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ABSTRACT
With the commoditization of personal privacy, pricing private
data has become an intriguing problem. In this paper, we
study noisy aggregate statistics trading from the perspective
of a data broker in data markets. We thus propose ERA-
TO, which enables aggrEgate statistics pRicing over privATe
cOrrelated data. On one hand, ERATO guarantees arbitrage
freeness against cunning data consumers. On the other hand,
ERATO compensates data owners for their privacy losses
using both bottom-up and top-down designs. We further
apply ERATO to three practical aggregate statistics, namely
weighted sum, probability distribution fitting, and degree
distribution, and extensively evaluate their performances on
MovieLens dataset, 2009 RECS dataset, and two SNAP large
social network datasets, respectively. Our analysis and eval-
uation results reveal that ERATO well balances utility and
privacy, achieves arbitrage freeness, and compensates data
owners more fairly than differential privacy based approaches.

CCS CONCEPTS
• Security and privacy → Economics of security and
privacy;
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1 INTRODUCTION
In today’s big data economy, a common practice for Internet
giants, like Google, Facebook, and Twitter, is to provide free
online services in exchange for private information [14]. Never-
theless, when data owners become more aware of the economic
values of personal data and the potential consequences of
privacy disclosure, they would have stronger motivations to
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receive monetary compensations in return [20]. In particular,
a study by JPMorgan Chase found that each unique user is
worth roughly $4 to Facebook and $24 to Google [2]. Further-
more, startup companies, including Datacoup, CitizenMe,
and CoverUs, have already paid data owners for access to
their private data. In a nutshell, data privacy has become a
commodity to be bought and sold in practice.

To facilitate private data circulation, many open informa-
tion platforms have emerged to bridge the gap between data
owners and data consumers. For example, according to an
FTC’s survey on the nine typical data markets [5], Acxiom,
which is the largest data broker, collects private information
from about 700 million users worldwide, and then sells ag-
gregate statistics to the top companies, such as Microsoft,
Oracle, AT&T, etc. However, as further investigated by CBS
News [26], such a multibillion-dollar industry has raised great
attention together with serious doubt. One critical concern
is that the data brokers make huge profits from private in-
formation, whereas they do not properly compensate data
owners for their privacy losses. This criticism prompts the
intermediate data brokers to devise a feasible privacy com-
pensation mechanism for the data owners. In addition, the
pricing strategy for the data consumers, which initially nei-
ther respects privacy nor provides economic guarantee [15],
also requires new design.

To design a pricing framework for practical data markets
trading aggregate statistics over private data, there are three
major challenges. The first and the thorniest challenge is
to rigorously quantify privacy loss. Markets for sensitive
personal data significantly differ from those for ordinary
information goods in privacy compensation. To compensate
each data owner properly, it is necessary to quantify her
privacy loss during the usage of her data. In the context
of aggregate statistics, differential privacy [7] has a natural
utility-theoretic interpretation, which makes it a compelling
measure to quantify individual privacy loss [10]. However,
if the ubiquitous data correlations are further taken into
account, there are two striking differences: On one hand, due
to data correlations, data owners, who are not involved in
an aggregate statistic, may still suffer privacy losses. For
example, Alice’s susceptibility to a contiguous disease can
still be leaked, if one of her family members is involved in the
counting statistic [11]; On the other hand, data owners with
different sets of correlated data owners, or even the same set
but with different correlation coefficients, can have distinct
privacy losses. For example, in degree distribution, the larger
the number of degrees, the more social connections, and the
higher risk of privacy leakage [29]. If differential privacy is
adopted for quantification, the privacy losses are zeros for
the first case, and are the same for the second case, which
are both unreasonable in practice.
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Yet, another challenge comes from the rich and complex
formulas of aggregate statistics. The data consumers in data
markets are normally permitted to purchase multiple statis-
tics. As a consequence, a critical concern is that they may
circumvent the advertised price of a statistic through buying
a bundle of cheaper ones. This economic practice is called
arbitrage, while desirable pricings should be arbitrage free.
Besides, the key issue in investigating arbitrage freeness is
to determine whether a statistic can be derivable from oth-
ers. Such a concept of the determinacy relation has been
well studied in queries/views answering from the database
community [6, 14]. Nevertheless, aggregate statistics tend to
take different and even more complicated forms, e.g., linear
polynomial in weighted sum [28], quadratic polynomial in
Gaussian distribution [18, 23], and nonlinear comparison in
degree distribution [8]. Hence, it is highly nontrivial to design
universal pricing functions for diverse aggregate statistics.

Last but not least challenge is to avoid the arbitrage op-
portunities in varying degrees of perturbation. For the sake
of privacy issues, e.g., the recent Facebook [9] and Twit-
ter [27] data scandals, it is necessary for the data broker to
sell noisy answers of aggregate statistics. Besides, to allow
different prices for the same statistic but with diverse accu-
racies, the data consumer can specify her customized noise
level, e.g., the variance of noise used in [4]. In particular, if
more noise is added to the true answer, the price should be
lower. However, this setting makes reasoning about arbitrage
freeness even harder. For example, a hidden arbitrage attack
is that a clever data consumer is interested in an aggregate
statistic with low variance of noise, while she is reluctant to
pay its full price. She may instead turn to buying the same
statistic multiple times but with diverse high variances. She
can reduce the variance by averaging the returned answers.
Therefore, economically-robust data markets have to rule out
such arbitrage opportunities.

In this paper, by jointly considering above three challenges,
we propose ERATO, which is an aggrEgate statistics pRicing
framework over privATe cOrrelated data. ERATO consists
of a service pricing mechanism and a privacy compensation
mechanism. For service pricing, ERATO first models common
aggregate statistics as a set of dot product operations, where
the dot product is between a weight vector and a data vector.
ERATO then ensures arbitrage freeness with respect to both
the variance of noise and the weight vector. On one hand,
ERATO determines how fast arbitrage-free pricing functions
can decrease with the variance by combating the arbitrage
attack as mentioned above. On the other hand, ERATO es-
tablishes the equivalency between basic arbitrage-free pricing
functions and semi-norms of the weight vector. Besides, ER-
ATO constructs new composite pricing functions by means
of subadditive and nondecreasing functions. In particular,
activation functions from neural networks are introduced to
allow high but finite prices for unperturbed answers. For bal-
anced privacy compensation, ERATO offers both bottom-up
and top-down designs. In the bottom-up design, the sum of
individual privacy compensation determines the price of a
service. Such a design is actually an epitome of service pricing,
and should guarantee micro arbitrage freeness. Regarding
the top-down design, part of the payment from the data

consumer serves as privacy compensation. Hence, it does not
need to ensure micro arbitrage freeness any longer, and is ap-
plicable to any general aggregate statistic. Moreover, ERATO
employs dependent differential privacy to quantify individual
privacy loss over correlated data, and further tightens its
upper bound by distinguishing negative or positive weights
and correlations. At last, ERATO extends the conventional
fairness to a general dependent fairness, which clarifies the
counterintuitive problem that a data owner, who is not in-
volved in the service, can still receive privacy compensation,
if her correlated data owners are involved.

