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ABSTRACT
Powered by machine learning techniques, online advertising plat-
forms have launched various automated bidding strategy services to
facilitate intelligent decision-making for advertisers. However, ad-
vertisers experience heterogeneous advertising environments, and
thus the unified bidding strategies widely used in both academia
and industry suffer from severe unfairness issues, resulting in signif-
icant ad performance disparity among advertisers. In this work, to
resolve the unfairness issue and improve the overall system perfor-
mance, we propose a personalized automated bidding framework,
namely PerBid, shifting the classical automated bidding strategy
with a unified agent to multiple context-aware agents correspond-
ing to different advertiser clusters. Specifically, we first design an
ad campaign profiling network to model dynamic advertising envi-
ronments. By clustering the advertisers with similar profiles and
generating context-aware automated bidding agents for each clus-
ter, we can match advertisers with personalized automated bidding
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strategies. Experiments conducted on the real-world dataset and on-
line A/B test on Alibaba display advertising platform demonstrate
the effectiveness of PerBid in improving overall ad performance
and guaranteeing fairness among heterogeneous advertisers.
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1 INTRODUCTION
With the rapid expansion of e-commerce, online advertising is be-
coming the major venue for many brands and stores for product
promotion [15]. The ad delivery process in online advertising is
much complicated for advertisers, including ad campaign config-
uration (such as targeted user group selection and budget assign-
ment [18, 40]) and bidding in ad auctions for ad exposure oppor-
tunities [38, 42, 43]. To better serve advertisers, online advertising
platforms have launched various advertising strategy services, pro-
viding learning-based algorithms to facilitate intelligent decision-
making, and the most representative example is the automated bid-
ding strategy powered by reinforcement learning (RL) [19, 23, 37].
Due to data sparsity and computation resource limitations, the auto-
mated bidding strategy is usually implemented in a unified manner,
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which is generated with the bid logs collected from all participating
advertisers and then shared by all advertisers [19].

However, the unified bidding strategy paradigm is not optimal
for each individual advertiser, and has caused severe unfairness
phenomenon among advertisers. Our observations from a deployed
automated bidding strategy service in Alibaba display advertising
platform [1] reveal the underlying reasons for these two issues.
On the one hand, heterogeneous advertisers can encounter dif-
ferent advertising environments at different times, e.g., the user
impression distribution and the winning price of ad auctions vary
greatly. The ad performance of the unified bidding strategy under
heterogeneous advertising environments could be utterly different,
where the performance disparity can exceed 65%. This is because
the unified bidding strategy fails to perceive the specific advertis-
ing environment faced by different advertisers. On the other hand,
the dominant and minority advertisers would encounter different
advertising states when applying the RL-based bidding strategy,
resulting in unbalanced state exploration for the RL training. Thus,
the unified bidding strategy experiences lower ad performance
for those minority advertisers with states seldom explored. In this
work, we investigate the personalized RL-based automated bidding
strategy to perceive heterogeneous advertising environments and
efficiently explore different advertising states, aiming to improve
the ad performance and guarantee fairness for all advertisers.

However, designing personalized automated bidding strategies
for heterogeneous advertisers is challenging. First, the advertising
environment evolves rapidly and is jointly determined by numerous
factors, such as advertising time, target audience and other adver-
tisers’ strategies. The frequent fluctuation of the environment also
brings uncertainty to the ad performance, making it hard to repre-
sent the environment by simply observing local state transitions
as in model-based RL [3, 25], requiring more informative features
to capture the context of the environments. Second, even with an
appropriate model for heterogeneous advertising environments,
directly integrating it into the RL-based bidding strategy training
process would greatly enlarge state space, which exacerbates data
sparsity and unbalanced state exploration, making it challenging
to train a context-aware automated bidding agent efficiently.

To jointly address these challenges, we design a personalized au-
tomated bidding framework, namely PerBid, which generates a set
of context-aware automated bidding strategies, instead of a unified
bidding strategy, for heterogeneous advertising environments. The
high-level intuition behind PerBid is that by matching heteroge-
neous advertisers with personalized automated bidding strategies
based on the precise perception of the advertising environments, we
can improve the performance of the minority advertisers and thus
resolve the unfairness. In PerBid, we first design an ad campaign
profiling network to perceive and represent the heterogeneous
advertising environment, enabling to design context-aware auto-
mated bidding strategies with good generalization ability. Then,
we group advertisers in similar advertising environments into clus-
ters, and train automated bidding strategies for each advertiser
cluster. Finally, given the ad campaign profiles and the candidate
context-aware strategies, we match each individual advertiser with
the most suitable automated bidding strategy and conduct local
adaptation to further improve the performance. Through experi-
ments conducted on the real-world industrial dataset and online
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Figure 1: An Advertising Strategy Service.

A/B test, we demonstrate the advantages of PerBid in optimizing
average performance and guaranteeing fairness for all advertisers.

Our contributions in this work can be summarized as follows:
•We take an in-depth investigation on the performance of auto-

mated bidding services for advertisers, and reveal the connection
between the ubiquitous unfairness issues and the unified strategy
paradigm by analyzing the dataset collected from a deployed auto-
mated bidding service for millions of daily active advertisers.
• We propose a personalized automated bidding framework,

namely PerBid, for fairness-aware online advertising. We propose
an ad campaign profiling network to represent heterogeneous ad-
vertising environments, which enables the design of context-aware
automated bidding strategies. We prevent data sparsity and unbal-
anced state exploration by dynamically grouping advertisers with
similar profiles into multiple clusters, and assigning each cluster
with a context-aware automated bidding strategy. We finally match
each advertiser with a personalized bidding strategy.
•We conduct comprehensive experiments on a real-world in-

dustrial dataset and an online A/B test on an industrial production
environment to validate the effectiveness of PerBid. The results of
the online A/B test demonstrate that PerBid can improve the overall
ad performance by 8.02% and the fairness metric (Generalized Gini
Social Welfare Function) by 8.53%.

2 PRELIMINARIES
In this section, we first introduce the general advertising strategy
service deployed on Alibaba display advertising platform. Then, we
specify the strategy service in the context of automated bidding. Fi-
nally, we discuss the widespread unfairness among advertisers due
to the unified bidding strategy paradigm widely used in industry.

