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Abstract— As a significant business paradigm, data trading has
attracted increasing attention. However, the study of data acqui-
sition in data markets is still in its infancy. Mobile crowdsensing
has been recognized as an efficient and scalable way to acquire
large-scale data. Designing a practical data acquisition scheme
for crowd-sensed data markets has to consider three major chal-
lenges: crowd-sensed data trading format determination, profit
maximization with polynomial computational complexity, and
payment minimization in strategic environments. In this paper,
we jointly consider these design challenges, and propose VENUS,
which is the first profit-driVEN data acqUiSition framework
for crowd-sensed data markets. Specifically, VENUS consists
of two complementary mechanisms: VENUS-PRO for profit
maximization and VENUS-PAY for payment minimization. Given
the expected payment for each of the data acquisition points,
VENUS-PRO greedily selects the most “cost-efficient” data acqui-
sition points to achieve a sub-optimal profit. To determine the
minimum payment for each data acquisition point, we further
design VENUS-PAY, which is a data procurement auction in
Bayesian setting. Our theoretical analysis shows that VENUS-
PAY can achieve both strategy-proofness and optimal expected
payment. We evaluate VENUS on a public sensory data set,
collected by Intel Research, Berkeley Laboratory. Our evaluation
results show that VENUS-PRO approaches the optimal profit,
and VENUS-PAY outperforms the canonical second-price reverse
auction, in terms of total payment.

Index Terms— Data marketplace, mobile crowdsensing, auction
theory.

I. INTRODUCTION

THE past few years have witnessed the proliferation of
smart devices in people’s daily lives. The ubiquitous sen-

sors embedded in pervasive smart devices incessantly generate
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tremendous volumes of sensed data by seamlessly monitoring
a diverse range of human activities and environment phe-
nomena. However, currently, most of operators exclusively
analyze the collected data for their own application purposes,
which introduces a serious barrier for the wide availability
of crowd-sensed data, resulting in a number of isolated data
islands. Recognizing the great benefit of data sharing [5],
several open platforms, such as Terbine [50], Thingful [51] and
Thingspeak [52], have emerged to enable crowd-sensed data
to be exchanged on the web, aiming to unlock the potential
economic values underlying the crowd-sensed data.

However, due to lack of efficient data acquisition scheme,
the amounts of crowd-sensed data in these platforms are
very limited, which has significantly suppressed the increasing
market demand for data. The success of data markets highly
relies on the sufficient amounts of data for trading. On one
hand, the data broker needs to aggregate various types of data
from exogenous data sources to satisfy the diverse demand
of data consumers. On the other hand, the data broker has to
periodically supply fresh data into data markets, because the
data become less accurate, and even useless, when the contex-
tualized environments evolve over time. Mobile crowdsensing
have been recognized as a highly efficient and scalable way
to collect large-scale data [32], [58]. For example, Things-
peak [52] has recently launched a crowdsensing platform
to collect crowd-sensed data. In mobile crowdsensing, the
data providers consume their own physical resources, and
spend manual effort in collecting data. Thus, the data broker
should offer sufficient payments to incentivize data providers
to contribute data. The frugal data broker always wants to
procure enough data with a minimum payment, which can be
formulated as the problem of payment minimization.

In data markets, the ultimate goal of the data broker is to
maximize profit, which is defined as the difference between
the revenue generated from selling data (possibly data-based
services) and the expenditure on data acquisition. Although
the data broker can obtain a large revenue by providing high
quality data services, she has to disburse expensive expenditure
to collect enough data, such that the data services maintain at
a high quality level. Therefore, in order to maximize profit,
the data broker should make a trade-off between revenue
and data acquisition expenditure, which can be formulated as
a profit maximization problem. Although a number of data
acquisition mechanisms with different optimization objectives
have been developed in the literature [10], [11], [32], [58], few
of them considered the monetary profit produced by trading
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the crowd-sensed data in the market, which deviates from
the goal of the data broker. To fill this gap, we propose a
profit-driven data acquisition mechanism. We summarize three
major challenges in designing a practical profit-driven data
acquisition mechanism for crowd-sensed data markets.

The first design challenge is to determine the crowd-
sensed data trading format, considering both the characteristics
of crowd-sensed data and diverse market demand for data.
To evaluate the profit of data in the market, we have to identify
the specific data trading format, which is still an open problem
in both economics and computer science communities. The
crowd-sensed data is normally uncertain and has complex
correlation, making the crowd-sensed data quite different from
the traditional information good [3], [35], and introducing
additional difficulties in determining the data trading format.
On one hand, the crowd-sensed data is incomplete, imprecise,
and erroneous, making it improper to directly feed raw data
into the data market. On the other hand, the crowd-sensed
data may be correlated in multiple dimensions, and has rich
sematic information behind such correlation [10], resulting in
that separately selling pieces of data becomes meaningless.
Furthermore, we should determine the data trading format
aligned with the diverse market demand, meaning that data
consumers, from different market segments, would request for
the crowd-sensed data with different quality levels. Enabling
data consumers to express their diverse market demands would
incur a heavy burden of designing a concise and simple data
trading format. Due to various types of uncertain factors,
complex correlation and diverse market demand for data, it is
nontrivial to determine an appropriate and flexible crowd-
sensed data trading format.

Yet, another design challenge is the hardness of maximizing
profit in a complicated data market environment. From the
definition, the value of profit rests on the attained revenue
from data trading and the distributed expenditure on data
acquisition. Due to the special cost structure of data,1 the
prices of data should be linked to data consumers’ valua-
tions over the data, rather than the production cost. Thus,
we can express the revenue with the data consumers’ valuation
distributions. However, it is hard to analyze the property
of the revenue (and then the profit), because the valuations
always follow complicated distributions in practical market
environments. Furthermore, even if we can figure out the
maximum expected revenue, finding the minimum expenditure
on data acquisition can be proven to NP-Hard, and is normally
computationally intractable. Therefore, in order to approach
the optimal profit of data trading, we have to overcome
the complicated formats of valuation distributions and the
high computational complexity in solving the problem of
acquisition expenditure minimization.