We summarize our key contributions as follows.
∙ To the best of our knowledge, ERATO is the first pric-

ing framework for trading aggregate statistics over private
correlated data from the perspective of a data broker.

∙ ERATO features the properties of norms and activation
functions to avoid arbitrage in pricings. Considering perva-
sive data correlations, ERATO quantifies privacy losses with
dependent differential privacy, and compensates data owners
in either a bottom-up or top-down manner.

∙ We instructively instantiate ERATO with three different
kinds of aggregate statistics. Besides, we extensively evaluate
their performances on four practical datasets. Our analysis
and evaluation results demonstrate that ERATO improves
the utility of aggregate statistics, guarantees arbitrage free-
ness, and compensates data owners in a fairer way than the
classical differential privacy based approaches. Specifically,
when the privacy budget is 0.01 and the dimension of weight
vector is 1000, ERATO improves 10.67% and 4.20% of ac-
curacies than dependent differential privacy and differential
privacy based approaches, respectively. Besides, when the
pricing functions decrease quadratically with the variance
of noise, there exist arbitrage opportunities with probability
53.91%. Moreover, compared with differential privacy based
approaches, the number of data owners with no privacy com-
pensation decreases by 17.7% for weighted sum; the data
owners receive distinct privacy compensations rather than
the same compensation for Gaussian distribution fitting and
degree distribution.

The remainder of this paper is organized as follows. In
Section 2, we introduce system model and technical prelimi-
naries. We show the arbitrage-free service pricing mechanism
in Section 3, and present the bottom-up and top-down de-
signs of privacy compensation in Section 4. The evaluation
results are given in Section 5. We briefly review related work
in Section 6, and conclude the paper in Section 7.

2 PROBLEM FORMULATION
In this section, we present system model and technical pre-
liminaries for data markets providing aggregate statistics.

2.1 System Model
As shown in Figure 1, we consider a general system model
for data markets. The model has a data acquisition layer and
a data trading layer. There are three major kinds of entities,
including data owners, a data broker, and data consumers.

In the data acquisition layer, the data broker procures
massive personal data, denoted by d = (𝑑1, . . . , 𝑑𝑛), from
𝑛 distinct data owners. Typical examples of personal data
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Figure 1: A General System Model for Aggregate Statistics based Data Markets.

include product ratings, electrical usages, social media data,
location data, and health records. Due to social, behavioral,
and genetic interactions in practice [3], there exist correlations
among the collected data items.

In the data trading layer, we consider that the data broker
tends to trade aggregate statistics, e.g., histogram count,
weighted sum, mean, standard deviation, and probability
distribution, rather than directly offering sensitive raw data
to the data consumers [22]. Besides, each data consumer
can request her customized service 𝑆 = (𝑓, 𝑣), where 𝑓 is a
concrete statistic, and 𝑣 denotes a tolerable variance of noise
added to the returned answer.

Depending on the service 𝑆 = (𝑓, 𝑣), on one hand, the
data broker charges the data consumer with the price 𝜋(𝑆);
on the other hand, the data broker compensates the data
owner 𝑖 with 𝜓𝑖(𝑆) for her privacy leakage 𝜖𝑖. Specifically, if
the variance of perturbing noise 𝑣 is higher, the price 𝜋(𝑆)
should be lower, the privacy loss 𝜖𝑖 is smaller, and thus the
privacy compensation 𝜓𝑖(𝑆) would be lower. Furthermore, a
pricing framework is balanced if the utility of the data broker
is no less than zero, i.e., the price is sufficient to cover all
the privacy compensations, namely 𝜋(𝑆) ≥

∑︀𝑛
𝑖=1 𝜓𝑖(𝑆).

2.2 Technical Preliminaries
In this section, we introduce the underlying mathematical
operation of common aggregate statistics and the funda-
mental economic property of the pricing framework, namely
dot product and arbitrage freeness, respectively. Besides, we
briefly review dependent differential privacy.

Dot Product: We first identify the elementary mathe-
matical operation underlying common aggregate statistics.
Without loss of generality, we consider three different practi-
cal aggregate statistics as follows.

Example 2.1. A commercial company wants to capture
the popularity of its product among customers. Besides, it
assigns a weight 𝑤𝑖 to each customer’s rating 𝑑𝑖. The final
score takes the form of a weighted sum

∑︀𝑛
𝑖=1 𝑤𝑖𝑑𝑖 [28].

Example 2.2. A researcher would like to learn the Gaussian
distribution over U.S. residential energy consumptions. The
key parameters are mean and variance. It suffices to compute
the sum

∑︀𝑛
𝑖=1 𝑑𝑖 and the sum of squares

∑︀𝑛
𝑖=1 𝑑𝑖

2 [18, 23].

Example 2.3. A traffic analyst intends to count the drivers
exceeding a certain speed limit 𝛿. She needs to compare 𝑑𝑖
with 𝛿, and then do summation

∑︀𝑛
𝑖=1 1{𝑑𝑖 ≤ 𝛿} [21].

Given the above three application scenarios, we model the
common aggregate statistics as a set of dot product opera-
tions. In particular, the dot product is conducted between a
weight vector w and a data vector x, i.e., w𝑇x =

∑︀𝑛
𝑖=1 𝑤𝑖𝑥𝑖.

Here, 𝑥𝑖 represents any general function of the original data
𝑑𝑖, e.g., quadratic polynomial in Example 2.2 and nonlinear
comparison in Example 2.3. Besides, the purpose of introduc-
ing an interfaced database x by preprocessing the original
database d is to simplify and unify statistic models. Such a
concept originates from practical computation over encrypted
data using homomorphic encryption [18, 21, 23]. Moreover,
the weight 𝑤𝑖, set by the data consumer, indicates her prefer-
ence/importance over 𝑥𝑖. In the following context of a clear
service type, for brevity, we use the weight vector w to specify
the data consumer’s requested statistic 𝑓 , i.e., 𝑆 = (w, 𝑣).

Arbitrage Freeness: We next introduce a desirable prop-
erty of pricing functions, namely arbitrage freeness. Before
investigating arbitrage freeness, we first establish the key
concept of service determinacy. A similar concept has been
studied in randomized query/view answering from the data-
base community [14]. Under our data market model, the noisy
answers can still be regarded as random variables. In partic-
ular, given a service request 𝑆 = (w, 𝑣) over the database
x, the data broker answers using a randomized mechanism
ℳ, and returns the result ℳ(x), where its expectation is
w𝑇x, and its variance is no more than 𝑣. We give the formal
definition of service determinacy as follows.

