4, we can construct new bottom-
up privacy compensation functions from basic ones by
applying any nondecreasing and subadditive function. In
particular, to allow the data owner, who is less concerned
about her privacy, to reveal her personal data at some high
but finite price, we can make use of sigmoid functions.

Theorem 7. The privacy compensation functions

ψi(S) = bi tanh

(
ci
DSfi√
v/2

)
(19)

for constants bi, ci > 0 and for all i ∈ {1, . . . , n}, are bounded
bottom-up privacy compensation functions.

Proof. First, we can check that ∀j ∈ Ci, wj = 0 ⇒ ψi(S) =
0. Second, in Theorem 6, we have proved the arbitrage
freeness of ciDS

f
i /
√
v/2. Then, by Theorem 4 (Sigmoid and

Linear Combination), ψi(S) is micro arbitrage free.

Considering the diversity of individuals’ privacy strate-
gies, we demonstrate how the data broker can select cus-
tomized privacy compensation functions for different kinds
of data owners. We introduce a nondecreasing contract
function ξi(εi) between the data broker and each data owner
i, i.e., in the event of privacy loss εi, i should be com-
pensated with at least ξi(εi). In fact, the contract function
ξi(·) depends on i’s valuation over private information. For
example, if i values her privacy highly, and would never
accept full disclosure of her personal data, then she may
choose a linear contract function ξi(εi) = ciεi for some
ci > 0. In contrast, another data owner j is less concerned
about her privacy, and is willing to sell her private data
at some high price. Then, she may select the bounded
sigmoid contract function ξj(εj) = bj tanh(cjεj) for some
bj , cj > 0. Additionally, the data broker would define the
corresponding bottom-up privacy compensation functions
ψi(S) and ψj(S) using Equation (18) and Equation (19)
for the data owners i and j, respectively. In particular, the
privacy compensation functions are satisfying for both i and
j, since ξi(εi) ≤ ψi(S) and ξj(εj) ≤ ψj(S) due to Theorem 5
and the fact that the tanh function is nondecreasing.

At last, the data broker can determine the service price
π(S). Take π(S) = c

∑n
i=1 ψi(S), c > 0 for example. We

note that if every privacy compensation function ψi(S) is
micro arbitrage free, then the pricing function π(S), which
can be viewed as a linear combination of ψi(S)’s, is factually

arbitrage free. Of course, π(S) can be any other composite
functions under Theorem 4.

4.3 Top-down Design
In this section, we consider a different top-down privacy
compensation design, where the data broker first deter-
mines the service price π(S) using the pricing mechanism in
Section 3, and then spares some fraction of the payment for
privacy compensation, i.e.,

∑n
i=1 ψi(S) = cπ(S) for some

0 < c < 1. If we regard cπ(S) as a budget B, we can convert
the privacy compensation problem to a budget allocation
problem, where each data owner i’s share in B should be
roughly proportional to her privacy loss εi(M).

Specific to the dot product operation in common ag-
gregate statistics, we shall tighten the upper bound of the
individual privacy loss εi(M), by computing the dependent
sensitivity DSfi more accurately. We first give our motivat-
ing examples as follows.

Example 5. A database x consists of two entries x1, x2, such
that x2 = 0.5x1 and x1 ∈ [0, 1]. Here, the dependence coefficient
ρ12 = 1, since x2 is completely dependent on x1. We then
consider two statistics f = x1 + x2 and g = x1 − x2, which
differ in the sign of x2’s weight. By Equation (16), we compute
the dependent sensitivities of f and g at x1:

DSf1 = ∆f1 + ρ12∆f2 = 1 + 1× 0.5 = 1.5, (20)
DSg1 = ∆g1 + ρ12∆g2 = 1 + 1× 0.5 = 1.5, (21)

respectively. We can see that the dependent sensitivities of f and
g at x1 are the same. However, g is essentially g∗ = 0.5x1, and
its dependent sensitivity at x1 should be:

DSg
∗

1 = ∆g∗1 = 0.5 < DSg1 = 1.5. (22)

Example 6. We continue to consider the database x, but now x1

and x2 are negatively correlated rather than positively correlated,
i.e., x2 = −0.5x1. According to the definition of nonnegative
dependence coefficients in [31], ρ12 = 1 remains unchanged.
Thus, the dependent sensitivities of f and g at x1 are still 1.5.
However, f is essentially f∗ = 0.5x1, and thus its sensitivity at
x1 is 0.5, which is less than DSf1 .