The last design challenge is to simultaneously guaran-
tee both strategy-proofness and minimum payment in data
procurement auctions. As competitive bidding leading to a
lower disbursed payment, the data broker would conduct data
procurement auctions to determine minimized payments for

1Data have a fixed production cost, and tend to induce negligible marginal
costs for reproduction.

data providers. Since the data providers are rational and selfish,
they always tend to misreport their private data collection
costs, if doing so can increase their utilities. Such a selfish
behavior inevitably hurts the other data providers’ utilities, and
significantly increase the data broker’s data acquisition expen-
diture. Therefore, a strategy-proof data procurement mecha-
nism is desirable in such strategic environment. However, it is
extremely difficult in simultaneously achieving both strategy-
proofness and optimum in auction theory [2], [17], [44], [46].
In forward auctions with Bayesian valuation setting, one of the
mature techniques to guarantee strategy-proofness and optimal
revenue is to reserve the trading items in the instances that
all the bids are below a selected reserve price [39]. This
reserve price-based technique does not work in the context
of data procurement auctions, because the data broker has
to purchase one piece of data from data providers in all the
instances. New pricing techniques have to be developed to
derive new theoretical results in procurement auctions. The
previous works have also proved some negative results about
revenue maximization (payment minimization) in strategy-
proof auction design. In Bayesian valuation setting, Ronen
and Saberi claimed that no deterministic polynomial time
ascending auction can achieve an approximation ratio better
than 3/4 in terms of revenue maximization [46]. When the
costs of data providers are completely private, no strategy-
proof auction mechanism can give any performance guarantee
on the payment [2], [17].

In this paper, by jointly considering the above three design
challenges, we conduct an in-depth study on the profit-
aware data acquisition design for crowd-sensed data markets.
To probe in the benefit of model-based data trading format,
we build a statistical model upon the raw data, to capture data
uncertainty and complex correlation among data. We regard
the resulting statistical model as an information commodity,
and further partition the commodity into multiple versions with
different quality levels, to satisfy the diverse market demand
of data consumers. Secondly, we propose VENUS-PRO to
decompose the problem of profit maximization into revenue
maximization and data acquisition expenditure minimization.
Given data consumers’ valuation distributions, VENUS-PRO
adopts a post-pricing mechanism to determine the trading
price for each version, and then calculates the maximum
expected revenue for each version. Considering the high com-
putational complexity for the optimum, VENUS-PRO obtains
a sub-optimal data acquisition expenditure, assuming that the
payments for data acquisition points are given in advance.
Combing with the calculated revenue and data acquisition
expenditure, VENUS-PRO achieves a constant approximation
ratio in terms of profit maximization. Finally, to determine
the minimum payment for each of data acquisition points,
we propose a strategy-proof and optimal data procurement
auction mechanism, namely VENUS-PAY, in Bayesian setting,
wherein the data providers’ costs are drawn from publicly-
known probability distributions.

We summarized our contributions in this paper as follows.
• First, we present a system model, including a data

trading model and a data purchasing model, for crowd-sensed
data markets. For the data trading model, we build a joint
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Fig. 1. Crowd-Sensed data market.

probability distribution to capture data uncertainty and com-
plex data correlation, and adopt a versioning technique to
satisfy the diverse market demand. We also model the
data purchasing process as a reverse auction in Bayesian
environment.
• Second, we design a profit-driven data acquisition mech-

anism, namely VENUS-PRO. Given the data consumers’ val-
uation distributions and expected payment of each of data
acquisition points, we propose a post-pricing mechanism and
a greedy data acquisition point selection algorithm to achieve
a sub-optimal profit.
• Third, we further consider the problem of payment

minimization for data acquisition, and propose VENUS-PAY,
which is a data procurement auction in Bayesian setting,
achieving both strategy-proofness and optimal payment.
• Finally, we evaluate the performance of VENUS-PRO and

VENUS-PAY based on a real-world public sensed data set.
Our evaluation results show that VENUS-PRO obtains a near-
optimal profit, while VENUS-PAY performs better than the
classical second-price reverse auction.

The rest of this paper is organized as follows. In Section II,
we present a system model for the crowd-sensed data market.
Given the expected payment for each data acquisition point,
we design VENUS-PRO in Section III. In Section IV, we pro-
pose VENUS-PAY to determine the minimum payments of
data acquisition points. We present our evaluation results in
Section V, and review the related work in Section VI. Finally,
we conclude the paper in Section VII.

II. PRELIMINARIES

In this section, we describe data trading model and data
purchasing model for profit-driven data acquisition in crowd-
sensed data markets.

A. Data Trading Model

As illustrated by Figure 1, in a crowd-sensed data market,
the data broker wants to exchange the real-time information
about the environment phenomena of a monitoring region for
some profit, the data consumers would like to pay for this
information to facilitate their data driven services, and the
data providers want to earn payments for their contributed
data. The data broker virtually deploys several Data Acquisi-
tion Points to approximately represent the phenomena of the
monitoring region. The data acquisition points can be regarded
as some kind of Points of Interest (PoIs), on which the data
broker wants to collect necessary sensed data to train the
real-time information. According to the required quality of

service (QoS) in specific crowd-sensed applications, the data
broker can determine the quantity, density and physical loca-
tions of data acquisition points by exploiting some machine
learning techniques, such as active learning [8]. Generally,
if the data broker aims to extract accurate knowledge of
the monitoring region, she would deploy fine-grained data
acquisition points, but at the same time she has to disburse high
payments for purchasing raw data from data providers. For
example, indoor location service provider needs high precise
and multi-dimensional sensed data, such as position, size,
coordinates and orientation information of indoor landmark
objectives, to reconstruct the map of indoor floor plan [15].
Due to the complex indoor environment, the service provider
needs to deploy dense data acquisition points (at each store
entrance) to collect sufficient sensed data, incurring a high data
acquisition expenditure. In another scenario, the government
can simply deploy sparse data acquisition points along the
major roads or around shopping malls to roughly profile the
noise level of metropolis [41], [42]. We denote the L Data
Acquisition Points by Y = {y1, y2, · · · , yL}. We associate
a discrete random variable X y for each data acquisition
point y ∈ Y , representing the possible measurements of the
monitoring environment phenomena, and associate a set of
discrete random variables XY with a set of data acquisition
points Y ⊆ Y . We note that the random variables may
be correlated in multiple dimensions, e.g., the temperatures
of geographically proximate locations are likely to change
synchronously [10]. We use the following major notations to
define the data trading model.