Definition 2.4. The determinacy relation is between a ser-
vice 𝑆 = (w, 𝑣) and a multiset of services Q = {𝑆1, . . . , 𝑆𝑚}.
We say that Q determines 𝑆, denoted as Q ↦→ 𝑆, if the
following rules are satisfied:

∙ Summation:

{(w1, 𝑣1) , . . . , (w𝑚, 𝑣𝑚)} ↦→

(︃
𝑚∑︁

𝑗=1

w𝑗 ,

𝑚∑︁
𝑗=1

𝑣𝑗

)︃
.

∙ Scalar multiplication: ∀𝑐 ∈ R, (w, 𝑣) ↦→
(︀
𝑐w, 𝑐2𝑣

)︀
.

∙ Relaxation: ∀𝑣 ≥ 𝑣′, (w, 𝑣′) ↦→ (w, 𝑣) .
∙ Transitivity:

If Q1 ↦→ 𝑆1, . . . ,Q𝑚 ↦→ 𝑆𝑚 and {𝑆1, . . . , 𝑆𝑚} ↦→ 𝑆,

then

𝑚⋃︁
𝑗=1

Q𝑗 ↦→ 𝑆.

Based on the definition of service determinacy, we define
arbitrage freeness in a formal way.



Definition 2.5 (Arbitrage Freeness). A pricing function
𝜋(·) is arbitrage free, if ∀𝑚 ≥ 1, {𝑆1, . . . , 𝑆𝑚} ↦→ 𝑆 implies:

𝜋 (𝑆) ≤
𝑚∑︁

𝑗=1

𝜋 (𝑆𝑗) . (1)

The intuition behind Definition 2.5 is that if there exists
arbitrage in 𝜋(·), e.g., 𝜋 (𝑆) >

∑︀𝑚
𝑗=1 𝜋 (𝑆𝑗), then the data

consumer would never pay the full price of the service 𝑆.
Instead, she would turn to buying a cheaper set of the services
{𝑆1, . . . , 𝑆𝑚} to answer 𝑆.

Dependent Differential Privacy: We now introduce
dependent differential privacy [16] from the privacy preserva-
tion perspective, i.e., we focus on the randomized mechanism
ℳ itself. Yet, some of its disciplines will be used to mathe-
matically quantify the privacy losses of data owners.

Dependent differential privacy is essentially a variant of the
celebrated differential privacy [7]. In particular, differential
privacy imposes a bound on the maximum ratio between the
probabilities of returning a certain aggregate result with and
without any individual’s record, and thus limits the adver-
sary’s ability to infer private information. As an enhanced
version, dependent differential privacy further considers data
correlations. We introduce its technical notations as follows.

Given the statistic database x = (𝑥1, . . . , 𝑥𝑛), if any data
item in x is dependent on at most 𝐿 − 1 other items, the
dependent size of x is defined to be 𝐿. Besides, the proba-
bilistic dependence relationship among the 𝐿 data items is
denoted as 𝑅. In particular, the existence of 𝑅 could be due
to a certain data generation process, or some other social,
behavioral, and genetic relationships. For example, 𝑅 in the
Gowalla location dataset can be introduced from its relevant
social network dataset [16]. Moreover, a pair of dependent
neighboring databases is defined as follows.

Definition 2.6. Two databases x(𝐿,𝑅),x′(𝐿,𝑅) are de-
pendent neighboring databases, if the modification of one
data item in x(𝐿,𝑅) (e.g., 𝑥𝑖 changes to 𝑥

′
𝑖) causes changes

in at most 𝐿 − 1 other data items in x′(𝐿,𝑅) due to the
probabilistic dependence relationship 𝑅.

For the sake of brevity, when the dependent/correlated
context is clear, we omit the parameters 𝐿,𝑅, and write
x,x′ instead. Based on dependent neighboring databases, the
definition of dependent differential privacy is formalized as:

Definition 2.7 (𝜖-Dependent Differential Privacy). A ran-
domized algorithm ℳ provides 𝜖-dependent differential pri-
vacy, if for any pair of dependent neighboring databases x
and x′ and any possible output 𝑂, we have:

max
x,x′

𝑃 (ℳ (x) = 𝑂)

𝑃 (ℳ (x′) = 𝑂)
≤ exp(𝜖), (2)

where 𝜖 is the privacy budget. Smaller 𝜖 provides better
privacy and worse utility guarantees.

To achieve 𝜖-dependent differential privacy, a matching
dependent perturbation mechanism was proposed in [16].
The key idea is to carefully add Laplace noise by introducing
fine-grained dependence coefficients between data items. In
particular, 𝜌𝑖𝑗 denotes the dependent relationship between
𝑥𝑖 and 𝑥𝑗 , which quantifies the dependence of 𝑥𝑗 on the

modification of 𝑥𝑖. With the help of 𝜌𝑖𝑗 ’s, the dependent
sensitivity of a numeric function 𝑓 over the database x caused
by the modification of 𝑥𝑖 can be expressed as:

𝐷𝑆𝑓
𝑖 =

∑︁
𝑗∈C𝑖

𝜌𝑖𝑗∆𝑓𝑗 , (3)

where C𝑖 denotes the index set of the 𝐿 data items that
are correlated with 𝑥𝑖. Besides, C𝑖 contains 𝑖 itself, and the
dependence coefficient 𝜌𝑖𝑖 = 1. Furthermore, ∆𝑓𝑗 denotes the
sensitivity of 𝑓 with respect to the modification of 𝑥𝑗 itself,
i.e., ∆𝑓𝑗 = max𝑥𝑗1

,𝑥𝑗2
‖ 𝑓 (. . . , 𝑥𝑗1 , . . .)−𝑓 (. . . , 𝑥𝑗2 , . . .) ‖1 .

We finally give the formal definition of the dependent per-
turbation mechanism. We let 𝐿𝑎𝑝(𝜆) denote one-dimensional
Laplace distribution centered at 0 with scale 𝜆.

Theorem 2.8 (Dependent Perturbation Mechanism).
The randomized mechanism ℳ

ℳ (x) = 𝑓(x) + 𝐿𝑎𝑝
(︁
max

𝑖
𝐷𝑆𝑓

𝑖 /𝜖
)︁

(4)

guarantees 𝜖-dependent differential privacy.

3 SERVICE PRICING
In this section, we consider the first component of ERATO,
namely the pricing mechanism for common aggregate statis-
tics. It should be arbitrage free not only to the variance of
perturbing noise 𝑣 but also to the weight vector w.

3.1 Incorporating Variance of Noise
We start with the first part of an arbitrage-free pricing func-
tion 𝜋(w, 𝑣) involving the variance of noise 𝑣.

Intuitively, 𝜋(w, 𝑣) should monotonically decrease with
the variance 𝑣, but the thorniest problem is how fast it can
decrease with 𝑣. To figure out the boundary function, we
formulate the arbitrage attack in Section 1 as follows.