Given the two examples above, we can observe that the
definition and the mechanism of the dependent differential
privacy proposed in [31] aim to be applicable for general
functions and general positive/negative correlations, which
implies that the general dependent sensitivity can be just a
loose upper bound in the context of a specific function. Such
a key observation enables us to tighten the dependent sen-
sitivity and thus the individual privacy loss by considering
two extra factors: whether the weight is negative or positive,
and whether the correlation is negative or positive. In our
following calculation, we will maintain the original forms
of weights rather than utilizing their absolute values as in
the dependent differential privacy, namely Equation (16).
Additionally, we introduce σij = −1 and σij = 1 to
represent the cases that xi, xj are negatively and positively
correlated, respectively. We thus get:

Lemma 2. The tight dependent sensitivity of f = wTx at xi
over the database x is given as:

DSfi =

∣∣∣∣∣∣
∑
j∈Ci

σijρijwj
(
β̄j −

¯
βj
)∣∣∣∣∣∣ . (23)
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Proof. Due to the linearity of the dot product operation, the
dependent sensitivity of f at xi can occur in two cases:

Case 1 (xi :
¯
βi → β̄i): We first consider the expected

dependent modification of f over xj caused by the mod-
ification of xi, denoted as DSfij . There are two additional
cases: If xj is positively correlated with xi, DS

f
ij will occur

in the direction from
¯
βj to β̄j , otherwise it will occur in the

reverse direction, i.e.,

DSfij =

 ρijwj
(
β̄j −

¯
βj
)

if σij = 1,

ρijwj
(
¯
βj − β̄j

)
otherwise,

(24)

or equivalently,

DSfij = σijρijwj
(
β̄j −

¯
βj
)
. (25)

By summing all the dependent modifications and then tak-
ing absolute value, we can obtain the dependent sensitive at
xi:

DSfi =

∣∣∣∣∣∣
∑
j=Ci

σijρijwj
(
β̄j −

¯
βj
)∣∣∣∣∣∣ . (26)

Case 2 (xi : β̄i →
¯
βi): Similar to Case 1, we can derive:

DSfij =

 ρijwj
(
¯
βj − β̄j

)
if σij = 1,

ρijwj
(
β̄j −

¯
βj
)

otherwise,
(27)

or equivalently,

DSfij = −σijρijwj
(
β̄j −

¯
βj
)
. (28)

Besides, the final form of DSfi is the same as that in Case 1.
This completes the proof.

After obtaining the tight upper bound of individual
privacy loss, we can utilize it to compute each data owner’s
share in the total privacy compensations B. Before this, we
note that in the top-down design, the privacy compensation
function ψi(S) should still guarantee dependent fairness,
but no longer needs to ensure micro arbitrage freeness. The
reason is that the data consumer has paid the arbitrage-free
service price π(S), and she is not involved in the separate
process of privacy compensation. Thus, it is infeasible for
the data consumer, as an attacker, to gain arbitrage.

Theorem 8. The privacy compensation functions

ψi(S) = B
DSfi /

√
v/2∑n

i=1DS
f
i /
√
v/2

= B

∣∣∣∑j∈Ci
σijρijwj

(
β̄j −

¯
βj
)∣∣∣∑n

i=1

∣∣∣∑j∈Ci
σijρijwj

(
β̄j −

¯
βj
)∣∣∣ (29)

for the total privacy compensations B and for all i ∈ {1, . . . , n}
are top-down privacy compensation functions.

Proof. We prove the dependent fairness by checking that
∀j ∈ Ci, wj = 0⇒ ψi(S) = 0.

In conclusion, the top-down design divides an integrated
pricing framework into two independent parts: service pric-
ing and privacy compensation. Different from the bottom-
up design, on one hand, the data broker here just needs
to ensure the arbitrage freeness of service pricing rather

than the micro arbitrage freeness of privacy compensation;
on the other hand, the top-down design is essentially the
budget allocation problem according to individual privacy
loss at the data broker. Hence, the top-down design can
execute without the online participation of data owners, and
is applicable to any general aggregate statistic.

5 EVALUATION RESULTS

In this section, we present the evaluation results in terms of
privacy and utility guarantees, arbitrage-free pricing func-
tions, and fine-grained privacy compensations.