2.1 Advertising Strategy Service
In online advertising, advertisers promote their products by de-
ploying ad campaigns, which will attend a series of ad auctions to
compete for ad exposure opportunities/user impressions1. During
this process, advertisers need to determine the ad campaigns’ pa-
rameters, e.g., optimization objectives and constraints, and then
design the bidding strategy to solve this constrained optimization
problem. To help advertisers make right decisions, the advertising
platform launches various advertising strategy services. As shown
in Figure 1, the decision-making process can be divided into two
1Without loss of generality, we assume each advertiser conducts one ad campaign,
and use advertiser and ad campaign interchangeably.
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components: campaign configuration module and bid optimization
module. Before the advertising process, the campaign configura-
tion module recommends potential target audiences, and also helps
advertisers formulate the optimization objective and multi-level
constraints (such as total budget and Pay-Per-Click (PPC)). Dur-
ing the advertising process, bid optimization module attempts to
optimize the objective under the constraints. Specifically, an auto-
mated bidding agent, on behalf of the advertiser, competes with the
other advertisers by offering bids for each ad auction. The agent
timely adjusts its bids based on real-time feedback about the adver-
tising performance. At the end of the advertising process, bid logs
recording the information about each ad auction, including auction
time, user impression profile, and winning price, will be stored. Due
to data sparsity and computation resource limitations, the adver-
tising platform trains a unified agent by optimizing the average
performance with the bid logs mainly from dominant advertisers.

2.2 Automated Bidding Strategy
We next describe the strategy services in the context of automated
bidding, which is formulated as an online optimization problem:

max
x

𝑛∑︁
𝑖=1

𝑥𝑖 × 𝑣𝑖 , (1)

𝑠 .𝑡

𝑛∑︁
𝑖=1

𝑥𝑖 × 𝑐𝑜𝑠𝑡𝑖 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡, (2)∑𝑛
𝑖=1 𝑥𝑖 × 𝑐𝑜𝑠𝑡𝑖∑𝑛
𝑖=1 𝑥𝑖 × 𝑐𝑡𝑟𝑖

≤ 𝑃𝑃𝐶, (3)

𝑥𝑖 ∈ {0, 1},∀𝑖 ∈ [1, 𝑛],

where 𝑛 is the total number of ad auctions/user impressions, 𝑣𝑖 is
the value of each user impression 𝑖 contributed to the objective
(we take the example of user conversion in this work), 𝑐𝑜𝑠𝑡𝑖 is
the money that should be paid if winning the auction (also called
as winning price), and 𝑐𝑡𝑟𝑖 is the probability of the user to click
the ad. The vector x = (𝑥1, 𝑥2, ..., 𝑥𝑛) indicates whether the user
impression is selected to display the ad (𝑥𝑖 = 1 is to display ad
to user impression 𝑖; otherwise is not). 𝐵𝑢𝑑𝑔𝑒𝑡 and 𝑃𝑃𝐶 are the
pre-set parameters for the constraints of budget and the expected
pay-per-click, respectively.

For automated bidding, the agent sets different bids for each user
impression based on its contribution to optimizing the objective as
well as keeping the constraints. The optimal bid for user impression
𝑖 can be derived through the primal-dual method [38, 43] and has
the following form:

𝑏𝑖𝑑∗𝑖 =
𝑣𝑖

(_∗1 + _
∗
2) × 𝑐𝑡𝑟𝑖

+
_∗2 × 𝑃𝑃𝐶
(_∗1 + _

∗
2)
, (4)

in which _∗1 and _∗2 are the optimal dual variables of budget and
PPC constraints in (2) and (3), respectively, and the corresponding
optimal selection result under Generalised Second Price (GSP) [15]
auction with Cost-per-Click pricing rule [38] is

𝑥∗𝑖 =

{
1, if 𝑏𝑖𝑑∗

𝑖
× 𝑐𝑡𝑟𝑖 > 𝑐𝑜𝑠𝑡𝑖 ,

0, Otherwise. (5)

We further rescale the dual parameters as

𝛼∗ =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ( 𝑣𝑖𝑐𝑡𝑟𝑖 )
(_∗1 + _

∗
2) × 𝑃𝑃𝐶

, 𝛽∗ =
_∗2

(_∗1 + _
∗
2)
. (6)

Thus, we transform the optimal bid in (4) into a linear form as

𝑏𝑖𝑑∗𝑖 =

(
𝛼∗ ×

𝑣𝑖
𝑐𝑡𝑟𝑖

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ( 𝑣𝑖𝑐𝑡𝑟𝑖 )
+ 𝛽∗

)
× 𝑃𝑃𝐶. (7)

Since the optimal bidding parameters 𝛼∗ and 𝛽∗ can only be
calculated by solving the offline linear programming, the control-
based automated bidding strategies, e.g., feedback control [38, 42]
and RL [19, 23, 37], are proposed to fine-tune these parameters in
an online manner. In this work, we focus on the RL-based meth-
ods, and formulate the parameter adjustment process as a Markov
Decision Process (MDP). Specifically, we introduce states 𝑠 ∈ S to
describe the real-time advertising status and actions 𝑎 ∈ A to adjust
the corresponding bidding parameters. The RL-based automated
bidding agent will take action 𝑎𝑡 at the state 𝑠𝑡 based on its policy
𝜋 , and then the state will transit to the next state 𝑠𝑡+1 ∈ S and gain
reward 𝑟𝑡 ∈ R according to the advertising environment dynamic
T : (𝑠𝑡 , 𝑎𝑡 ) → (𝑠𝑡+1, 𝑟𝑡 ). The expected long-term value to the end
by taking 𝑎𝑡 at 𝑠𝑡 is defined as 𝐺 (𝑠𝑡 , 𝑎𝑡 ). During RL agent training,
the policy 𝜋 will be improved to take the action that maximizes the
expected long-term value, i.e., 𝜋 (𝑠) = argmax

𝑎
𝐺 (𝑠, 𝑎).

We next describe the implementation of this RL-based automated
bidding agent in the industrial online advertising system [19]. The
state 𝑠 , action 𝑎, and reward 𝑟 are defined as follows:
• State 𝑠𝑡 describes the real-time advertising status at time period

𝑡 , which includes 1) remaining time of the ad campaign; 2) remain-
ing budget; 3) budget spending speed; 4) real-time cost-efficiency
(PPC), 5) average cost-efficiency (PPC), and 6) current bidding pa-
rameters 𝛼𝑡 and 𝛽𝑡 .
• Action 𝑎𝑡 indicates the adjustment to the bidding parameters

at the time period 𝑡 , i.e., {𝛼𝑡 , 𝛽𝑡 } = {𝛼𝑡−1, 𝛽𝑡−1} +𝑎𝑡 , which has two
dimensions (𝑎𝛼𝑡 , 𝑎

𝛽
𝑡 ). After receiving 𝑠𝑡 , the agent uses its policy 𝜋 ,

implemented with a deep neural network, to generate 𝑎𝑡 = 𝜋 (𝑠𝑡 ).
• The reward 𝑟𝑡 is the value contributed to the objective ob-

tained within the time period 𝑡 . We denote the accumulated reward
achieved before the time period 𝑡 as 𝑅𝑡 , and 𝑅−𝑡 is the total fu-
ture reward following the adjusted bidding parameters {𝛼𝑡 , 𝛽𝑡 }. To
jointly consider objective optimization and keeping cost-efficiency
constraint, the expected long-term value𝐺 is defined as𝐺 (𝑠𝑡 , 𝑎𝑡 ) =
𝑅𝑡+𝑅−𝑡
𝑅∗ − 𝑃 , where 𝑅∗ is the total reward using the offline optimal

bidding parameters, and 𝑃 is the penalty for violating the PPC con-
straint.𝐺 can be obtained directly through bid logs during offline
training without recording 𝑟𝑡 in each time.