Example 3.1. A data consumer, who wants to obtain the
service (w, 𝑣) with a lower price, may turn to buying 𝑚
other cheaper services of the same statistic but with higher
variances, denoted as {(w, 𝑣𝑗)|𝑗 ∈ {1, . . . ,𝑚}, 𝑣𝑗 > 𝑣}. After-
wards, the data consumer first applies summation and then
scalar multiplication by 1/𝑚 in Definition 2.4, i.e.,

{(w, 𝑣1) . . . (w, 𝑣𝑚)} ↦→

(︃
𝑚w,

𝑚∑︁
𝑗=1

𝑣𝑗

)︃
↦→

(︃
w,

1

𝑚2

𝑚∑︁
𝑗=1

𝑣𝑗

)︃
.

In other words, the data consumer computes the average of
𝑚 answers, and gets an unbiased answer but with a lower
variance. If the pricing function 𝜋(·) is arbitrage free, then
the following conditional statement must hold:

1

𝑚2

𝑚∑︁
𝑗=1

𝑣𝑗 ≤ 𝑣 ⇒
𝑚∑︁

𝑗=1

𝜋 (w, 𝑣𝑗) ≥ 𝜋 (w, 𝑣) . (5)

We give the following theorem to thwart the above attack:

Theorem 3.2. For any arbitrage-free pricing function
𝜋(w, 𝑣), it cannot decrease faster than 1/𝑣.

Proof. Due to space limitations, we give a proof sketch
here, and defer the detailed proof to our technical report [19].
We first prove 1/𝑣 is the boundary function by using the
inequality that the harmonic mean of a list of non-negative



real numbers is no more than the arithmetic mean of the
same list. We next show that if 𝜋(w, 𝑣) decreases faster than
1/𝑣, we would derive an arbitrage, and finish our proof. �

In what follows, for the sake of simplicity, we fix the part
of 𝜋(w, 𝑣) related to the variance 𝑣 at 1/𝑣 by default, while
investigate other functions, e.g., 1/

√
𝑣, in our evaluation part.

3.2 Incorporating Weight Vector
We continue to consider the other part of an arbitrage-free
pricing function 𝜋(w, 𝑣), namely the weight vector w.

By carefully studying the rules of the service determinacy
in Definition 2.4, we find a metric in linear algebra with
analogous properties, called norm, more precisely semi-norm.
In particular, a norm of a vector w can be viewed as a
measure of its “length”. Formally speaking, a norm is any
function 𝑔 : R𝑛 → R that satisfies the following properties:

∙ Subadditivity:

∀w1,w2 ∈ R𝑛, 𝑔 (w1 +w2) ≤ 𝑔 (w1) + 𝑔 (w2) .

∙ Homogeneity: ∀𝑐 ∈ R,w ∈ R𝑛, 𝑔(𝑐w) = |𝑐|𝑔(w).
∙ Non-negativity: ∀w ∈ R𝑛, 𝑔(w) ≥ 0.
∙ Definiteness: w = 0 ⇔ 𝑔(w) = 0.

If we relax the last property to w = 0 ⇒ 𝑔(w) = 0, we call
it semi-norm. Besides, the most commonly used norms in
the machine learning algorithms are a family of ℓ𝑝 norms
for some real number 𝑝 ≥ 1. Furthermore, considering that
the trivial example of zero-price function, i.e., ∀𝜋(w, 𝑣) = 0,
is arbitrage free, we utilize semi-norms to devise our basic
arbitrage-free pricing functions.

Theorem 3.3 (Basic Arbitrage-free Pricing Func-
tions). Let 𝜋(w, 𝑣) = 𝑔(w)2/𝑣 be the pricing function for
some positive function 𝑔(w) that only depends on w. Then,
𝜋(w, 𝑣) is arbitrage free iff 𝑔(w) is a semi-norm.

We next consider how to construct more arbitrage-free
pricing functions by combining those basic ones. We resort
to a general class of nondecreasing and subadditive functions.
We recall that a function Γ : R𝜑 → R over ∀y, z ∈ R𝜑 is non-
decreasing, if y ≤ z,Γ(y) ≤ Γ(z). Besides, it is subadditive,
if Γ(y + z) ≤ Γ(y) + Γ(z).

Theorem 3.4 (Composite Arbitrage-free Pricing
Functions). Let Γ : R𝜑 → R be a nondecreasing and subad-
ditive function. For any set of arbitrage-free pricing functions
{𝜋1(𝑆), . . . , 𝜋𝜑(𝑆)}, the composite pricing function 𝜋(𝑆) =
Γ(𝜋1(𝑆), . . . , 𝜋𝜑(𝑆)) is also arbitrage free.

We give some typical examples of composite pricing func-
tions: If 𝜋1(𝑆), . . . , 𝜋𝜑(𝑆) are arbitrage free, then

∙ Linear Combination: ∀𝑐1, . . . , 𝑐𝜑 ≥ 0,
∑︀𝜑

𝑘=1 𝑐𝑘𝜋𝑘(𝑆);

∙ Geometric Mean:
√︁∏︀𝜑

𝑘=1 𝜋𝑘(𝑆);

∙ Cut-off: min(𝜋1(𝑆), 𝑐) for 𝑐 ≥ 0;

∙ Sigmoid: tanh(𝜋1(𝑆)), arctan(𝜋1(𝑆)),
𝜋1(𝑆)√
𝜋1(𝑆)2+1

;

are arbitrage free as well. We note that the basic arbitrage-
free pricing functions and the first two composite ones set an
infinite price for the unperturbed answer, i.e., the variance
𝑣 = 0. However, these functions may be unpractical in data
markets, since the data broker tends to sell unperturbed

aggregate statistics for high but finite prices. Nevertheless,
we can turn to applying some bounding functions, e.g., cut-off
and sigmoid functions. In particular, sigmoid functions are
commonly used as activation functions in neural networks.

Due to space limitations, we put the proofs of Theorem 3.3
and Theorem 3.4 into our technical report [19].

4 PRIVACY COMPENSATION
In this section, we consider the other component of ERATO,
i.e., the privacy compensation mechanism for individual pri-
vacy loss. We propose both bottom-up and top-down designs.
In the bottom-up design, the sum of privacy compensations
determines the service price, while this relation is inverse in
the top-down design. Besides, another major difference is that
the bottom-up design allows each data owner to actively se-
lect a privacy compensation function for her privacy strategy,
which is instead not required in the top-down design.

4.1 Privacy Loss for General Function
When the data broker answers aggregate statistics with the
randomized mechanism ℳ, some private information of each
data owner would be leaked. Based on the dependent differen-
tial privacy in Section 2.2, we formally define the individual
privacy loss 𝜖𝑖 for an arbitrary real-valued function 𝑓 .