Datasets: We use four real-world datasets, i.e., Movie-
Lens 1M dataset [34], 2009 Residential Energy Consump-
tion Survey (RECS) dataset [35], and two large-scale social
network datasets from Stanford Network Analysis Platform
(SNAP) [36], for three aggregate statistics, namely weight-
ed sum, probability distribution fitting, and degree distri-
bution, respectively. First, the MovieLens dataset contains
1,000,209 ratings of approximately 3900 movies made by
6040 anonymous users. Besides, we extracted the displayed
ratings from MovieLens, which function as target variables
in supervised learning. Second, the RECS dataset, which
was released by U.S. Energy Information Administration
(EIA) in January 2013, provides diverse energy usages in
12,083 U.S. homes. Third, two SNAP datasets are named
ego-Twitter and ego-Gplus: ego-Twitter comprises 81,306
nodes and 1,768,149 edges from Twitter, while e-Gplus
contains 107,614 nodes and 13,673,453 edges from Google+.

Profiles: To compute the dependence coefficient ρij by
means of the method developed in [31], we also need to
acquire each data owner’s profile as auxiliary data. The
above four datasets all provide this kind of information:
The MovieLens dataset comprises some attributes of users,
e.g., gender, age, and occupation; The RECS dataset contains
several attributes of each household, such as heating degree
days, cooling degree days, total number of rooms, etc;
The two SNAP datasets include node features, e.g., gender,
institution, and job title. Just as [31], we set the similarity
threshold between the profiles of two data owners to be
0.8, and only consider positive correlation, i.e., σij = 1. In
contrast, the weight wj can be either negative or positive in
our evaluations, which helps to verify the effect of negative
correlation, since σijwj in Lemma 2 is in the product form.

Statistics: For weighted sum, we apply linear regression
to the ratings of different movies from distinct numbers of
users, and can learn different weight vectors with distinct
dimensions. For Gaussian distribution fitting, we draw the
univariate Gaussian distribution of a certain type of energy
consumption, e.g., space heating, air conditioning, or refrig-
erators. For degree distribution, we count both in and out
degrees of every user in Twitter and Google+ networks.

5.1 Privacy and Utility Guarantees
Before investigating economic properties, we first show
how ERATO can improve the utility of aggregate statistics,
by calculating the dependent sensitivity more accurately
for the dependent perturbation mechanism in Theorem 1.
Fig. 3a depicts the accuracies of weighted sum under the
Laplace perturbation mechanism [10] in the conventional
differential privacy (DP), and the dependent perturbation
mechanisms in the dependent differential privacy (DDP)
and our ERATO, where the privacy budget ε varies from
10−6 to 103 by exponential growth. Here, we select the
movie ratings from 1000 users for training, and thus derive
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Fig. 3. Privacy vs. utility and arbitrage freeness in weighted sum.

1000-dimensional weight vectors. Besides, we define the
accuracy as 1 − |Ō−O||Ō+O| [31], where Ō and O are the true
and perturbed results, respectively.

One key observation from Fig. 3a is that more accuracy is
achieved as the privacy budget ε increases, especially when
ε changes from 0.01 to 0.1. We explain the reason through
the formula between the variance of Laplace noise v and the
privacy budget ε:

ε =
maxiDS

f
i√

v/2
⇒ v = 2

(
maxiDS

f
i

ε

)2

, (30)

which follows from Theorem 1. Here, the function sensi-
tivity maxiDS

f
i in the numerator remains unchanged for

a certain perturbation mechanism. When ε becomes larger,
less noise is added, which implies a more accurate statistic.
Besides, maxiDS

f
i ’s for all three perturbation mechanisms

are in the magnitude of 0.1. Hence, the accuracy is signifi-
cantly improved at ε = 0.1. Furthermore, when ε is too small
or too large, the perturbation or the true result completely
dominates, and the differences among the accuracies of
three perturbation mechanisms are tiny.