2.3 Fairness in Automated bidding
We investigate the unfairness phenomenon among advertisers
through an industrial dataset with 250 million ad auctions collected
from Alibaba display advertising platform. The detailed experiment
setup and analysis can be found in Section 4.2. We present the
main results here: using the currently deployed unified automated
bidding strategy, the ad performance for different advertisers varies
significantly, where the worst 10% advertisers can only achieve
76% of the ad performance compared with that of the best 10%
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(a) Budget-Sensitive. (b) PPC-Sensitive.

Figure 2: Distribution of states encountered by different types
of ad campaigns. The normalized average PPC and budget
spending speed are defined in (8).

advertisers on average. The advertisers with a larger proportion
dominate the training process and achieve better ad performance,
while the minority suffers from constraint violation and then worse
performance, whose PPC constraint violation rate is 12.27% higher
than the dominant advertisers, and the average ad performance
degrades by 3.24%.

Based on in-depth data analysis for the bid logs, we discover two
major reasons for the above unfairness phenomenon: the hetero-
geneity of advertising environment and the unbalanced exploration of
states. First, the user impression distribution (one of the representa-
tive features of the advertising environment) varies greatly in both
quality and quantity for different ad campaigns, where the average
𝑐𝑡𝑟 can vary by 15 times, and the difference in user impression
volume can even exceed 28 times, making the automated bidding
agent hard to figure out a once-for-all optimal policy. Second, there
exist multiple types of ad campaigns with different proportions, and
they can encounter different states. Simply using the data collected
from all ad campaigns for training can lead to unbalanced state
exploration for the unified RL-based bidding agent, which further
exacerbates the unfairness issues since the agent can obtain better
performance for the ad campaigns with fully explored states than
the ones with states seldom observed. In Alibaba display adver-
tising platform, there exist three common types of ad campaigns:
budget-sensitive ad campaigns, PPC-sensitive ad campaigns, and
the mixture of them, and their proportions are 59.61%, 20.20%, and
20.19%, respectively. As shown in Figure 2, the budget-sensitive ad
campaigns encounter more states where the budget is limited (right
end of the figure), and thus focus on pacing the budget spending
speed, while the encountered states of PPC-sensitive campaigns
focus on PPC controlling (top left of the figure). Such a difference
in encountering states intensifies the unbalanced state exploration
and training, leading to different ad performance: the average ad
performance of the mixture type decreases by 4.82% compared with
that of the budget-sensitive ad campaigns.

In this work, we aim to provide each individual advertiser with
personalized and high-quality automated bidding services without
degrading the average performance of all advertisers. There exist
two requirements behind the purpose: First, the ad performance
gaps among different advertisers need to be narrowed. Second,
fairness could not be guaranteed at the expense of efficiency. To
achieve these two properties, in the next section, we introduce
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Figure 3: Design Overview of PerBid.

PerBid, a personalized automated bidding framework for fairness-
aware online advertising.

3 PERSONALIZED AUTOMATED BIDDING
FRAMEWORK

In this section, we first introduce the design overview of PerBid, and
then describe the detailed implementation of the major components.

3.1 Design Overview
In this work, we achieve personalized automated bidding by gener-
ating a set of candidate context-aware automated bidding strategies
(RL agents) that can perceive heterogeneous advertising environ-
ments, and then matching each ad campaign with the most suitable
automated bidding strategy to maximize the overall performance
and prevent the unfairness issue. We show the detailed procedure
of PerBid in Figure 3. We first propose an ad campaign profiling
network to efficiently generate ad campaign profiles that can rep-
resent dynamic advertising environments, enabling to design the
context-aware automated bidding strategy for a specific advertising
environment. Since a unified strategy cannot have good perfor-
mance for all the ad campaigns, we group ad campaigns with simi-
lar profiles and in similar advertising environments into multiple
clusters, and generate a context-aware automated bidding strategy
for each cluster to form the candidate automated bidding strategy
set. For a new coming ad campaign, we extract the ad campaign
profile from its historical bid logs, and match the ad campaign with
the automated bidding strategy achieving the best performance
on the historical data. We further conduct local adaptation for the
matched strategy when necessary.

3.2 Ad Campaign Profiling
To achieve personalized automated bidding, we propose an ad cam-
paign profiling network to reveal the pattern of the dynamic ad-
vertising environment. As shown in Figure 4, the ad campaign
profiling network considers both campaign-level static features and
auction-level dynamic features to generate the ad campaign profile,
which can be trained through an ad performance classification task.

The campaign-level static features describe the advertising envi-
ronment from a macro perspective, including constraint parameters
𝐵𝑢𝑑𝑔𝑒𝑡 and 𝑃𝑃𝐶 , and ID-type features, such as campaign ID, target
audience, advertising time, and etc. These high-level static features
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can help perceive the advertising environment coarsely but quickly.
We use data embedding [13] to transform the ID-type features into
dense vectors.

For the auction-level dynamic features, we first conduct feature
encoding directly based on the bid logs to represent real-time adver-
tising environments in each time period, and then use the recurrent
neural network [39] to model the environment evolvement across
multiple time periods. For the feature encoding process, we group
the large-scale bid logs based on the time period they belong to.
Within each time period, we focus on representing the distribution
of user impressions’ cost-efficiency metrics, i.e., 𝑐𝑜𝑠𝑡𝑖𝑣𝑖

and 𝑐𝑜𝑠𝑡𝑖
𝑐𝑡𝑟𝑖

,
since they directly decide the final auction results according to
the rule in (5). Due to budget and PPC constraints, only the user
impressions with high cost-efficiency might be selected, while the
long-tail user impressions have not so much effect on the overall
auction results. Therefore, we sort the user impressions based on
their cost-efficiency metric and record the cost-efficiency metrics of
the top 10%, 30%, and 50% user impressions along with the user im-
pression volume and average winning price to form a vector 𝐸𝑡 for
each time period 𝑡 . To represent the evolvement of the advertising
environment, we use a GRU module [11] to capture the temporal
relation across multiple time periods, whose input is the encoded
features {𝐸1, ..., 𝐸𝑇 }, and the output is the hidden state ℎ(𝑇 ).