We first consider a pair of dependent neighboring databases
x and x(𝑖), which initially differs in the data item 𝑥𝑖. In fact, x
and x(𝑖) simulate the presence and absence of the data owner
𝑖. By comparing the output of the randomized mechanism
ℳ over x and x(𝑖) [10], we define individual privacy loss:

Definition 4.1 (Individual Privacy Loss). The privacy loss
of the data owner 𝑖 in the randomized mechanism ℳ over
the database x is defined as:

𝜖𝑖(ℳ) = sup
x,𝑂

⃒⃒⃒⃒
log

𝑃 (ℳ (x) = 𝑂)

𝑃 (ℳ (x(𝑖)) = 𝑂)

⃒⃒⃒⃒
. (6)

We further give an upper bound of the individual priva-
cy loss 𝜖𝑖(ℳ), when the randomized mechanism ℳ is the
dependent perturbation mechanism defined in Theorem 2.8.

Theorem 4.2. Let ℳ be dependent perturbation mech-
anism, 𝑓 be any numeric function, 𝐷𝑆𝑓

𝑖 be the dependent
sensitivity of 𝑓 at 𝑥𝑖, and 𝑣 be the variance of Laplace noise.
The privacy loss of the data owner 𝑖 is bounded above by:

𝜖𝑖(ℳ) ≤ 𝐷𝑆𝑓
𝑖√︀

𝑣/2
. (7)

Due to the limitation of space, the proof of Theorem 4.2
is put into our technical report [19].

4.2 Bottom-up Design
In this section, we consider the bottom-up design of privacy
compensation. The data broker first needs to satisfy each
individual privacy compensation 𝜓𝑖(𝑆), and then determine
the price 𝜋(𝑆) for the data consumer.

First, the individual privacy compensation 𝜓𝑖(𝑆) should
hinge on the individual privacy loss 𝜖𝑖(ℳ). Besides, the data
broker can evaluate/approximate 𝜖𝑖(ℳ) from the service
𝑆 itself. However, the original 𝜖𝑖(ℳ) in Definition 4.1 not
only depends on the actual randomized mechanism ℳ, but



also needs to consider all the database instances and all
the possible outputs, which can be infeasible to compute in
practice [14]. Therefore, we turn to focusing on the specific
dependent perturbation mechanism in Theorem 2.8, and
utilize the upper bound of privacy loss in Theorem 4.2 to
do compensation. We note that the bounded privacy loss in
Theorem 4.2 is given as a function of the variance 𝑣 and the
dependent sensitivity 𝐷𝑆𝑓

𝑖 . Here, we can compute 𝐷𝑆𝑓
𝑖 in

the context of aggregate statistics. We let
¯
𝛽𝑖, 𝛽𝑖 ∈ R denote

the infimum and supremum of the data item 𝑥𝑖’s domain,
respectively. Then, according to Equation (3), we can get:

𝐷𝑆𝑓
𝑖 =

∑︁
𝑗∈C𝑖

𝜌𝑖𝑗 |𝑤𝑗 |
(︀
𝛽𝑗 −

¯
𝛽𝑗
)︀
. (8)

Suppose we ignore data correlations by setting 𝜌𝑖𝑗 = 0 for all
𝑗 ∈ C𝑖∖𝑖. The dependent sensitivity in Equation (8) degener-
ates to the sensitivity defined in differential privacy [7]:

𝐷𝑆𝑓
𝑖 = |𝑤𝑖|

(︀
𝛽𝑖 −

¯
𝛽𝑖
)︀
. (9)

After quantifying the individual privacy loss in aggregate
statistics, we now consider how to compensate each data
owner properly. We first identify two desirable properties:

Definition 4.3 (Bottom-up Privacy Compensation). Let
𝜓𝑖(𝑆) be a privacy compensation function over the service
𝑆 = (w, 𝑣) in the bottom-up design. 𝜓𝑖(𝑆) should satisfy:

∙ Dependent Fairness: ∀𝑗 ∈ C𝑖, 𝑤𝑗 = 0 ⇒ 𝜓𝑖(𝑆) = 0.
∙ Micro Arbitrage Freeness: 𝜓𝑖(𝑆) is arbitrage free.

We give some comments on these two properties as follows.
(1) Dependent fairness is an extension of fairness defined in
the conventional query-based pricing [14] by further consider-
ing data correlations. The original fairness says that the data
owner, whose data is not queried, should not expect reward.
In contrast, our dependent fairness says that only if the data
owner and her correlated data owners are not involved in the
service, she will receive no privacy compensation. Although
the case, where a data owner who is not involved but may
still be compensated, seems counterintuitive, it makes sense
from the perspective of privacy loss due to data correlations.
(2) Micro arbitrage freeness is a necessity in the bottom-up
design. The reason is that the service price at top hinges on
the total privacy compensations at bottom. Therefore, the
data consumer has strong motivations to circumvent the due
privacy compensations and thus the payment by asking other
alternative services. Besides, the definition of micro arbitrage
freeness is identical to that of arbitrage freeness, but the
former needs to be verified over the whole data owners.

In a similar way to service pricing, we design basic bottom-
up privacy compensation functions directly from the priva-
cy losses, which set infinite compensations for unperturbed
answers. This kind of privacy compensation functions are
suitable for the data owner, who values her privacy highly,
and would never accept full disclosure of personal data.

Theorem 4.4. The privacy compensation functions

𝜓𝑖(𝑆) = 𝑐𝑖
𝐷𝑆𝑓

𝑖√︀
𝑣/2

= 𝑐𝑖

∑︀
𝑗∈C𝑖

𝜌𝑖𝑗 |𝑤𝑗 |
(︀
𝛽𝑗 −

¯
𝛽𝑗
)︀√︀

𝑣/2
(10)

for some constant 𝑐𝑖 > 0 and for all 𝑖 ∈ {1, . . . , 𝑛}, are basic
bottom-up privacy compensation functions.

Proof. First, we prove dependent fairness. We can check
that ∀𝑗 ∈ C𝑖, 𝑤𝑗 = 0 ⇒ 𝜓𝑖(𝑆) = 0. Second, we prove micro
arbitrage freeness. We view 𝜓𝑖(𝑆) as a linear combination

of {|𝑤𝑗 |/
√︀
𝑣/2|𝑗 ∈ C𝑖}, where the corresponding coefficients

are {𝑐𝑖𝜌𝑖𝑗(𝛽𝑗 −
¯
𝛽𝑗)|𝑗 ∈ C𝑖}. By Theorem 3.4 (Linear Com-

bination), to prove the micro arbitrage freeness of 𝜓𝑖(𝑆), it

suffices to prove that |𝑤𝑗 |/
√︀
𝑣/2 is arbitrage free. By The-

orem 3.4 (Geometric Mean), it further suffices to prove the
arbitrage freeness of 2𝑤𝑗

2/𝑣. Now, by using the weighted ℓ2
norm and setting those weights, whose indexes are not 𝑗, to
be zeros, it completes our proof. �

Analogous to Theorem 3.4, we can construct new bottom-
up privacy compensation functions from basic ones by apply-
ing any nondecreasing and subadditive function. In particular,
to allow the data owner, who is less concerned about her
privacy, to reveal her personal data at some high but finite
price, we can make use of sigmoid functions.