The second key observation is derived by comparing
the accuracies of three perturbation mechanisms at a fixed
privacy budget ε, i.e., the denominator in Equation (30)
keeps the same. ERATO is more accurate than DDP or even
DP. In particular, when ε = 0.01, ERATO improves 10.67%
and 4.20% of accuracies than DDP and DP, respectively. On
one hand, due to the triangle inequality, each individual de-
pendent sensitivity DSfi in ERATO, namely Equation (23),
is no greater than that in DDP, namely Equation (16), which
implies the same relation for maxiDS

f
i . Thus, the true

result in ERATO is perturbed with less noise than that in
DDP. On the other hand, DP can be regarded as a special
case of DDP or ERATO, where the correlated data items
are ignored when evaluating DSfi , namely Equation (17).
Although DSfi in DP is always no greater than that in DDP,
there exist negative weights here. Besides, the negative part
can have more effect on some DSfi ’s than the positive part
(not including i itself). Under such circumstance, the final
function sensitivity maxiDS

f
i in ERATO can be less than

that in DP, which means higher accuracy.
In conclusion, ERATO can better balance privacy and

utility in the aggregate statistics than DP and DDP.

5.2 Arbitrage-free Pricing Functions
In this section, we carry on with the weighted sum applica-
tion, and further explore arbitrage freeness.

Variance of Noise: We first evaluate the variance of
noise v in an arbitrage-free pricing function by simulating
the attack illustrated in Example 4. We recall that the data
consumer, as an attacker, wants to obtain the service (w, v)
by averaging m the same statistic but with diverse higher
variances, namely {(w, vj)|j ∈ {1, . . . ,m}, vj > v}. We
simulate such an arbitrage attack by randomly generating
vj ’s with the fixed sum m2v from the open interval v to
(m2−m+1)v. Besides, we set v to be 1 andm to be 100. After
simulating 10000 samples, we plot the cumulative fraction
of the ratio between the attack cost

∑m
j=1 π(w, vj) and the

original price π(w, v) in Fig. 3b, where the pricing function
π(·) decreases with the variance v from 1/v2, to 1/v, and to
1/
√
v. We note that the cumulative fraction here differs from

the common cumulative distribution function in that it does
not include the endpoint. For example, when the ratio takes
1, the cumulative fraction denotes the fraction of the sam-
ples, where the attack cost is strictly less than the original
price, i.e.,

∑m
j=1 π(w, vj) < π(w, v). More specifically, the

cumulative fraction at the ratio of 1 can generally embody
the success ratio of finding arbitrage.

By observing the cumulative fractions at the ratio of 1
in Fig. 3b, we can see that there exists arbitrage in 1/v2,
while the other two pricing functions are arbitrage free,
since in 1/v2, the cumulative fraction at the ratio of 1 is
greater than 0. In particular, the probability that the attacker
can find arbitrage in 1/v2 is 53.91%. This coincides with
our theoretical analysis that arbitrage-free pricing functions
cannot decrease faster than 1/v, namely Theorem 2. From
Fig. 3b, we can also observe that an attempt of finding
arbitrage in 1/

√
v is expected to be more costly than that in

1/v, which can be roughly captured by the areas above these
two function curves. For instance, to launch an arbitrage
attack in 1/

√
v, the attacker is most likely to spend 13

to 14 times the original price with probability 34.40%. In
contrast, the most possible case in 1/v is to pay 2 to 3
times the original price with probability 38.27%. Therefore,
in the sense of defending against arbitrage, the pricing
function, which decreases slower with the variance v, e.g.,
1/
√
v vs. 1/v, can be more robust. Nevertheless, those legal

data consumers may need to pay higher prices when their
variances are greater than 1.

Weight Vector: We continue to examine the other part
of an arbitrage-free pricing function, namely weight vector.
We choose the movie ratings from different numbers of
users, and obtain diverse dimensions of weight vectors.
Fig. 3c plots four composite pricing functions, when the
dimension n increases from 1000 to 6000 with a step of 1000.
In particular, the composite pricing functions are derived by
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Fig. 4. Differential privacy (DP) and ERATO based privacy compensations in weighted sum.
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Fig. 5. ERATO based privacy compensation in Gaussian distribution fitting.
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Fig. 6. ERATO based privacy compensation in Twitter and Google+ degree distributions.

first applying `1, `2, `3, `∞ norms and then tanh. Besides,
the variance of noise v is set to be 0.1, which gives an error
of 1 with 90% confidence by Chebyshev’s inequality.