1) Information Commodity: In the crowd-sensed data mar-
ket, the information commodity is the joint distribution of
random variables XY over T time slots. We do not restrict
the joint distribution to any specific format, such that the
joint distribution can capture different types of uncertainty
and complex correlation among data. The probability mass
function p

(
xY

)
assigns a probability for a possible valuation

vector xY = (x1, x2, · · · , xL) to the random variables XY .
We can use historical data and expert knowledge to construct
a rough prior probability mass function, and update it using the
new observations from the data acquisition module. Suppose
that we observe values xO for the selected random variables
XO ⊆ XY , we can use Bayes’ rule to condition our joint
probability mass function p(xY ) on these observations:

p(xY |XO = xO) = p(xY , xO)

p(xO)
, (1)

where XY = XY \XO is the set of unobserved random vari-
ables. The posterior distribution is more certain than the prior
distribution. Here, we use entropy to quantify the uncertainty
of a distribution, considering its concise expression and nice
properties, e.g., monotonicity and submodularity.2 Specifically,
the conditional entropy of the unobserved normal random

2We can also use some other alternative metrics, such as Kullback-Leibler
divergence and Mutual Information [9], to quantify the uncertainty of the
distributions. However, Kullback-Leibler divergence is too complex to be used
in data trading, and mutual information does not satisfy neither monotonicity
nor submodularity, which significantly increases the complexity of profit
maximization.
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variables XY , after observing the selected random variables
XO is:

H (Y |O) = −
∑

xY ∈ dom XY
xO∈ dom XO

p(xY, xO) log p(xY|xO). (2)

As time passes by, our belief about the observations of the
random variables XO will be “spread out”, increasing the
uncertainty of the distribution. Thus, the data broker has to
periodically collect new observations to maintain the entropy
of the information commodity at a low level.

2) Version: In the crowd-sensed data market, data con-
sumers may have diverse quality requirements over the infor-
mation commodity, resulting in different valuations for the
information commodity. To satisfy the diverse quality require-
ments of data consumers, the data broker would launch multi-
ple versions for the information commodity, where a version is
a posterior distribution with some selected observation random
variables. We define the quality of the version p(xY |xO) as a
function of its conditional entropy H (Y |O):

Q � 1− H (Y |O)

H (Y )
= H (O)

H (Y )
.

The second part of the equation holds given the property
H (Y |O) = H (Y ) − H (O). From this definition, the quality
of the version p(xY |xO) is directly proportional to the joint
entropy of the selected random variables H (XO), implying
that the version will have a high quality if we choose
the random variables with large joint entropy to observe.
Generally, the data consumers with various quality require-
ments would have different willingness to pay. In order to
extract revenue from these heterogeneous data consumers,
the data broker leverages the technique of differential pric-
ing [54] by selling the different versions of an information
commodity at different prices.

By conducting the standard market technique, such as
survey, the data broker can determine the K candidate ver-
sions and a quality vector Q = (Q1, Q2, · · · , QK ), where
Qi < Qk , for all 1 ≤ i < k ≤ K .3 We define the
quality gap between two successive versions k and k + 1 as:
�k � Qk+1 − Qk , and denote the minimum value of all the
�’s by �min � mink{�k}. In practice, the quality gap would
be large enough to distinguish two successive versions, and we
assume that �min > maxi H ({i})/H (Y ). We adopt the post-
pricing mechanism for data trading because of its convenience
and popularity in practice. In the context of data trading,
the post-pricing mechanism has several advantages compared
with other trading formats, such as auction mechanisms. For
example, the post-pricing mechanism can guarantee the robust
economic properties, such as strategy-proofness, and handle
the dynamical features of markets in a concise way. The
data broker only has to determine a take-it-or-leave price,
which is independent on the valuations and arrival sequence
of data consumers. Specifically, the data broker assigns a
price pk for the kth version, and denote the price menu for

3The determination of the number of versions and the corresponding quality
for each version is beyond the scope of this paper. Several previous works [4],
[43], [53], [54] shed light on possible solutions for this problem.

all the K versions by p = (p1, p2, · · · , pK ). We discuss
the determination of the optimal price for each version in
Section III.

3) Data Consumers: There are N single-minded data con-
sumers in the data market. Each data consumer is interested
in only one version of the information commodity, and has
a valuation over this version.4 We assume that the version
preference of the data consumers follows a distribution with
a probability mass function g(k), meaning that the data con-
sumers have a probability g(k) to choose the kth version as her
interested version. Therefore, there are Nk = N × g(k) data
consumers, who are interested in the kth version, in expecta-
tion. For the kth version, we assume that the valuations of the
Nk data consumers are drawn from a distribution with cumu-
lative distribution function Vk(x). We denote the vector of
all valuation distributions by V = (V1(·), V2(·), · · · , VK (·)).
By learning the historical transactions, the data broker can
obtain the knowledge of the distribution g(k) and the vector V.
This assumption is also called as Bayesian assumption in
economic literature [29].

4) Revenue: If the data consumer’s valuation is larger than
the trading price of the kth version pk , then she would
purchase this version. In this case, the data broker would
receive a revenue of pk . The expected revenue of selling the
kth version to the Nk data consumers is:

rk = N × g(k)× (1− Vk(pk))× pk . (3)

When the data broker creates the kth version, despite of
obtaining the revenue rk , she can also extract revenue ri from
each of the version 1 ≤ i < k lower than k. This is because
the data broker can degrade a high quality version to lower
ones without inducing additional costs, e.g., simply adding
artificial noises or using less observations. Thus, the expected

cumulative revenue of the kth version should be Rk =∑k
i=1 ri .

B. Data Purchasing Model

Since the collected data becomes less accurate over time,
the data broker has to periodically supply fresh data into the
market. In the data trading model, the data broker would
select different sets of data acquisition points to generate
different versions of the information commodity. For each
selected data acquisition point in one specific time slot, if the
previous observation has been expired, meaning that it is not
accurate enough to represent the environment phenomena,
the data broker would purchase one new observation from a
pool of active data providers. According to the “freshness”
of the current observation and the accuracy requirement of
each data acquisition point, the data broker determines the
time slots to launch the data purchasing process for each data
acquisition point. Thus, we can assume that the data collection
procedures for different data acquisition points in different
time slots are independent, so we focus on the data purchasing
process for one data acquisition point in one specific time

4We initialize the examination of data trading model with a simple purchas-
ing behaviour model for data consumers, and leave more complex models to
our future works.
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slot in the following discussion.5 We model the process of
data purchasing as a single-item data procurement auction,
in which the data broker, also called as an auctioneer or a
buyer, wants to buy one piece of data from my competitive
data providers, also called as suppliers or sellers, for the data
acquisition point y ∈ O in one specific time slot.6 The item
being auctioned is the right to supply data, which can be
considered as one kind of scarce resource. Auction mechanism
is believed to be an effective way to allocate the scarce
resource, because in procurement auction, the data broker
can discover the true collection cost of data providers, and
exploit the competition among the data providers to reduce the
procurement payment. In a direct-revelation data procurement
auction, the data providers simultaneously declare their bids
to the data broker, who thereafter makes a decision on winner
determination and payment to winner. We use some useful
notations to define the data procurement auction model.