Theorem 4.5. The privacy compensation functions

𝜓𝑖(𝑆) = 𝑏𝑖 tanh

(︃
𝑐𝑖
𝐷𝑆𝑓

𝑖√︀
𝑣/2

)︃
(11)

for constants 𝑏𝑖, 𝑐𝑖 > 0 and for all 𝑖 ∈ {1, . . . , 𝑛}, are bounded
bottom-up privacy compensation functions.

Proof. First, we can check that ∀𝑗 ∈ C𝑖, 𝑤𝑗 = 0 ⇒
𝜓𝑖(𝑆) = 0. Second, we have proved the arbitrage freeness

of 𝑐𝑖𝐷𝑆
𝑓
𝑖 /
√︀
𝑣/2 above. Then, by Theorem 3.4 (Sigmoid and

Linear Combination), 𝜓𝑖(𝑆) is micro arbitrage free. �

At last, the data broker can determine the service price
𝜋(𝑆). Take 𝜋(𝑆) = 𝑐

∑︀𝑛
𝑖=1 𝜓𝑖(𝑆), 𝑐 > 1 for example. We note

that if every 𝜓𝑖(𝑆) is micro arbitrage free, the pricing function
𝜋(𝑆), which can be viewed as a linear combination of 𝜓𝑖(𝑆)’s,
is factually arbitrage free. Of course, 𝜋(𝑆) can be any other
composite functions under Theorem 3.4.

4.3 Top-down Design
In this section, we consider a different top-down privacy
compensation design, where the data broker first determines
the service price 𝜋(𝑆) with the pricing mechanism in Section 3,
and then spares some fraction of the payment for privacy
compensation, i.e.,

∑︀𝑛
𝑖=1 𝜓𝑖(𝑆) = 𝑐𝜋(𝑆) for some 0 < 𝑐 < 1.

If we regard 𝑐𝜋(𝑆) as a budget 𝐵, we can convert the privacy
compensation problem to a budget allocation problem, where
each data owner 𝑖’s share in 𝐵 should be roughly proportional
to her privacy loss 𝜖𝑖(ℳ).

Specific to the dot product operation in common aggregate
statistics, we shall tighten the upper bound of the individual
privacy loss 𝜖𝑖(ℳ) by computing the dependent sensitivity
more accurately. Our improvement is based on the observa-
tion1 that the definition and the mechanism of the dependent
differential privacy proposed in [16] aim to be applicable for
general functions and general positive/negative correlations,
which implies that the general dependent sensitivity can be
just a loose upper bound in the context of a specific function.
Such a key observation enables us to tighten the dependent

1Our observation has been discussed with the authors of [16]. The mo-
tivating examples and proofs can be found in our technical report [19].



sensitivity and thus the individual privacy loss by considering
two extra factors: whether the weight is negative or positive,
and whether the correlation is negative or positive. In detailed
calculations, we keep the original forms of weights rather than
using their absolute values as in the dependent differential
privacy, namely Equation (8). Besides, we introduce 𝜎𝑖𝑗 = −1
and 𝜎𝑖𝑗 = 1 to represent the cases that 𝑥𝑖, 𝑥𝑗 are negatively
and positively correlated, respectively. We thus get:

Lemma 4.6. The tight dependent sensitivity of 𝑓 = w𝑇x
at 𝑥𝑖 over the database x is given as:

𝐷𝑆𝑓
𝑖 =

⃒⃒⃒⃒
⃒⃒∑︁
𝑗∈C𝑖

𝜎𝑖𝑗𝜌𝑖𝑗𝑤𝑗

(︀
𝛽𝑗 −

¯
𝛽𝑗
)︀⃒⃒⃒⃒⃒⃒ . (12)

After obtaining the tight upper bound of individual privacy
loss, we can utilize it to compute each data owner’s share in
the total privacy compensations 𝐵. Before this, we note that
in the top-down design, the privacy compensation function
𝜓𝑖(𝑆) should still guarantee dependent fairness, but no longer
needs to ensure micro arbitrage freeness. The reason is that
the arbitrage-free service price 𝜋(𝑆) has been paid by the
data consumer, and she is not involved in the separate process
of privacy compensation. Thus, it is infeasible for the data
consumer, as an attacker, to gain arbitrage.

Theorem 4.7. The privacy compensation functions

𝜓𝑖(𝑆) = 𝐵
𝐷𝑆𝑓

𝑖 /
√︀
𝑣/2∑︀𝑛

𝑖=1𝐷𝑆
𝑓
𝑖 /
√︀
𝑣/2

= 𝐵

⃒⃒⃒∑︀
𝑗∈C𝑖

𝜎𝑖𝑗𝜌𝑖𝑗𝑤𝑗

(︀
𝛽𝑗 −

¯
𝛽𝑗
)︀⃒⃒⃒

∑︀𝑛
𝑖=1

⃒⃒⃒∑︀
𝑗∈C𝑖

𝜎𝑖𝑗𝜌𝑖𝑗𝑤𝑗

(︀
𝛽𝑗 −

¯
𝛽𝑗
)︀⃒⃒⃒ (13)

for the total privacy compensations 𝐵 and for all 𝑖 ∈ {1, . . . , 𝑛},
are top-down privacy compensation functions.

Proof. We prove the dependent fairness by checking that
∀𝑗 ∈ C𝑖, 𝑤𝑗 = 0 ⇒ 𝜓𝑖(𝑆) = 0. �

In short, without the need of ensuring micro arbitrage
freeness as in the bottom-up design, the top-down design is
applicable to any general aggregate statistic.

5 EVALUATION RESULTS
In this section, we present the evaluation results in terms of
privacy and utility guarantees, arbitrage-free pricing func-
tions, and fine-grained privacy compensations.

Datasets: We use four real-world datasets, including
MovieLens 1M Dataset [17], 2009 Residential Energy Con-
sumption Survey (RECS) dataset [1], and two large-scale
social network datasets from Stanford Network Analysis Plat-
form (SNAP) [24], for three different aggregate statistics,
namely weighted sum, probability distribution fitting, and
degree distribution, respectively. First, the MovieLens dataset
contains 1,000,209 ratings of approximately 3900 movies made
by 6040 anonymous users. Besides, we extracted the displayed
ratings from MovieLens, which function as target variables
in supervised learning. Second, the RECS dataset, which was
released by U.S. Energy Information Administration (EIA)
in January 2013, provides diverse energy usages in 12,083

U.S. homes. Third, the two SNAP datasets are named ego-
Twitter and ego-Gplus: ego-Twitter comprises 81,306 nodes
and 1,768,149 edges from Twitter, while e-Gplus contains
107,614 nodes and 13,673,453 edges from Google+.