We concat campaign-level features and auction-level features to
form the ad campaign profile. We train the parameters of the ad
campaign profiling network through a classification task, which
predicts the range of the obtained ad performance. The classification
is implemented by a fully-connected neural network, whose inputs
are the ad campaign profile and the bidding parameters 𝛼 and
𝛽 , and the output is the corresponding class of the obtained ad
performance. Specifically, suppose 𝑁 ad campaigns are divided into
𝐾 classes based on their ad performance, and the one-hot label of ad
campaign 𝑖 is 𝑦𝑖 =

(
𝑦1
𝑖
, ..., 𝑦𝐾

𝑖

)
, the ad campaign profiling network

can be optimized by minimizing the cross-entropy loss function:

𝐿𝑜𝑠𝑠 = − 1
𝑁

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝑦
𝑗
𝑖
log

(
𝑓𝑗 (𝑃𝑟𝑜 𝑓 𝑖𝑙𝑒𝑖 , 𝛼𝑖 , 𝛽𝑖 )

)
, where

𝑃𝑟𝑜 𝑓 𝑖𝑙𝑒𝑖 = (ℎ(𝑇𝑖 ), 𝐵𝑢𝑑𝑔𝑒𝑡𝑖 , 𝑃𝑃𝐶𝑖 , Embedding(𝐼𝐷_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 )) .
Compared with only using the constraint parameters 𝐵𝑢𝑑𝑔𝑒𝑡 and
𝑃𝑃𝐶 , applying the extracted ad campaign profile can greatly im-
prove the classification accuracy from 57.87% to 88.18%, demon-
strating the effectiveness of the ad campaign profiling network in

representing the dynamic advertising environments. We provide a
feature encoding example and display more implementation details
in supplementary material [2].

3.3 Context-aware Bidding Strategy
Based on the ad campaign profile, we further propose a context-
aware automated bidding strategy for personalized bidding in het-
erogeneous advertising environments. The design principle is that
we aim to enable the automated bidding strategies to perceive dy-
namic advertising environments and at the same time ensure the
generalization ability.

Following RL-based automated bidding agent in Section 2.2, we
preserve the action 𝑎 and expected long-term reward 𝐺 , and re-
design the state 𝑠 . To achieve environment perception, we first
introduce context features, which are the hidden state ℎ(𝑡) of the
GRU module in the ad campaign profile, to extend the state space,
aiming to reveal the pattern and evolvement of the dynamic adver-
tising environment. This approach shares a similar idea with the
model-based RL [25] and context-based meta-RL [16, 20, 31] that
generates context variables based on state transitions for environ-
ment/task representation. Considering the number of ad campaigns
is far larger than the tasks considered in the classical meta-RL, it
requires a strong generalization ability in terms of features in the
state, and simply enlarging the state space could further exacerbate
unbalanced training and exploration of different states. Therefore,
we do not directly encode the high-level sparse campaign-level
features into the context feature but use them to revise the status
features to enable them better represent real-time advertising status
based on environment information, which can compress the state
space and enhance the strategy’s generalization ability.

Specifically, we define the state 𝑠𝑡 at time period 𝑡 as:

𝑠𝑡 = {𝑠𝑡𝑎𝑡𝑢𝑠𝑡 , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑡 }, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑡 = ℎ(𝑡),
𝑠𝑡𝑎𝑡𝑢𝑠𝑡 = {𝑟𝑒𝑚𝑎𝑖𝑛_𝑡𝑖𝑚𝑒𝑡 , 𝑟𝑒𝑚𝑎𝑖𝑛_𝑏𝑢𝑑𝑔𝑒𝑡𝑡 , 𝑠𝑝𝑒𝑛𝑑_𝑠𝑝𝑒𝑒𝑑𝑡 ,
𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑝𝑝𝑐𝑡 , 𝑝𝑝𝑐𝑡 , 𝛼𝑡 , 𝛽𝑡 },

where 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑡 is the context features representing the advertising
environment and 𝑠𝑡𝑎𝑡𝑢𝑠𝑡 is the status features describing real-time
advertising status. The detailed definitions of the status features af-
ter revision using the campaign-level features and historical context
information are summarized as follows

𝑟𝑒𝑚𝑎𝑖𝑛_𝑡𝑖𝑚𝑒𝑡 =
𝑇 − 𝑡
𝑇

, 𝑝𝑝𝑐𝑡 =
𝐶𝑜𝑠𝑡𝑡

𝐶𝑙𝑖𝑐𝑘𝑡 × 𝑃𝑃𝐶
,

𝑟𝑒𝑚𝑎𝑖𝑛_𝑏𝑢𝑑𝑔𝑒𝑡𝑡 =
𝐵𝑢𝑑𝑔𝑒𝑡 −∑𝑡

𝑖=1𝐶𝑜𝑠𝑡𝑖

𝐵𝑢𝑑𝑔𝑒𝑡
,

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑝𝑝𝑐𝑡 =
∑𝑡
𝑖=1𝐶𝑜𝑠𝑡𝑖∑𝑡

𝑖=1𝐶𝑙𝑖𝑐𝑘𝑖 × 𝑃𝑃𝐶
,

𝑠𝑝𝑒𝑛𝑑_𝑠𝑝𝑒𝑒𝑑𝑡 = min
©«

∑𝑇
𝑖=𝑡+1 𝑤𝑖

𝑤𝑡
× 𝐶𝑜𝑠𝑡𝑡
𝐵𝑢𝑑𝑔𝑒𝑡

𝑟𝑒𝑚𝑎𝑖𝑛_𝑏𝑢𝑑𝑔𝑒𝑡𝑡
− 1, 1

ª®®¬ ,
(8)

where 𝐶𝑜𝑠𝑡𝑡 and 𝐶𝑙𝑖𝑐𝑘𝑡 are the total cost spent and the clicks ob-
tained during the time period 𝑡 , respectively. The constraint param-
eters 𝐵𝑢𝑑𝑔𝑒𝑡 , 𝑃𝑃𝐶 , and the campaign duration 𝑇 are leveraged to
normalize 𝑟𝑒𝑚𝑎𝑖𝑛_𝑡𝑖𝑚𝑒 and 𝑟𝑒𝑚𝑎𝑖𝑛_𝑏𝑢𝑑𝑔𝑒𝑡 , and to map 𝑝𝑝𝑐 and
𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑝𝑝𝑐 to a relative value. We use the historical knowledge
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Table 1: Definition of Notations in Algorithm 1.