From Fig. 3c, we can see that the composite pricing func-
tion using `1 norm remains almost unchanged at 1, while
the other ones increase with the dimension of weight vector
n. The reason lies in the characteristics of the bounded tanh
function. When n = 1000, the pricing function using `1
norm has already approximated tanh’s upper bound 1, and
is insensitive to later changes. Besides, the absolute value of
each weight is less than 1 here. Thus, as depicted in Fig. 3c,
when n is fixed, the price becomes lower for the pricing
function using `p norm with a larger p.

These evaluation results demonstrate that arbitrage free-
ness is a strong economic property. If not guaranteed, e.g.,
in the case of 1/v2, it is effortless for the data consumer to
game the data market. Besides, the data broker can develop
her customized pricing strategy by carefully applying The-
orem 3 and Theorem 4.

5.3 Fine-grained Privacy Compensations
In this section, we show the privacy compensations in
three different aggregate statistics, including weighted sum,
Gaussian distribution fitting, and degree distribution. For
clarity in presentation and comparison, we fix the total
privacy compensations such that one data owner is reward-
ed with 10 units in average, i.e., B = 10n. Besides, we
choose the same bounded privacy compensation function
in Theorem 7 for each data owner in the bottom-up design.

Before introducing the concrete evaluation results, we
first analyze the major differences among three aggregate
statistics: (1) From mathematical formula, there exist both

positive and negative weights in weighted sum, while the
weights in the other two statistics are all constant 1’s.
Besides, the domain of each data item keeps the same in
a certain statistic; (2) From privacy compensation, suppose
that we employ the DP framework, which ignores data
correlations and compensates the data owner roughly pro-
portional to the absolute value of her weight. Each data
owner would be compensated with the average 10 units
in Gaussian distribution fitting and degree distribution.
Therefore, we only compare DP with ERATO in weighted
sum, and directly show ERATO-based evaluation results in
the other two statistics.

Weighted Sum: We start with weighted sum, where the
dimension of weight vector is fixed at 1000, and the variance
of noise v is set to be 0.1 as in Section 5.2. Fig. 4 plots
the bottom-up and top-down privacy compensations under
DP and ERATO. We note that any pair of neighboring x-
axis ticks in Fig. 4 denotes a half-closed interval, e.g., the
hist from “9” to “10” stands for the privacy compensations
between 9 and 10 excluding 10.

We first compare DP with ERATO in a certain design
of privacy compensation. As depicted in Fig. 4, compared
with DP, more privacy compensations fall into the center
region under ERATO. In particular, 325 data owners receive
no privacy compensation in both bottom-up and top-down
designs under DP, whereas this number decreases to 148
under ERATO. Such an outcome truly reflects the difference
between the properties of fairness and dependent fairness.

We next compare the bottom-up and top-down design-
s under a certain framework. From Fig. 4, we can see
that these two designs of privacy compensation appear
identical for DP, but look a slightly different for ERATO.
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First, DP does not consider data correlations by setting
∀j ∈ Ci\i, ρij = 0. Thus, a specific data owner i’s privacy
losses measured by two designs are the same. Besides, when
the total privacy compensations are fixed, each data owner’s
share is proportional to her privacy loss in the top-down
design, while is proportional to the tanh value of her privacy
loss in the bottom-up design. Moreover, most of the privacy
losses εi’s under DP are within 0.1. We further note that tanh
has the following property: 0 ≤ εi ≤ 0.1, tanh (εi) ≈ εi.
Hence, the privacy compensations in two designs look al-
most the same under DP. In contrast, under ERATO, the
dependent sensitivity in the top-down design utilizes a
more accurate calculation than that in the bottom-up design,
by considering whether the weight is negative or positive.
This implies distinct privacy losses and thus distinct privacy
compensations under ERATO.

Gaussian Distribution: We show the privacy compen-
sations of Gaussian distribution fitting under ERATO. We
recall that the Gaussian distribution can be answered by
sum and sum of squares. Here, we set the number of
data owners to be 10000. Besides, in the bottom-up design,
we set the variance of noise v to be 100, which gives an
error of 50 with 96% confidence by Chebyshev’s inequality.
Moreover, we scale the values inside the tanh function into
the range 0 to 5 to better show the differences among privacy
compensations in the bottom-up design. We plot the major
privacy compensations and their corresponding percentages
in Fig. 5, where the results are derived by averaging 10 kinds
of energy consumptions.