Profiles: To compute the dependence coefficient 𝜌𝑖𝑗 by
means of the method in [16], we also need to acquire each data
owner’s profile as auxiliary data. The above four datasets all
provide this information: The MovieLens dataset comprises
some attributes of users, e.g., gender, age, and occupation;
The RECS dataset contains several attributes of each house-
hold, such as heating degree days, cooling degree days, total
number of rooms, etc; The two SNAP datasets include node
features, e.g., gender, institution, and job title. Just as [16],
we set the similarity threshold between two profiles to be 0.8,
and only consider positive correlation, i.e., 𝜎𝑖𝑗 = 1. In con-
trast, the weight 𝑤𝑗 here can be either negative or positive,
which helps to verify the effect of negative correlation, since
𝜎𝑖𝑗𝑤𝑗 in Lemma 4.6 is in the product form.

Statistics: For weighted sum, we apply linear regression to
the ratings of different movies from distinct numbers of users,
and learn different weight vectors with distinct dimensions.
For Gaussian distribution fitting, we draw the univariate
Gaussian distribution of a certain type of energy consumption,
e.g., space heating, air conditioning, or refrigerators. For
degree distribution, we count both in and out degrees of
every user in Twitter and Google+ networks.

5.1 Privacy and Utility Guarantees
Before investigating economic properties, we first show how
ERATO can improve the utility of aggregate statistics, by cal-
culating the dependent sensitivity more accurately for the de-
pendent perturbation mechanism in Theorem 2.8. Figure 2(a)
depicts the accuracies of weighted sum under the Laplace
perturbation mechanism [7] in the conventional differential
privacy (DP), and the dependent perturbation mechanisms
in the dependent differential privacy (DDP) and our ERATO.
Here, we select the movie ratings from 1000 users for training,
and thus derive 1000-dimensional weight vectors. Besides, we

define the accuracy as 1 − |𝑓(x)−𝑓(x)|
|𝑓(x)+𝑓(x)| [16], where 𝑓(x) and

𝑓(x) are true and perturbed results, respectively.
One key observation from Figure 2(a) is that more accuracy

is achieved as the privacy budget 𝜖 increases, which conforms
to Definition 2.7. The second key observation is derived
by comparing three perturbation mechanisms at a fixed 𝜖.
ERATO is more accurate than DDP or even DP. In particular,
when 𝜖 = 0.01, ERATO improves 10.67% and 4.20% of
accuracies than DDP and DP, respectively. First, due to the
triangle inequality, each individual dependent sensitivity𝐷𝑆𝑓

𝑖

in ERATO, namely Equation (12), is no greater than that in
DDP, namely Equation (8), which implies the same relation

for max𝑖𝐷𝑆
𝑓
𝑖 . Thus, the true result in ERATO is perturbed

with less noise than that in DDP. Second, DP is a special
case of DDP or ERATO, where the 𝐿 − 1 correlated data
items are ignored when evaluating 𝐷𝑆𝑓

𝑖 , namely Equation (9).

Although 𝐷𝑆𝑓
𝑖 in DP is always no greater than that in DDP,

there exist negative weights here. Besides, the negative part
can have more effect on some 𝐷𝑆𝑓

𝑖 ’s than the positive part

(not including 𝑖 itself). Hence, max𝑖𝐷𝑆
𝑓
𝑖 in ERATO can be
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Figure 2: Privacy vs. Utility and Arbitrage Freeness in Weighted Sum.

less than that in DP, which means higher accuracy. Third,
when 𝜖 is too small or too large, the perturbation or the true
result completely dominates, and the differences among the
accuracies of three perturbation mechanisms are tiny.

In conclusion, ERATO can better balance privacy and
utility in the aggregate statistics than DP and DDP.

5.2 Arbitrage-free Pricing Functions
In this section, we carry on with the weighted sum application,
and further explore arbitrage freeness.

Variance of Noise: We first evaluate the variance of
noise 𝑣 in an arbitrage-free pricing function by simulating
the attack in Example 3.1. After simulating 10000 samples,
we plot the cumulative fraction of the ratio between the
attack cost

∑︀𝑚
𝑗=1 𝜋(w, 𝑣𝑗) and the original price 𝜋(w, 𝑣) in

Figure 2(b), where 𝜋(·) decreases with 𝑣 from 1/𝑣2, to 1/𝑣,
and to 1/

√
𝑣. Here, the cumulative fraction differs from the

common cumulative distribution function in that it does not
include the endpoint. For example, when the ratio takes 1,
the cumulative fraction denotes the fraction of the samples,
where the attack cost is strictly less than the original price.
More specifically, the cumulative fraction at the ratio of 1
can generally embody the success ratio of finding arbitrage.

By observing the cumulative fractions at the ratio of 1
in Figure 2(b), we can see that there exists arbitrage in
1/𝑣2, while the other two pricing functions are arbitrage free.
Besides, the probability that the attacker can find arbitrage is
53.91%. This coincides with Theorem 3.2. We can also observe
that an attempt of finding arbitrage in 1/

√
𝑣 is expected to be

more costly than that in 1/𝑣, which can be roughly captured
by the areas above these two function curves. Therefore, the
pricing function, which decreases slower with the variance 𝑣,
e.g., 1/

√
𝑣 vs. 1/𝑣, can be more robust against arbitrage.

Weight Vector: We continue to examine the other part
of an arbitrage-free pricing function, namely weight vector.
Figure 2(c) plots four composite pricing functions, when the
dimension of weight vector 𝑛 increases from 1000 to 6000 with
a step of 1000. Specifically, the composite pricing functions
are derived by first applying ℓ1, ℓ2, ℓ3, ℓ∞ norms and then
tanh. Besides, the variance 𝑣 is set to be 0.1, which gives an
error of 1 with 90% confidence by Chebyshev’s inequality.

From Figure 2(c), we can see that the composite pricing
function using ℓ1 norm remains almost unchanged at 1, while

the other ones increase with the dimension 𝑛. The reason is
that when 𝑛 = 1000, the pricing function using ℓ1 norm has
already approximated tanh’s upper bound 1. Besides, the
absolute value of each weight is less than 1 here. Thus, as
depicted in Figure 2(c), when 𝑛 is fixed, the price becomes
lower for the pricing function using ℓ𝑝 norm with a larger 𝑝.

The above evaluation results demonstrate that arbitrage
freeness is a strong economic property. If not guaranteed, e.g.,
in the case of 1/𝑣2, it is effortless for the data consumer to
game the data market. Besides, the data broker can develop
her pricing strategy by carefully applying Theorem 3.4.

5.3 Fine-grained Privacy Compensations
In this section, we show the privacy compensations in three
different aggregate statistics. For clarity in presentation and
comparison, we fix the total privacy compensations such that
one data owner is rewarded with 10 units in average. Besides,
we choose the same bounded privacy compensation function
in Theorem 4.5 for each data owner in the bottom-up design.