1) Data Provider: We denote the data providers by My =
{1, 2, · · · , my}. Each data provider i ∈ My has a data collec-
tion cost ci , which is private information to her, and is known
as type in mechanism design. We consider a Bayesian setting,
in which cost ci is drawn from a publicly-known distribution
Fi (x) with a density function fi (x) in the range [ci , ci ]. Let
F = (F1(·), F2(·), · · · , Fmy (·)) denote the cost distributions
of all data providers. We assume that the cost distributions are
independent, but is not necessary to be identical.

Each data provider i ∈ My declares a bid bi to the
data broker, meaning that she requests for a compensation
of at least bi to cover her cost. Since data providers are
rational and selfish, they may not truthfully reveal their costs,
i.e., the bids may not necessarily be equal to the cost ci .
We denote the cost and bidding profile of all data providers
by c = (c1, c2, · · · , cmy ) and b = (b1, b2, · · · , bmy ), respec-
tively. After collecting bidding profile, the auctioneer selects a
winner, and determines payments for data providers. That is,
a data procurement auction has two major components:
• Selection Rule: Choose a feasible selection rule x(b) =

(x1(b), x2(b), · · · , xmy (b)) as a function of bidding profile b.
xi (b) = 1 if data provider i is the winner; otherwise xi(b) = 0.
• Payment Rule: Determine a payment vector w(b) =

(w1(b),w2(b), · · · , wmy (b)), where wi (b) is the payment for
the data provider i when the bidding profile is b.

Data provider i ∈ My has a quasi-linear utility ui (b) on the
bidding profile b, which is defined as the difference between
payment and cost: ui (b) � wi (b)− ci × xi (b).

2) Expected Payment: The data broker determines T time
slots to collect data for the data acquisition point y ∈ Y , and

5Considering the dependence among data purchasing processes in temporal
dimensions would significantly increase the complexity of designing the data
procurement auction. In dynamic data acquisition scenario, we should model
the interdependent data processes as repeated procurement auctions or gen-
eralized online auctions, in which the data providers can participate in the
data purchasing process in successive time slots. As the data providers can
repeatedly interact with the data broker, there are more strategic behaviours
for data providers to manipulate the auction to further increase their long-term
utilities [1]. We will relax this assumption in our future work.

6Our results can be extended to more flexible auction formats, e.g., multi-
unit auctions or combinatorial auctions, adapting to the scenario, where one
data acquisition point needs multiple observations to guarantee fault tolerance.

the expected accumulated payment is:

�y = T × Ec∼F

[ my∑

i=1

wi (c)

]

, (4)

where c ∼ F means that the expectation is over the cost
distributions. We use � = {�y|y ∈ Y } to denote the expected
payments of all data acquisition points Y .

C. Problem Statement

In data market, the data broker faces two closely relevant
optimization problems: Profit Maximization and Payment Min-
imization. We formulate these two problems as follows.

1) Profit Maximization: Although the data broker can obtain
large revenue by launching a version with high quality, at the
same time, she has to disburse expensive expenditure to select
more data acquisition points. Hence, the data broker prefers to
select the “profitable” and “cheap” data acquisition points O
to observe, such that the obtained profit �(O) is maximum.
We define the profit as the difference between the obtained
revenue and the disbursed expenditure:

�(O) � R(O)− S(O), (5)

where R(O) is the revenue generated by the selected data
acquisition points O, and S(O) is the data acquisition expendi-
ture for the data acquisition points O, i.e., S(O) =∑

y∈O �y .
We note that R(O) is equal to the revenue Rk∗ of the ver-
sion k∗, which is the highest version that the selected points O
can reach, i.e., k∗ ← arg maxk {(H (O)/H (Y )) ≥ Qk}. We can
state the problem of profit maximization as: selecting a subset
of data acquisition points O∗, such that the obtained profit is
maximized, i.e., O∗ = arg maxO⊆Y (R(O)− S(O)) . In profit
maximization, we assume that the expected payment �y for
each data acquisition point y ∈ Y is known in advance, and
determine this expected payment in payment minimization
module. Given the minimum payment for data acquisition
points and the optimal revenue for each version, the profit
maximization problem is actually a data acquisition point
selection problem.

2) Payment Minimization: For each of data acquisition
points, the frugal data broker always wants to purchase one
piece of data with the lowest payment. In Bayesian environ-
ment, the data broker intends to design a data procurement
auction that achieves the lowest expected payment �y , where
the expectation is with respect to the cost distributions F.

The problems of profit maximization and payment min-
imization are closely related. On one hand, the output of
payment minimization is the input of profit maximization. The
minimum expected payment on each of data acquisition points,
determined by the payment minimization procedure, directly
affects the data acquisition point’s probability of being selected
in the profit maximization subroutine. On the other hand,
the result of profit maximization, i.e., the selected data acquisi-
tion points, also has an impact on payment minimization. The
solution to profit maximization is to make a trade-off between
the revenue extracted from data trading and expenditure for
data acquisition. The intuitive idea behind the solution is to
select the data acquisition points with a lower payment and a
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high revenue contribution to final revenue. Under this selection
rule, the data acquisition points with a large payment and a
significantly high contribution would also have chances to be
selected. In the long term, the data acquisition points with
a large expected payment would attract more data providers,
increasing the competition among bidders, and thus decreasing
the payment in the end.

III. VENUS-PRO
In this section, we propose a profit-driven data acquisition

mechanism, namely VENUS-PRO, for profit maximization in
the crowd-sensed data market.

A. Detailed Design

VENUS-PRO consists of two components: Revenue Deter-
mination and Acquisition Expenditure Calculation.

1) Revenue Determination: In contrast to physical goods,
information commodity, regarded as one kind of digital goods,
has a different cost structure, i.e., a fixed cost of production,
e.g., a substantial data acquisition expenditure, but negligible
marginal costs, i.e., a lower cost of producing an additional
copy. Under this special cost structure, the prices of the
information commodity should be linked to the valuations of
data consumers rather than the production costs. Thus, given
the data consumers’ valuation distribution of the kth version:
Vk(x), the expected revenue of the kth version with a trading
price p is: (1−Vk(p))× p. Therefore, the data broker can set
the optimal price pk for the kth version by

pk ← arg max
p

[(1− Vk(p))× p] .