Notation Definition
𝑁 Number of ad campaigns
𝑀 Number of ad campaign clusters
𝑐𝑖 Ad campaign 𝑖 and its bid logs
𝑆 𝑗 Ad campaign cluster 𝑗
𝑎𝑔𝑒𝑛𝑡 𝑗 RL automated bidding agent of cluster 𝑗
𝜋 𝑗/𝑄 𝑗 Policy/Value network of 𝑎𝑔𝑒𝑛𝑡 𝑗
𝐵 𝑗 Replay buffer of cluster 𝑗
𝑂 Recorded observation during exploration
𝜖 Random noise leveraged for exploration
𝑅𝑒𝑠𝑖 𝑗 Normalized ad performance of 𝑐𝑖 using 𝑎𝑔𝑒𝑛𝑡 𝑗
𝑡ℎ𝑟 Campaign re-assignment threshold

about user impression volume distribution in different time periods,
i.e., the weight vector w, to revise 𝑠𝑝𝑒𝑛𝑑_𝑠𝑝𝑒𝑒𝑑 , making it aware of
the evolvement of user impression volume over time. The personal-
ized weight vector w can be calculated based on the ad campaign’s
historical bid logs or the historical data collected from other ad
campaigns with a similar campaign-level profile.

However, simply applying a unified context-aware strategy can
hardly achieve good performance for all the advertising environ-
ments. In the next subsection, we will introduce how to generate
a set of candidate context-aware automated bidding strategies to
handle heterogeneous advertising environments.

3.4 Candidate Strategies Generation
We divide the ad campaigns into multiple clusters, each of which
contains campaigns in similar advertising environments and with
similar profiles, and then train a context-aware automated bidding
strategy (agent) for each cluster. The candidate strategies generation
process can be summarized into three steps, including cluster ini-
tialization, bidding agent training, and ad campaign re-assignment.

We show the detailed procedure for these three steps in Algo-
rithm 1. The notations in the algorithm are defined in Table 1. For
cluster initialization, we first initialize the RL-based automated
bidding agents, and assign each ad campaign to a specific cluster
according to a pre-defined cluster initialization rule (Lines 1 to
3). After cluster initialization, we conduct agent training for each
cluster in a parallel way (Lines 5 to 15). For a given cluster, we
randomly sample an ad campaign, and explore the possible adver-
tising states of this campaign using the automated bidding agent
associated with this cluster (Lines 7 to 12). We store the observa-
tions about the state, action, and long-term value acquisition in the
replay buffer of the cluster (Line 13). Then, we sample historical
observations of this cluster with importance sampling, and update
the agent’s policy with actor-critic-based RL algorithms [19] (Lines
14 to 15). As agents have the same training/exploration opportuni-
ties on the ad campaigns in the corresponding cluster, we enable
the agents covering fewer campaigns to spend more resources ex-
ploring the states seldom encountered and pay more attention to
understanding those unusual advertising environments, resolving
the unbalanced exploration of states. As the cluster initialization
rule could be sub-optimal, we re-assign the ad campaign to the
new cluster when necessary at the end of each training iteration
(Lines 16 to 21). For each ad campaign 𝑐𝑖 in the cluster 𝑗 , we evalu-
ate its ad performance under different automated bidding agents

Algorithm 1: Candidate Strategies Generation.
Input: Ad Campaigns C = {𝑐1, ..., 𝑐𝑁 }; Automated Bidding

Agents A = {𝑎𝑔𝑒𝑛𝑡1, ..., 𝑎𝑔𝑒𝑛𝑡𝑀 }; Replay Buffers
B = {𝐵1, 𝐵2, ..., 𝐵𝑀 }; Clusters S = {𝑆1, ..., 𝑆𝑀 };

1 Initialize 𝑎𝑔𝑒𝑛𝑡 𝑗 with policy network 𝜋 𝑗 and value network
𝑄 𝑗 for each cluster 𝑆 𝑗 ; // Initialization step.

2 for Campaign 𝑐𝑖 ∈ C do
3 𝑗 ← 𝐼𝑛𝑖𝑡_𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝑐𝑖 ); 𝑆 𝑗 ← 𝑆 𝑗 ∪ 𝑐𝑖 ;
4 while Not Converge do
5 for Cluster 𝑆 𝑗 ∈ S do
6 for 𝑒𝑝 from 1 to 𝐸𝑝𝑖𝑠𝑜𝑑𝑒 do // Training Step.
7 Randomly select the campaign 𝑐𝑖 ∈ 𝑆 𝑗 ;
8 Initialize bidding parameters {𝛼1, 𝛽1};
9 for 𝑡 from 2 to 𝑇𝑖 do
10 Obtain state 𝑠𝑡 with parameters {𝛼𝑡−1, 𝛽𝑡−1};
11 Explore state 𝑠𝑡 by taking 𝑎𝑡 ← 𝜋 𝑗 (𝑠𝑡 ) + 𝜖 ,

{𝛼𝑡 , 𝛽𝑡 } ← {𝛼𝑡−1, 𝛽𝑡−1} + 𝑎𝑡 ;
12 Observe long-term value 𝐺 (𝑠𝑡 , 𝑎𝑡 );
13 Store observation 𝑂 (𝑠𝑡 , 𝑎𝑡 ,𝐺 (𝑠𝑡 , 𝑎𝑡 )) to 𝐵 𝑗 ;
14 Sample observations O from 𝐵 𝑗 ;
15 Update 𝜋 𝑗 and 𝑄 𝑗 with O;
16 for Campaign 𝑐𝑖 ∈ 𝑆 𝑗 do // Re-assignment step.
17 for 𝑎𝑔𝑒𝑛𝑡𝑘 ∈ A do
18 𝑅𝑒𝑠𝑖𝑘 ← 𝐴𝑢𝑐𝑡𝑖𝑜𝑛_𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑐𝑖 , 𝑎𝑔𝑒𝑛𝑡𝑘 );
19 𝑘∗ = argmax𝑘 𝑅𝑒𝑠𝑖𝑘 ;
20 if 𝑅𝑒𝑠𝑖𝑘∗ − 𝑅𝑒𝑠𝑖 𝑗 > 𝑡ℎ𝑟 then
21 𝑆𝑘∗ ← 𝑆𝑘∗ ∪ 𝑐𝑖 ; 𝑆 𝑗 ← 𝑆 𝑗 \ 𝑐𝑖 ;

22 Return the set of candidate strategies A;

through offline advertising simulations. We re-assign the ad cam-
paigns with poor performance using the current agent to a new
cluster with better performance. There are several advantages of
this re-assignment process: It can better capture heterogeneous
advertising environments based on real-time agent performance,
accelerate the training convergence, and then improve the agents’
performance.