Before introducing the concrete evaluation results, we first
analyze the major differences among three aggregate statis-
tics: (1) From mathematical formula, there exist both positive
and negative weights in weighted sum, while the weights in
the other two statistics are all 1’s. Besides, the domain of
each data item keeps the same in a certain statistic; (2) From
privacy compensation, suppose that we employ the DP frame-
work, which ignores data correlations and compensates the
data owner roughly proportional to the absolute value of her
weight. Each data owner would be compensated with the
average 10 units in Gaussian distribution fitting and degree
distribution. Therefore, we only compare DP and ERATO in
weighted sum, and directly show ERATO-based evaluation
results in the other two statistics.

Weighted Sum: We start with weighted sum, where the
dimension of weight vector is fixed at 1000, and the variance
𝑣 is 0.1 as in Section 5.2. Figure 3 plots the bottom-up and
top-down privacy compensations under DP and ERATO.
Here, a pair of neighboring 𝑥-axis ticks in Figure 3 denote a
half-closed interval, e.g., the hist from “9” to “10” stands for
the privacy compensations between 9 and 10 excluding 10.

We first compare DP and ERATO in a certain design of
privacy compensation. As depicted in Figure 3, compared
with DP, more privacy compensations fall into the center
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Figure 3: Differential Privacy (DP) and ERATO based Privacy Compensations in Weighted Sum.
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Figure 4: ERATO based Privacy Compensation in Gaussian Distribution Fitting.
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Figure 5: ERATO based Privacy Compensation in Twitter and Google+ Degree Distributions.

region under ERATO. In particular, 325 data owners receive
no privacy compensation in both bottom-up and top-down
designs under DP, whereas this number decreases to 148
under ERATO. Such an outcome truly reflects the difference
between the properties of fairness and dependent fairness.

We next compare the bottom-up and top-down designs
under a certain framework. From Figure 3, we can see that
these two designs of privacy compensation appear identical
under DP, but look a slightly different under ERATO. First,
each data owner’s privacy losses measured by two DP-based
designs are the same. Besides, when the total privacy compen-
sations are fixed, each data owner’s shares are proportional to
her privacy loss and her privacy loss’s tanh value in the top-
down and bottom-up designs, respectively. Moreover, most
of the privacy losses 𝜖𝑖’s are within 0.1. We further note that
0 ≤ 𝜖𝑖 ≤ 0.1, tanh(𝜖𝑖) ≈ 𝜖𝑖. Hence, the privacy compensations
in two designs look almost the same under DP. In contrast,
under ERATO, the privacy losses in the top-down design
are computed more accurately than those in the bottom-up
design, which implies distinct privacy compensations.

Gaussian Distribution: We now show the privacy com-
pensation of Gaussian distribution fitting under ERATO. We
recall that Gaussian distribution can be answered by sum
and sum of squares. We plot the major privacy compensa-
tions and their percentages in Figure 4, where the results
are derived by averaging 10 kinds of energy consumptions in

10000 U.S. homes. Besides, we set the variance of noise 𝑣 to
be 100 in the bottom-up design

First, we can see from Figure 4 that different data owners
may obtain distinct privacy compensations rather than the
uniform 10 under DP. Second, by comparing privacy compen-
sations in a specific design for two statistics, we can see that
they are different from each other, because the dependence
coefficients in the sum have changed in the sum of squares.
Third, we compare the privacy compensations in two designs
for a certain statistic, and find them consistent in general.
This is because when both correlations and weights are posi-
tive, the privacy losses measured by two designs are the same.
In addition, when the total privacy compensations are fixed,
the difference between two designs is that the bottom-up
design further applies tanh to the privacy losses.

Degree Distribution: We finally investigate how privacy
compensations are allocated in large-scale social networks.
Figure 5 depicts the evaluation results of the degree distri-
butions in Twitter and Google+. We set the variance 𝑣 to
be 10 in the bottom-up design. From Figure 5, we can see
that most of privacy compensations fall in the central inter-
val between 9 and 11 in both Twitter and Google+. This
outcome stems from the fact that the degree distribution
of Twitter/Google+ social network asymptotically follows
a power law. In particular, 37.17% and 45.49% of Twitter
and Google+ users have degrees no more than 5, respectively.



Besides, the number of a data owner’s degrees has a positive
correlation with her privacy loss [29]. Therefore, most of the
data owners are compensated around the average 10 units.

These evaluation results demonstrate that two ERATO-
based designs can indeed compensate the data owners for
their privacy losses in a fairer and more fine-grained way.

6 RELATED WORK
In this section, we briefly review related work.

Data Market Design: In recent years, data market de-
sign has gained increasing attention, especially from the data-
base community. The researchers in this field mainly focus
on arbitrage freeness in query-based pricing [6]. Koutris et
al. [13] showed that the prices of a large class of SQL queries
can be computed using ILP solvers. Later, Lin and Kifer [15]
designed arbitrage-free pricing functions for arbitrary query
formats. Specific to private data, Ghosh and Roth [10] con-
sidered differential privacy as a commodity, and proposed
to selling privacy at auction for single counting query. The
follow-up work [14] further extends to multiple linear queries
by introducing arbitrage freeness.

However, none of above works took data correlations into
account, and further considered trading aggregate statistics.

Privacy Preserving Aggregate Statistics: An explo-
sive demand of mining private data from multiple sources con-
tributes to growing interest in privacy preserving aggregate
statistics, where a data analyst can study patterns/statistics
over a population while maintaining individual privacy. This
line of works mainly fall into two categories. The first catego-
ry is homomorphic encryption based, which regards the data
analyst as an attacker [21, 23]. The second category is differ-
ential privacy based, which assumes that the data analyst
can be trusted [7]. Under this security assumption, the data
analyst adds appropriate noises to aggregate results before
releasing them, which can resist external attackers, e.g., data
consumers in our model. However, as pointed by Kifer and
Machanavajjhala [11], the perturbation can be inadequate
in the case of data correlations. They thus proposed a gen-
eralized version of differential privacy, called Pufferfish [12].
Many follow-up research works have been going on around
this particular issue. In addition to the dependent differential
privacy [16], Song et al. [25] proposed a Wasserstein mecha-
nism for any general Pufferfish instantiation, together with
an efficient Markov Quilt mechanism for Bayesian networks.

The original intention of these works is preserving privacy
rather than pricing privacy, which is our major focus.

7 CONCLUSION
In this paper, we have proposed the first pricing framework
ERATO for the data markets providing common aggregate
statistics over private correlated data. In ERATO, the data
consumer has to faithfully request the desired service rather
than gaming the system through buying a bundle of cheaper
services. Besides, the data owners can be compensated for
their dependent privacy losses in a more fine-grained way.
Moreover, we have instantiated ERATO with three differ-
ent kinds of aggregate statistics, and extensively evaluated
their performances on four practical datasets. Evaluation and
analysis results have demonstrated the feasibility of ERATO.
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