Under this optimal pricing strategy, the expected revenue for
the kth version is:

Rk =
k∑

i=1

ri =
k∑

i=1

[N × g(i)× (1− Vi (pi ))× pi ] . (6)

Given the optimal revenue for each version and the mini-
mum payment for each of data acquisition points, the profit
maximization problem is actually a data acquisition point
selection problem: selecting a subset of data acquisition
points O∗, such that the obtained profit is maximized, i.e.,
O∗ = arg maxO⊆Y (R(O)− S(O)) . Considering that the ver-
sion preference distribution g(i) and the valuation distribu-
tions Vi (p) can be quite complicated in the practical data
market, the specific format of the revenue R(O) (or Rk∗ ) (and
then the profit �(O)) has unclear properties, making it difficult
to directly solve the above profit maximization problem by
adopting the classical optimization problem. In the following,
we overcome this issue by transforming profit maximization
problem to a solvable expenditure minimization problem, and
designing an approximation algorithm for it.

2) Acquisition Expenditure Calculation: In the practical
market, the commodity normally has a constant number of
versions as a result of the trade-off between efficiency and
complexity [47], [53]. It is obvious that the optimal number
of the version for an information commodity is equal to the
number of types of data consumers in the data market. Data
consumers from different market segments have significantly

different valuations for one data set, because they use the
data set in diverse application scenarios. As the possible
applications for one data set may be large, the data broker
may not have a clear idea of the exact number of types of data
consumers. For the market with no obvious market segments,
some previous works [20], [48] in marking suggest that the
optimal number of versions is three: a high-end version,
a middle version, and a low-end version, which are also called
as Goldilocks pricing in the literature. Furthermore, the max-
imum number of versions in practical data marketplaces is
always small, e.g., in Windows Azure Data Marketplace [56],
the maximum number versions is no more than ten, and in
Quandl [45], a financial and economic data trading platform,
the data vendor offers most of data sets with four versions.
Under this observation, our basic idea to solve the profit
maximization is to enumerate the profit of each version and
select the maximum one as the result. Specifically, in order
to calculate the profit of the kth version, by the definition of
profit, we should know the possible highest revenue Rk and
its corresponding lowest data acquisition expenditure S(O).
Although we can exactly calculate the highest revenue Rk by
Equation (6), it is nontrivial to figure out the minimum data
acquisition expenditure S(O). We now formulate the problem
of expenditure minimization for the kth version as follows.

Problem: Expenditure Minimization for the kth version
Objective: Minimize S(O)
Subject to:

H (O)

H (Y )
≥ Qk , O ⊆ Y .

Here, the data broker attempts to select a set of acquisition
points O with the lowest acquisition expenditure, to satisfy the
quality requirement of the kth version.

Unfortunately, the problem of expenditure minimization can
be proven to NP-Hard by reducing from the general set cover-
ing problem [57]. Considering the computational intractabil-
ity of the expenditure minimization problem, we present an
alternative solution with a greedy acquisition points selection
algorithm, to achieve a near-optimal expenditure in polynomial
time. To this end, we take the advantage of the submodularity
of entropy function H (·). We first give the definition of
submodular function.

Definition 1 (Submodular Function): Let X be a finite set.
A function f : 2X 	→ R is a submodular function if for any
A ⊆ B ⊆ X and x ∈ X\B:

f (A ∪ {x})− f (A) ≥ f (B ∪ {x})− f (B).

We show the entropy H (·) is submodular and non-decreasing.
Lemma 1: The entropy function H : 2Y 	→ R is submodu-

lar, non-decreasing, and non-negative.
Proof: To prove the submodularity, we first introduce

an interesting property of entropy: the “information never
hurts” principle [9]: H (y|O) ≤ H (y), for any y ∈ Y and
O ⊆ Y , i.e., in expectation, observing the random variables
XO cannot increase the uncertainty about the random variable
X y . Since the marginal entropy increase can be expressed as
H (y∪O)−H (O) = H (y|O), the submodularity of the entropy
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Algorithm 1 Greedy Data Acquisition Point Selection
Input: A set of data acquisition points Y , a set of

expected payments �, the quality Qk of the kth
version.

Output: The set of selected random variables OT .
1 t ← 0; O0 ← ∅;
2 do
3 t ← t + 1;

4 πt ← arg miny∈Y\Ot−1

{
�y

H(y|Ot−1)

}
;

5 Ot ← Ot−1 ∪ {πt };
6 while H(Ot )

H(Y) < Qk and t < L;
7 T ← t ;
8 return OT ;

function is simply the consequence of the information never
hurt principle: for any set O ⊆ O′ ⊆ Y , we have:

H (y ∪ O)− H (O) = H (y|O)

≥ H (y|O′) = H (y ∪ O′)− H (O′).

Contrary to the differential entropy, which can be negative,
in the discrete case, the entropy is non-negative, i.e., H (y ∪
O) − H (y) = H (y|O) ≥ 0 for any set O ⊆ Y . Furthermore,
H (∅) = 0. This demonstrates that the entropy function H (·)
is non-negative and non-degreasing. �

By Lemma 1, the expenditure minimization is a submodular
set covering problem. Greedy approach is a nature fit for
submodular optimization [34], [57]. One nature greedy rule
is to select the most “cost-efficient” acquisition point in each
iteration, i.e., the acquisition point with a lower expected
payment and high marginal entropy. This simple and efficient
heuristic rule has been widely adopted in the other variations
of submodular set covering problems [14], [16], [55], [57].
Other greedy naive greedy rules, such as keep choosing the
acquisition points with minimum expected payment, or keep
choosing the acquisition points with the highest marginal
entropy can experience arbitrary bad results in some extreme
cases. We now describe the greedy data acquisition point
selection algorithm for the problem of expenditure minimiza-
tion in Algorithm 1. We use Ot to denote the set of selected
acquisition points until the tth iterations, and initialize O0 to
be ∅. In the t th iteration, the data broker will select the data
acquisition y ∈ Y \Ot−1 that has the smallest �y/H (y|Ot−1),
where H (y|Ot−1) = H (y ∪ Ot−1) − H (Ot−1) represents the
marginal entropy of the acquisition point y, given the currently
selected acquisition points Ot−1.7 Let πt denote the acquisition
point selected in the tth iteration. This selection process
iterates until the normalized joint entropy of the selected
acquisition points H (Ot)/H (Y ) is higher than the quality of
the kth version Qk , or there are no more acquisition points
to select (Lines 2 to 6). Algorithm 1 outputs the set of
T acquisition points OT as the result. Since we have to check
each unselected acquisition point in each iteration, and there

7In large scale mobile crowdsensing systems, it is hard to compute the exact
conditional entropy. We can adopt sampling approaches [33] to efficiently
calculate such approximate conditional entropy within a tolerant error bound.