3.5 Strategy Matching and Adaptation
With the candidate strategies, we can match each arriving ad cam-
paign with the optimal automated bidding strategy, and further
fine-tune the matched strategy by conducting local adaptation over
its own historical data.

We design a weighted average prediction algorithm [7] for the
strategy matching process. For an ad campaign arriving at day 𝑑 ,
we sample its historical data of the previous 𝐷 days. For each day
𝑖 , we conduct advertising simulation to obtain the performance of
the𝑀 candidate strategies on the historical data, and obtain day 𝑖’s
normalized score vector Res𝑖 = (𝑅𝑒𝑠𝑖1, · · · , 𝑅𝑒𝑠𝑖𝑀 ). Based on the
score vectors from all𝐷 days, we calculate a weighted average score
vector Res𝑎𝑣𝑔 = (𝑅𝑒𝑠𝑎𝑣𝑔1 , · · · , 𝑅𝑒𝑠𝑎𝑣𝑔

𝑀
), representing the average

performance of each bidding strategy on the previous 𝐷 days. We
select the strategy with the highest score for the ad campaign.
The adaptation process is similar to the training step in candidate
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strategy generation in Algorithm 1, except that all the training data
is the historical bid logs of the same ad campaign. It is worth to
note that the adaptation process may also lead to over-fitting and
cause performance degradation, and thus it is mainly applied to
the ad campaigns with poor performance. For the cold-start ad
campaigns without enough historical data, we select the strategy
with the best average performance on all clusters. The algorithm
details are provided in supplementary material [2].

4 EXPERIMENT RESULTS
In this section, we first introduce the experiment setup and then
demonstrate the unfairness issues among ad campaigns caused by
the unified automated bidding strategy. After that, we evaluate the
performance of PerBid in a real-world industry dataset. Finally, we
introduce the results of the online A/B test.

4.1 Experiment Setup
Dataset. We use the bid logs collected by Alibaba display advertis-
ing platform as the dataset, which consists of over 250 million bid
logs from over 3500 ad campaigns. We aggregate and regard the bid
logs of the same ad campaign on the same day as a data sample2.
We follow the training data generation process used by Alibaba
display advertising platform to randomly select 3000 samples to be
the training dataset, 663 samples to be the validation dataset, and
483 samples to be the test dataset.
Metric. The performance of an ad campaign is defined as

𝑅𝑒𝑠 = min

(∑𝑇
𝑖=1 𝑟𝑖

𝑅∗
× 1
max(𝑃𝑃𝐶_𝑟𝑎𝑡𝑖𝑜, 1) , 1

)
, (9)

where 𝑃𝑃𝐶_𝑟𝑎𝑡𝑖𝑜 is the ratio of the achieved pay-per-click to the
pre-set 𝑃𝑃𝐶 constraint. The first term in the min operation is the
normalized objective, and the second term is the penalty for PPC
constraint violation. We denote the average performance of all ad
campaigns as 𝑅𝑒𝑠 , and use 𝑅𝑒𝑠0.3 and 𝑅𝑒𝑠0.1 to denote the average
performance of the worst 30% and 10% ad campaigns, respectively.

To measure fairness among advertisers from multiple perspec-
tives, we use two types of metrics: Generalized Gini Social Welfare
Function (𝐺𝐺𝐹 ) [36] and Gini Coefficient (𝐺𝑖𝑛𝑖) [33]3. For𝐺𝐺𝐹 , it is
widely used when discussing the fairness issues in fairness-aware
RL literature [34, 46] or online ranking [14]. We define 𝐺𝐺𝐹 as

𝐺𝐺𝐹g (Res↑) =
𝑁∑︁
𝑖=1

𝑔𝑖 × 𝑅𝑒𝑠↑𝑖 , 𝑔𝑖 =
1 − 𝑖/𝑁∑𝑁

𝑘=1 (1 − 𝑘/𝑁 )
,

where Res↑ indicates the performance vector of all ad campaigns
sorted in an increasing order. The metric 𝐺𝐺𝐹 considers both
the fairness issues and the overall performance by calculating a
weighted average result, which assigns large weights 𝑔 to the ad
campaigns with worse ad performance. A large 𝐺𝐺𝐹 indicates that
the system can achieve good average performance and avoid unfair-
ness, simultaneously. For𝐺𝑖𝑛𝑖 , it measures the statistical dispersion,
and can be used to indicate the performance disparity among ad

2For easy illustration, we use samples/ad campaigns interchangeably in the experiment.
3The evaluation results of more fairness metrics, including 𝛼-Fairness [29], Jain’s
Fairness Index [21] and standard deviation are displayed in supplementary material [2].
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Figure 5: Ad performance distribution of test campaigns.

Table 2: Ad performance of different methods.

Method 𝑅𝑒𝑠 𝐺𝐺𝐹 𝐺𝑖𝑛𝑖 𝑅𝑒𝑠0.3 𝑅𝑒𝑠0.1
Baseline 0.9033 0.8678 0.0392 0.8242 0.7517
Baseline w. Profile 0.9233 0.8943 0.0313 0.8565 0.7969
Fixed Agents (OPT) 0.9327 0.9049 0.0298 0.8678 0.8095
PerBid (OPT) 0.9494 0.9270 0.0235 0.8982 0.8493
PerBid (Match) 0.9337 0.9039 0.0318 0.8640 0.8026

campaigns, which is defined as

𝐺𝑖𝑛𝑖 =

∑𝑁
𝑖=1

∑𝑁
𝑗=1

��𝑅𝑒𝑠𝑖 − 𝑅𝑒𝑠 𝑗 ��
2 × 𝑁 2 × 𝑅𝑒𝑠

.

The larger the 𝐺𝑖𝑛𝑖 is, the more severe the unfairness.
Experiment Settings. In the experiments, the bidding parameters
are initialized with 𝛼1 = 𝛽1 = 0.5, and the time period length is 15
minutes. To generate candidate context-aware bidding strategies,
we set three ad campaign clusters with three candidate automated
bidding agents, i.e., 𝑀 = 3. For cluster initialization rule in Algo-
rithm 1, we initialize the clusters based on the campaigns’ pre-set
𝑃𝑃𝐶 to guarantee the balance clustering. During training step in
Algorithm 1, each training iteration includes 500 train episodes,
and the ad campaign re-assignment threshold is 𝑡ℎ𝑟 = 0.05. More
results about using different𝑀 and 𝑡ℎ𝑟 are discussed in supplemen-
tary material [2]. For strategy matching and adaptation, we use
the historical data from the latest day, i.e., 𝐷 = 1, since most of the
campaigns in the collected offline dataset last for two to three days.