First, we can see from Fig. 5 that different data owners
may obtain distinct privacy compensations rather than the
uniform 10 units under DP, although their weights and data
domains are the same. The reason is that each data owner
has a distinct set of correlated data owners or even the
same set but with different strength of correlations, which
implies a distinct privacy loss. Second, by comparing priva-
cy compensations in a specific design for two statistics, we
can see that they are different from each other, because the
dependence coefficient between the same pair of correlated
data items in the sum changes in the sum of squares. Third,
we compare the privacy compensations in two designs for
a certain statistic, and find them consistent in general. This
is because when both correlations and weights are positive,
the privacy losses measured by two designs are the same. In
addition, when the total privacy compensations are fixed,
the difference between two designs is that the bottom-up
design further applies tanh to the privacy losses. Hence, two
designs of privacy compensation are consistent in general.

Degree Distribution: We now investigate how privacy
compensations are allocated in large-scale social networks.
Fig. 6 depicts the evaluation results of the degree distribu-
tions in Twitter and Google+. We set the variance of noise v
to be 10 in the bottom-up design. From Fig. 6, we can see that
most of privacy compensations fall in the central interval be-
tween 9 units and 11 units in both Twitter and Google+. This
outcome stems from the fact that the degree distribution
of Twitter/Google+ social network asymptotically follows a
power law. In particular, 37.17% and 45.49% of Twitter and
Google+ users have degrees no more than 5, respectively.
Besides, the number of a data owner’s degrees has a positive
correlation with her privacy loss [15]. Therefore, most of the
data owners are compensated around the average 10 units.

We finally give some comments on the ERATO and DP
based privacy compensations holistically. First, under DP,
the data owners with zero weights receive no compensation
in weighted sum. Besides, each data owner is compensated

with the indiscriminate 10 units in the other two aggregate
statistics. However, such a DP-based allocation scheme is
unfair/unreasonable in terms of privacy loss: For weighted
sum, a zero-weight data owner can still suffer privacy loss,
if her correlated data owners are involved in the service;
For the other two statistics, different data owners may
have distinct sets of correlated data owners, or even the
same set but with different correlation coefficients, which
indicates that privacy losses can be different from each
other. Specifically, for degree distribution, a higher degree
the data owner has, the more social connections she keeps,
and the richer private information can be leaked. In short,
DP-based privacy compensation is actually another kind
of unfairness. In contrast, our ERATO, which discriminates
a data owner’s privacy compensation with regard to her
dependent privacy loss, and introduces the novel property
of dependent fairness, has proven to be fairer in practice.

The above evaluation and analysis results demonstrate
that two designs of privacy compensation in ERATO can
indeed compensate the data owners for their privacy losses
in a fairer and more fine-grained way.

6 RELATED WORK

In this section, we briefly review related work.

6.1 Data Market Design

In recent years, data market design has gained increasing
attention, especially from the database community. The
researchers in this field mainly focus on query-based pric-
ing [29], [30]. Koutris et al. [37] showed that the prices of
a large class of SQL queries can be computed using ILP
solvers. Lin and Kifer [9] designed arbitrage-free pricing
functions for arbitrary query formats. Deep and Koutris [16]
characterized the structure of arbitrage-free pricing func-
tions in both answer-dependent and instance-independent
settings. Based on this work, they also implemented a
scalable pricing framework for more relational queries [17].
Specific to private data, Ghosh and Roth [12] considered
differential privacy as a commodity, and proposed to selling
privacy at auction for single counting query. The follow-up
works by Li et al. [1], [33], [38] further extend to multiple
linear queries by introducing arbitrage freeness. Different
from these data trading works, Wang et al. [39] focused
on the data collection process, where the data broker is
untrusted, and each data owner tends to report a noisy
version of her private data. They thus established a game-
theoretic model to measure the value of privacy.

However, none of above works has taken data correla-
tions into account, and further considered service pricing
and privacy compensation in practical aggregate statistics.