Algorithm 2 VENUS-PRO for Profit Maximization
Input: A vector of valuation distributions V, a version

preference distribution g(k), a set of random
variables Y , a set of expected payments �,
a quality vector Q.

Output: A pair of profit and selected version (�∗, k∗).
1 �∗ ← 0; k∗ ← 0;
2 for k = 1 to K do
3 pk ← arg maxp [(1− Vk(p))× p];

4 for k = 1 to K do
5 Rk ←∑k

i=1 [N × g(i)× (1− Vi (pi))× pi ];
6 Ok ← G DY _ALG(Y ,�, Qk);
7 S(Ok)←∑

y∈Ok
�y ;

8 �k ← Rk − S(Ok);
9 if �k > �∗ then

10 �∗ ← �k ; k∗ ← k;

11 return (�∗, k∗);

are at most L iterations, the time complexity of Algorithm 1
is O(L2), where L is the number of acquisition points.

Combining revenue calculation with acqusition expen-
diture determination, we describe the detailed steps of
VENUS-PRO in Algorithm 2. VENUS-PRO first calculates the
optimal trading price for each version (Lines 2 to 3). Using this
optimal trading price strategy, VENUS-PRO can figure out the
maximum expected revenue Rk for each version k (Line 5).
Although VENUS-PRO cannot obtain the minimum expendi-
ture, it can get the approximate one by running Algorithm 1
(GDY_ALG for short) (Lines 6 to 7). Upon obtaining the
expected revenue Rk and the approximate expenditure S(Ok),
VENUS-PRO can calculate the approximate profit �k =
Rk − S(Ok) for each version k. Among these K candidate
versions, VENUS-PRO chooses the one with the maximum
approximate profit as the final result (Lines 9 to 10). Since
VENUS-PRO calls GDY_ALG algorithm K times, the com-
putational complexity of VENUS-PRO is O(K L2), where K
is the number of candidate versions.

B. Analysis

In this section, we analyze the approximation ratio of
VENUS-PRO. We first present the performance guarantee
of the greedy algorithm (i.e., Algorithm 1) for the problem
of data acquisition expenditure minimization.

Theorem 1: We use O∗ to denote the optimal set of acqui-
sition points for the problem of acquisition expenditure min-
imization. If Algorithm 1 is applied, we are guaranteed to
obtain:

S(OT )

S(O∗) ≤ 1+ loge β,

where β = min{β1, β2, β3}, and β1 = H ′(Y )−H ′(∅)
H ′(Y )−H ′(OT−1)

, β2 =
maxy∈OT ,1≤t≤T

{
H ′(y|O0)
H ′(y|Ot )

: H ′(y|Ot) > 0
}

, β3 = θ ′T
θ ′1

. The func-

tion H ′(·) is defined by H ′(O) � min{H (O), H (Y )×Qk}, and
θ ′t = �πt

H ′(πt |Ot−1)
.
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Proof: Designing greedy algorithms with good approx-
imation factors for the problem of submodular set covering
have been widely studied in submodular optimization liter-
ature [21], [22], [34], [57]. We can reduce the problem of
acquisition expenditure minimization to a special submodu-
lar covering maximization: minO⊆Y

{
S(O) : H ′(O) = H ′(Y )

}
,

by introducing a new submodular and non-decreasing function
H ′(O) = min{H (O), H (Y ) × Qk}. It is easy to check that
such special submodular covering formulation is equivalent to
the original formulation described in Section III-A. Wolsey
analyzed the approximation ratio of the greedy algorithm
for this special submodular covering maximization problem
in [57]. Thus, using the similar analysis technique, we can
immediately obtain the approximation ratio of Algorithm 1
for the problem of acquisition expenditure minimization. �

Before presenting the approximation ratio of VENUS-PRO,
we show a useful lemma.

Lemma 2: In the expenditure minimization for the ver-
sion k, the optimal solution O∗ satisfies Qk ≤ H (O∗)/
H (Y ) < Qk+1 .

Proof: We first show that for any random variable i ∈
O∗, we have H (O∗−i)/H (Y ) < Qk , where O∗−i = O∗\{i}.
If this inequality does not hold, i.e., H (O∗−i)/H (Y ) ≥ Qk ,
we can get a better solution O∗−i for the problem of expenditure
minimization. This is because O∗−i is a feasible solution when
H (O∗−i)/H (Y ) ≥ Qk , and the expenditure of random variables
O∗−i is certainly less than that of O∗ i.e., S(O∗−i ) ≤ S(O∗).
Therefore, O∗−i is better than the optimal solution O∗, which
makes a contradiction.

We now prove H (O∗)/H (Y ) < Qk+1 by contradiction.
Assume that H (O∗)/H (Y ) ≥ Qk+1. On one hand, combining
with H (O∗−i)/H (Y ) < Qk , we have:

H (O∗)− H (O∗−i)

H (Y )
> Qk+1 − Qk = �k ≥ �min >

H ({i})
H (Y )

.

On the other hand, according to the submodularity of entropy
function, we have:

H (O∗)− H (O∗−i) ≤ H ({i})− H (∅) = H ({i}).
Here, we get a contradiction, and thus H (O∗)/H (Y ) < Qk+1.
It is obvious that Qk ≤ H (O∗)/H (Y ). Therefore, we can
conclude that Qk ≤ H (O∗)/H (Y ) < Qk+1. �

We now show that VENUS-PRO can achieve sub-optimal
profit for each version. We use �∗k and �k to denote the
optimal profit and the approximate profit of the version k,
respectively. It is obvious that Rk ≥ S(O∗), and we further
assume that the revenue should be larger than the approximate
expenditure, i.e., Rk ≥ (1 + loge βk)S(O∗) ≥ S(OT ). Other-
wise, the data broker may get negative approximate profit, and
she would not sell the information commodity.

Lemma 3: For each version k, we have the following rela-
tion between the optimal profit and the approximate profit:

�∗k
�k
≤ ξk − 1

ξk − 1− loge βk
,

where ξk denote the ratio between the revenue and the expen-
diture, i.e., ξk = Rk/S(O∗), and ξk ≥ 1+ loge βk .