4.2 Unfairness Analysis
We reveal the unfairness issues within the currently deployed au-
tomated bidding service by showing the performance disparity of
different ad campaigns. We regard the unified RL-based automated
bidding agent [19] deployed on Alibaba display advertising plat-
form as Baseline. We show the ad performance distribution in Figure
5, from which we can observe a severe long-tail effect, where over
15% of the ad campaigns can only achieve a 𝑅𝑒𝑠 less than 0.85. The
numerical results in the first row in Table 2 show that compared
with the 𝑅𝑒𝑠 of 0.9033, the 𝑅𝑒𝑠0.1 of Baseline is merely 0.7517, which
means the worst 10% campaigns lost 16.78% of the user conversions
compared with the average performance using the same RL-based
automated bidding agent, and the standard deviation of 𝑅𝑒𝑠 even
exceeds 0.0696. These results validate that the strong heterogeneity
of the advertising environments can greatly affect ad performance.

To explore the reasons behind this unfairness phenomenon, we
analyze the performance of different types of ad campaigns, in-
cluding budget-sensitive campaigns accounting for 59.61% (𝛽∗ = 0),
PPC-sensitive campaigns accounting for 20.20% (𝛽∗ = 1), and the
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Table 3: Average ad performance of three types of ad cam-
paigns under different settings.

Types of Budget-sensitive PPC-sensitive Mixture
Ad Campaigns (59.61%) (20.20%) (20.19%)
Baseline 0.9199 0.9025 0.8756
Consistent 0.9186 0.9443 0.8996
Inconsistent 0.5376 0.7813 0.8599
PerBid(OPT) 0.9570 0.9547 0.9300
PerBid(Match) 0.9349 0.9517 0.9107

mixture of them (𝛽∗ ∈ (0, 1)). In Table 3, we present the average
performance of different types of ad campaigns, where the perfor-
mance is highly related to their proportion in the training dataset.
The Baseline can achieve 𝑅𝑒𝑠 of 0.9199 for budget-sensitive ad cam-
paigns, while can only have 𝑅𝑒𝑠 of 0.8756 for the mixture type,
demonstrating the unbalanced agent training and state exploration
can lead to severe unfairness among different types of campaigns.

To further validate the impact of the advertising environment
on RL-based automated bidding agent training, we compare the
performance of Baseline with two other training settings: Consistent
and Inconsistent, which is to train the agent with the samples from
the same type or different types, respectively. The results in the
second and the third row of Table 3 demonstrate that a consistent
training environment can greatly improve ad performance, while
it degrades significantly if the advertising environment is not con-
sistent with the type of the ad campaign, decreasing from 0.9186 to
0.5376 for the budget-sensitive campaigns.

To demonstrate that such an unfairness problem is non-trivial,
we conduct two additional simple methods for Baseline, trying to
solve the problem by balancing the weight of different ad campaign
types or eliminating the environment heterogeneity during training.
By adjusting the training weight of different types of samples, we
can resolve the unfairness to some extent by improving 𝑅𝑒𝑠0.1 from
0.7517 to 0.7702, but it also degrades 𝑅𝑒𝑠 from 0.9033 to 0.9024. Then,
we further eliminate the impact of environment heterogeneity by
providing each ad campaign with a unique bidding agent trained
with its own historical data. This approach can achieve 𝑅𝑒𝑠 of
0.9350 in the training dataset, while the 𝑅𝑒𝑠 in the test dataset is
only 0.8470, showing poor generalization ability towards dynamic
environments. Therefore, instead of skewing training resources or
eliminating the heterogeneity of environments, the key to solving
the unfairness is balancing agent training and state exploration
based on fully understanding the advertising environment.

4.3 Performance Evaluation
We evaluate the performance of the personalized automated bidding
framework (PerBid) by comparing 4 different methods, including
Baseline, Baseline w. Profile, Fixed Agents, and the proposed Per-
Bid4. Baseline w. Profile improves Baseline and generates a unified
context-aware strategy by introducing context features and revis-
ing status features based on the campaign profile. Fixed Agents
improves Baseline w. Profile by extending the single agent to a set
of candidate agents, which groups the campaigns into three fixed
clusters without campaign re-assignment. We consider its results

4We display the performance of other baseline methods including M-PID [38] and
DRLB [37] in supplementary material [2].

with optimal strategy matching (Fixed Agents (OPT)), which refers
to matching each ad campaign with the optimal candidate strat-
egy that can achieve the best performance in the offline setting,
to study the performance of the candidate strategies generation
algorithm. We denote the proposed framework as PerBid, which
dynamically re-assigns ad campaigns during training. To observe
the performance of the matching algorithm, we show both PerBid
(OPT) and PerBid (Match), where the former indicates the results
with optimal strategy matching, and the latter represents the results
achieved by the proposed matching algorithm. All of these methods
are implemented without local strategy adaptation.

The detailed experiment results are shown in Table 2. For Base-
line, the ignorance of the campaign heterogeneity and the unbal-
anced training leads to poor performance and severe unfairness.
For Baseline w. Profile, it improves 𝑅𝑒𝑠 to 0.9233 and𝐺𝐺𝐹 to 0.8943,
proving the effectiveness of the context-aware automated bidding
strategy. For Fixed Agents (OPT), it outperforms Baseline w. Profile
and increases the 𝑅𝑒𝑠0.1 by 0.0126, proving the application of mul-
tiple agents can better cover heterogeneous ad campaigns. PerBid
(OPT) outperforms all previous methods in both average perfor-
mance and fairness, achieving 0.9494 in 𝑅𝑒𝑠 , and 0.0235 in 𝐺𝑖𝑛𝑖 ,
which verifies the dynamic campaign re-assignment can efficiently
approach a proper ad campaign division to describe heterogeneous
advertising environments5. PerBid (Match) further tells the quality
of the matching algorithm. With limited historical information, its
matching accuracy can exceed 74.53%, and it can achieve 𝐺𝐺𝐹 of
0.9039, while there still exist some mismatched campaigns affecting
the overall fairness, increasing 𝐺𝑖𝑛𝑖 to 0.0318. From the ad perfor-
mance distribution shown in Figure 5, we can observe that PerBid
can ease the long-tail effect and improve the overall performance
compared with the other methods. Meanwhile, as shown in the last
two rows in Table 3, PerBid can also narrow the performance dispar-
ity among different types of ad campaigns, avoiding the influence
of the unbalanced campaign proportion. These results prove that
PerBid can greatly improve ad performance, especially for those
minority ad campaigns, and thus mitigate unfairness issues.