6.2 Privacy Preserving Aggregate Statistics

An explosive demand of mining private data from a variety
of sources contributes to growing interest in privacy pre-
serving aggregate statistics, where untrusted data analysts
can study patterns or statistics over a population while
maintaining individual privacy. Shi et al. [19] considered
the sum statistic for time-series data, e.g., electrical usage
and medical telemetry data. Their design is based on dis-
tributed differential privacy and additively homomorphic
encryption. Popa et al. [26] developed a practical system,
called PrivStats, to support common aggregate statistics
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over location data. PrivStats guarantees privacy and ac-
countability by exploiting additively homomorphic encryp-
tion and zero-knowledge proof of knowledge. In particular,
to facilitate efficient oblivious evaluation, PrivStats requires
the data owner to upload a general function value of
her raw data di. Such a practice inspires us to introduce
an interfaced database x in the data market setting, and
to further model common aggregate statistics as a set of
dot product operations. In contrast to the above works,
Corrigan-Gibbs and Boneh [40] introduced multiple data
analysts to collaboratively compute aggregate statistics in
a private, robust, and scalable fashion. Their system mainly
integrates secret-shared non-interactive proofs (SNIPs) with
affine-aggregatable encodings (AFEs).

Unfortunately, the original intention of these works is
preserving privacy against untrusted data analysts rather
than pricing noisy aggregate statistics for data consumers,
and quantifying and compensating privacy losses for data
owners, which are instead the major focuses of our work.

6.3 Differential Privacy over Correlated Data
The classical differential privacy framework, proposed by
Dwork et al. [10], [11], adopts a different security assumption
that the data analyst can be trusted. Under this assumption,
the data analyst adds appropriate noises to aggregate results
before releasing them, which can protect an individual’s
private information. However, as pointed by Kifer and
Machanavajjhala [13], when there exist correlations among
the data items, the perturbation in differential privacy can
be inadequate. They thus proposed a generalized version
of differential privacy, called Pufferfish privacy [41]. Many
follow-up research works have been going on around this
particular issue. In addition to the dependent differential
privacy [31] utilized in this work, Yang et al. [15] focused
on the correlation structure modeled by Gaussian Markov
random fields. Xiao et al. [42] considered how to protect a
user’s consecutive locations, and employed Markov chains
to model temporal correlations. Cao et al. [43] quantified
the risk of differential privacy under the continuous aggre-
gate release over multiple users’ locations. Song et al. [14]
proposed a Wasserstein mechanism for any general Puffer-
fish instantiation, together with a computationally efficient
Markov quilt mechanism for Bayesian networks.

However, the above works still aim at privacy preserva-
tion but now against external attackers, e.g., data consumers
in data markets. Yet, some of their principles can be bor-
rowed to quantify fine-grained privacy losses for a wider
range of aggregate statistics.

7 CONCLUSION AND FUTURE WORK
In this paper, we have proposed the first pricing framework
ERATO for data markets, which provide common aggregate
statistics over private correlated data. In ERATO, the data
consumer has to faithfully request the desired service rather
than gaming the system through buying a bundle of cheaper
services. Besides, the data owners can be compensated for
their dependent privacy losses in a more fine-grained way.
Furthermore, we have instantiated ERATO with three differ-
ent kinds of aggregate statistics, and extensively evaluated
their performances on four practical datasets. Evaluation
results have demonstrated the feasibility of ERATO from
the improvement of statistic utility, the arbitrage freeness of
service pricing, and the fairness of privacy compensation.

As for future work, one interesting direction is to inves-
tigate how to trade more kinds of personal data in practice,

e.g., health records, physical activities, and driving trajec-
tories. Specific to a concrete kind of data, we should first
determine an appropriate trading format, and further rule
out arbitrage opportunities when pricing different trading
settings. For example, in the case of trading time-series
data, the data consumer may be allowed to designate a
pair of starting and ending points together with a sampling
period. In addition to the trading format, we also need
to consider the underlying data characteristics, especially
when quantifying privacy loss, e.g., social, temporal, and
spatial correlations among the multiple data owners’ driv-
ing trajectories. Yet, another potential research direction is
to balance pros and cons brought by relaxing the arbitrage
freeness requirement. Here, pros are for the data broker, and
cons are from cunning data consumers. In essence, arbitrage
freeness implies the computational infeasibility of arbitrage
attack, and requires the pricing functions to preserve strict
mathematical properties. Suppose the data broker relaxes
arbitrage freeness, e.g., by abandoning some rules in the de-
terminacy relation. She can choose a wider range of pricing
functions, and support more aggregate statistics. However,
the arbitrage attack now becomes computationally feasible.
If attack cost is no more than revenue, the data consumers
are well-motivated to launch arbitrage attacks.
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