Proof: By Lemma 2, the highest version that the optimal
solution O∗ can achieve is exactly the version k. By the
definition of profit, we have:

�∗k = Rk − S(O∗). (7)

Furthermore, by Theorem 1, we have:

�k = Rk − S(OT ) ≥ Rk − (1+ loge βk)S(O∗). (8)

Together with Equations (7) and (8), we have:

�∗k
�k
≤ Rk − S(O∗)

Rk − (1+ loge βk)S(O∗)
≤ ξk − 1

ξk − 1− loge βk
. �

Based on Lemma 3, We now present the approximation ratio
of VENUS-PRO.

Theorem 2: For the profit maximization, the approximation
factor of VENUS-PRO is maxk

{
ξk−1

ξk−1−loge βk

}
.

Proof: We use AP X and O PT to denote the profit
obtained by VENUS-PRO and the optimal solution, respec-
tively. VENUS-PRO selects the maximum approximate profit
as the final result, i.e., AP X = maxk{�k}, and the optimal
profit is the maximum profit of all versions, i.e., O PT =
maxk{�∗k}. Using Lemma 3, we immediately have:

O PT

AP X
= maxk �∗k

maxk �k
≤ max

k

�∗k
�k
≤ max

k

{
ξk − 1

ξk − 1− loge βk

}
. �

IV. VENUS-PAY
In VENUS-PRO, we assumed that the expected payment

for each acquisition point is known. In this section, we deter-
mine this payment by designing an optimal and strategy-
proof data procurement auction, namely VENUS-PAY.
We first briefly review related solution concepts used in
this section from game theory. Secondly, we prove a useful
theorem in the context of procurement auctions: expected
payment is equal to expected virtual social welfare, extend-
ing the main results of seminal Myerson’s work [39].
Thirdly, combining this theorem with the knowledge of
cost distributions, we calculate the value of expected mini-
mum payment before conducting the data procurement auc-
tion, and regard such obtained payments as the inputs of
VENUS-PRO. Finally, we designed VENUS-PAY to realize
this expected minimum payment.

A. Solution Concepts
A strong solution concept from game theory is dominant

strategy.
Definition 2 (Dominant Strategy [13]): Strategy si is

player i ’s dominant strategy, if for any strategy s′i 
= si and any
other players’ strategy profile s−i : ui (si , s−i ) ≥ ui (s′i , s−i ).

The concept of dominant strategy is the basis of incentive-
compatibility (IC), which means that there is no incentive
for any player to lie about her private information, and
thus revealing truthful information is the dominant strategy
for every player. An accompanying concept is individual-
rationality (IR), which means that every player participating
in the game expects to gain no less utility than staying outside.
As the utility of not participating in the game is normally zero,
the individual-rationality requires that the utility of each player
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should be non-negative. We now can introduce the definition
of Strategy-Proof Mechanism.

Definition 3 (Strategy-Proof Mechanism [38]): A mech-
anism is strategy-proof when it satisfies both incentive-
compatibility and individual-rationality.

According to Myerson’s theorem [39], a single-parameter
procurement auction, in which bidders have single private
information, i.e., data collection cost in this paper, is strategy-
proof when its selection rule is monotone.

Theorem 3 (Myerson’s Theorem [39]): A single parameter
procurement auction is strategy-proof if and only if:

Monotone Selection: A selection rule x is monotone if for
every bidder i and bids b−i by the other bidders, the selection
rule xi (b′i , b−i ) to i is non-increasing in its bid b′i .

In the seminal paper [39], Myerson proved that for strategy-
proof procurement auctions, the monotone selection rule
implies a unique payment calculation rule:

wi (bi , b−i ) = −
∫ c̄

bi

z × d

dz
xi (z, b−i ) dz. (9)

Here, we assume that xi (z, b−i ) is differentiable.8

According to Theorem 3, we can transform the design
of a strategy-proof mechanism, guaranteeing the properties
of incentive-compatibility (IC) and individual-rationality (IR)
to the search for the monotone selection rule with good
performance guarantee.

Another standard solution concept from game theory is
Nash Equilibrium (NE). A strategy profile s∗ is a Nash Equi-
librium of a game, if for any player i and any strategy si 
= s∗i ,
ui (si , s∗−i ) ≥ ui (s′i , s∗−i ). However, NE does not provide an
ideal solution to the problem of data procurement. There are
two reasons: (1) NE is not a very strong solution concept.
Specifically, when in NE, the game player has incentives
to keep her equilibrium strategy only under the assumption
that all the other players are also keeping their equilibrium
strategies. Without this assumption, NE no longer provides
incentives for game player. (2) More importantly, NE usually
has no guarantee on system performance, which means that
the system performance is not optimized. When the system
converge to one of NEs, the corresponding performance, such
as social welfare or revenue, may be lower. In contrast to
NE, the Dominant Strategy Equilibrium (DSE) or the strategy-
proofness ensures every player has incentive to use the equi-
librium strategy, regardless of the other players’ strategies.
We show that when the data procurement auction converge
to DSE, the optimal expected payment is also achieved. Thus,
the DSE-based auction mechanism is more desirable than the
above NE-based mechanism in data acquisition process.

B. Design Rationale

The data procurement auction, in which the data broker
wants to purchase one observation from a pool of competitive
data providers with a minimum expected payment, can be
considered as a reversed version of the Myerson auction [39].

8Actually, by standard advanced calculus, the same formula holds for an
arbitrary monotone selection function, including piecewise constant function,
for a suitable interpretation of the derivative and the corresponding integral.

The main result in Myerson auction (i.e., maximizing expected
revenue can be reduced to maximizing expected virtual social
welfare) collapses in our context of data procurement auc-
tion. We theoretically prove a powerful theorem: minimizing
expected payment is equal to minimizing expected virtual
social welfare. This theorem is the basis of designing the
reverse auction with the goal of payment minimization. Before
proving this theorem, we formally define virtual cost in data
procurement auctions.

Definition 4 (Virtual Cost): In a data procurement auction,
the virtual cost of the data provider i ∈ My with the cost ci

drawn from Fi is defined as:

ϕi (ci ) � ci + Fi (ci )

fi (ci )
. (10)

As the previous works [32], [39], we assume that the cost
distribution Fi (·) is regular, i.e., the virtual cost function ϕi (ci )
is a strictly increasing function, which is met by most of the
distribution functions, such as uniform distributions, exponen-
tial distributions, and lognormal distributions.

We prove our main result for data procurement auction.
Theorem 4: In a data procurement auction, the expected

payment is equal to the expected virtual social welfare, i.e.,

Ec∼F

[ my∑

i=1

wi (c)

]

= Ec∼F

[ my∑

i=1

ϕi (ci )× xi(c)

]

.