We next verify the effectiveness of local adaptation for further
personalization. Based on the agents generated by PerBid, we select
a subset of campaigns from the test dataset with 𝑅𝑒𝑠 < 0.85 and
apply local adaptation. With merely 15 train episodes, their average
𝑅𝑒𝑠 can be improved from 0.8283 to 0.8501. With a good initial-
ization agent, the fine-tuning process can quickly strengthen the
strategy’s precision toward the specific advertising environment.

Another concern is the convergence speed, which directly affects
the training cost. In Figure 6(a), we display the results of 𝑅𝑒𝑠 on
the validation dataset with different train episodes. Compared with
using a single agent, Fixed Agents and PerBid achieve faster conver-
gence in the early stage, verifying the ad campaign clustering based
on prior knowledge can provide each agent with a stable training
environment and make them quickly learn the basic environment
pattern. With only 1500 train episodes, PerBid (OPT) achieves 𝑅𝑒𝑠
of 0.942, which outperforms the Baseline w. Profile agent trained
for 7500 episodes. Therefore, considering the total training cost
of all candidate agents, our approach can still save computation

5We show more observations about pattern differences in scale, performance, and
campaign distribution for different campaign clusters in supplementary material [2].
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Figure 6: Convergence analysis of different methods.

resources compared with single-agent approaches. In Figure 6(b),
we show the evolvement of the campaign re-assignment scale from
two aspects: the number of re-assigned campaigns and the aver-
age performance improvement after re-assignment at the end of
each training iteration. At the beginning of training, over 30% of
the ad campaigns are re-assigned, which greatly accelerates the
convergence by improving the 𝑅𝑒𝑠 by 0.046. As the training process
continues, the re-assignment scale gradually converges, indicating
that the automated bidding agents are becoming familiar with the
specific advertising environment, and thus the clusters are settled.

4.4 Online A/B Test
To further verify the effectiveness of PerBid, we have deployed it on
Alibaba display advertising platform, comparing it with the baseline
USCB [19] method. The online A/B test is conducted on 1% of the
whole ad campaigns from July 27, 2022, to July 31, 2022, and the
experiment settings are as follows: 1) We keep the strategy design
of the two methods consistent by revising their status features with
a fixed weight vector w, and omit the context features for a fair
comparison. 2) We initialize three campaign clusters based on the
value of offline 𝛽∗ and generate three candidate automated bidding
strategies. We further generate a default strategy trained with sam-
ples in all three clusters to serve the cold-start campaigns. 3) For
the strategy matching process, we utilize the historical information
of the last seven days to select the best candidate strategy. The
results of the online A/B test show that PerBid can significantly
improve the 𝑅𝑒𝑠 by 8.02%, the 𝐺𝐺𝐹 by 8.53%, and the 𝑅𝑒𝑠0.3 by
10.85%, showing its effectiveness in optimizing overall performance
and resolving unfairness. More detailed results and discussion are
shown in supplementary material [2].

5 RELATEDWORK
Automated Bidding. In online advertising, automated bidding has
been widely studied [6, 27, 32, 43]. Zhang et al. [41] first proposed
the linear form optimal bid with budget constraint, and the online
bidding parameter adjustment can be achieved by either feedback
control [42] or model-free RL [37]. Yang et al. extended the opti-
mal bid to a multi-constraint scenario and adjust the parameters
through multi-variable feedback control [38]. Recently, He et al.
proposed USCB to solve constrained bidding with any constraints
through RL [19]. Mou et al. combined online exploration and offline
RL training to handle the inconsistency between online and offline
ad systems [30]. Wang et al. leveraged Curriculum-Guided Bayesian
RL in partially observable environments for ROI-constrained bid-
ding [35]. Meanwhile, clustering techniques are widely used for

designing automated bidding strategies. Lu et al. leveraged state
clustering to aggregate sparse states when applying RL [26]. Jin et
al. utilized advertiser and customer clustering to reduce the com-
plexity of the multi-agent environment [23]. In sponsored search,
ad/keyword clustering [10, 22] is used to avoid data sparsity.
Personalization in User-Side Services. In recent years, person-
alization has become an important method to improve the quality
of user-side services, including recommendation and click-through
rate prediction [5, 17, 45], content generation [8, 9], and setting per-
sonalized promotions and discounts [4, 44]. To achieve personaliza-
tion, these works tend to produce a task-specific user representation
(profile), and then apply such representation to downstream tasks.
In [17], Grbovic et al. utilized both users’ short-term click history
and long-term conversion history along with users’ meta data to
generate user-type embedding for personalized recommendation.
Different from these works, the ad campaign profile we extract is
mainly about the advertising environment.
Context-awareReinforcement Learning.To overcome the strong
dynamicity of the environment and prevent redundant agent train-
ing, context-based meta-RL was proposed to provide the agent
with a capacity to understand and adapt quickly to different tasks
using prior experience on similar tasks. The context-based meta-
RL [16, 20, 28, 31] encodes the state transitions observed during
task adaptation into a latent context variable to represent various
tasks, and the action is taken not only based on the real-time obser-
vation but also on the context, which can further guide the policy
when adapting to new tasks. Such context information was also
leveraged in the scenario of model-based RL [3, 12, 24, 25]. In [25],
Lee et al. proposed a context encoder for future-state prediction
based on real-time state transition trajectories. Different from these
works where the environment dynamic is settled for a specific task,
the ad campaigns experience continuous advertising environment
fluctuation, which brings uncertainty to ad auction results and
then the state transitions. The uncertain state transitions recording
only the development of the advertising status of a single ad cam-
paign can hardly represent the whole environment. In this work,
we use features collected from the advertising platform including
campaign-level features and auction-level features to directly model
the advertising environment.

6 CONCLUSION
In this work, we reveal the unfairness issues in the automated bid-
ding strategy service and analyze the main reasons behind it. To
solve the unfairness among advertisers, we propose a personalized
automated bidding framework. In this framework, we first pro-
pose an ad campaign profiling network to model the advertising
environment, based on which we design context-aware automated
bidding strategies. Then, we group ad campaigns into several clus-
ters based on their profile and assign each cluster with a specific
strategy. Finally, we propose a matching algorithm to match the
heterogeneous campaigns with the most suitable strategies. We
conduct comprehensive offline experiments on a real-world dataset
and online A/B test to verify the effectiveness of the framework in
improving average performance and solving unfairness issues.
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