Proof: We fix the costs of the other data providers as c−i ,
and consider the expected payment of the provider i :

Eci∼Fi [wi (c)] =
∫ c

c
wi (c) fi (ci ) dci

=
∫ c

c

[
−

∫ c̄

ci

z × d

dz
xi (z, c−i ) dz

]
fi (ci ) dci

= −
∫ c

c

[∫ z

c
fi (ci ) dci

]

z × d

dz
xi (z, c−i ) dz

= −
∫ c

c
Fi (z)× z × d

dz
xi (z, c−i ) dz (11)

In the first equation, we exploit the independence of cost
distributions, i.e., the fixed value of c−i has no impact on
the distribution Fi . The second equation comes from the
Myerson’s payment formula (9). We reverse the integration
order in the third equation. We adopt the method of integration
by parts to make the integral a more interpretable form.

(11) = −Fi (z)× z × xi (z, c−i )
∣
∣c
c︸ ︷︷ ︸

=0−0

+
∫ c

c
xi (z, c−i )× (Fi (z)+ z fi (z)) dz

=
∫ c

c

(
z + Fi (z)

fi (z)

)
xi (z, c−i ) fi (z) dz

=
∫ c

c
ϕi (ci )× xi (ci , c−i ) fi (c) dc

= Eci∼Fi [ϕi (ci )× xi (c)] .

Finally, we have the equation for every bidder i and a
cost vector c−i : Eci∼Fi [wi (c)] = Eci∼Fi [ϕi (ci )× xi (c)] .
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We recall that c−i is a vector of acquisition points, and we
take the expectation, with respect to c−i , of both sides of this
equation to obtain: Ec∼F [wi (c)] = Ec∼F [ϕi (ci )× xi (c)] .
Applying linearity of expectations twice, we can get:

Ec∼F

[ my∑

i=1

wi (c)

]

=
my∑

i=1

Ec∼F [wi (c)]

=
my∑

i=1

Ec∼F [ϕi (ci )× xi (c)]

= Ec∼F

[ my∑

i=1

ϕi (ci )× xi (c)

]

.

We refer to
∑my

i=1 ϕi (ci )× xi (c) as the virtual social welfare
with a cost profile c. Thus, we have proved our claim. �

By Theorem 4, we will always choose the data provider with
the lowest virtual cost as the winner. The minimum expected
payment for the data acquisition point y ∈ Y can be expressed
as: �y = T × Ec∼F [mini ϕi (ci )] . We can calculate this
optimal payment with the knowledge of cost distributions F.
For easy illustration, we introduce some notations. Let ϕmin(c)
denote the minimum virtual cost for a given cost profile c, i.e.,
ϕmin(c) � mini ϕi (ci ). We denote the cumulative distribution
function of ϕi (ci ) by Gi (z), which can be derived from the
cost distribution Fi (x), i.e., Gi (z) = Fi (ϕ

−1
i (z)). Let Gmin(z)

denote the cumulative distribution function of ϕmin(c):

Gmin(z) = Pr(ϕmin(c) ≤ z) = 1− Pr(ϕmin(c) > z)

= 1−
my∏

i=1

Pr(ϕi (ci ) > z)

= 1−
my∏

i=1

(1− Gi (z)).

The payment �y for each acquisition point y ∈ Y is:

�y = T × Eϕmin (c)∼Gmin [ϕmin(c)]

= T ×
∫ ϕ

ϕ
z × gmin(z) dz

= T ×
(

ϕ −
∫ ϕ

ϕ
Gmin(z) dz

)

, (12)

where gmin(z) is the probability density function of the random
variable ϕmin(c), and the range [ϕ, ϕ] is the support of the ran-
dom variable ϕmin(c), ϕ � mini ϕi (ci ) and ϕ � maxi ϕi (ci ).
We adopt the method of integration by parts in the last part
of Equation (12).

How should we design a selection rule x to realize this opti-
mal payment? We have no control over the cost distributions F
or the virtual cost functions ϕi (ci ), so the natural approach
is to design the selection rule x(c), such that the achieved
virtual social welfare is minimum for every possible input
cost profile c. With this observation, we design an optimal
procurement auction in next subsection.

Algorithm 3 VENUS-PAY for Payment Minimization
Input: The number of data providers my , a bidding

profile b, a vector of cost distributions F, a vector
of corresponding probability density function f .

Output: A pair of selection result and payment result
(x(b), w(b)).

1 x(b)← 0; w(b)← 0;
2 // Winner Selection
3 for i = 1 to my do
4 ϕi (bi )← bi + Fi (bi )

fi (bi )
;

5 i∗ ← arg mini ϕi (bi );
6 xi∗(b)← 1;
7 // Payment Calculation

8 î ← arg mini 
=i∗ ϕi (bi );

9 wi∗(b)← min
(
ϕ−1

i∗ (ϕî (bî )), ci∗
)

;

10 return (x(b), w(b));

C. Detailed Design

VENUS-PAY consists of two major components: Winner
Selection and Payment Calculation. We depict the pseudo-code
of VENUS-PAY in Algorithm 3.

1) Winner Selection: After collecting the bids b, the data
broker calculates the virtual bid for each data provider by
Equation (10) (Lines 3 to 4). Based on Theorem 4, minimizing
the expected payment is equal to minimizing the expected
virtual social welfare. Thus, in order to minimize the expected
payment, the data broker chooses the data provider with
the lowest virtual bid as the winner, i.e., xi∗(b) = 1 for
i∗ = arg mini {ϕi (bi )} (Lines 5 to 6). We note that selecting
the data provider with the lowest bid does not lead to an
optimal data procurement auction. We break the tie following
any bid-independent rule, e.g., the lexicographic order of data
provider’s ID. Due to the regularity of cost distributions, this
winner selection rule is monotone.

Lemma 4: The selection rule in VENUS-PAY is monotone.
Proof: To prove the monotonicity of the selection rule,

we have to show that any winning data provider i∗ will
still be selected as a winner when she decreases her cost,
c′i∗ ≤ ci∗ . Since the cost distribution is regular, i.e., the virtual
cost function is a strictly increasing function, the virtual cost
of c′i∗ will not be larger than that of ci∗ , i.e., ϕi∗(c′i∗ ) ≤
ϕi∗(ci∗). Therefore, the data provider i∗ will still be the winner,
and the selection rule is monotone. �

2) Payment Calculation: By Theorem 3, the monotone
selection rule implies a unique payment calculation rule.
We note that in the data procurement auction, the selection
rule x is a piecewise constant monotone function, meaning
that xi (bi , b−i) slump from 1 to 0 at some threshold point.
In this case, the payment calculated by Myerson’s formula (9)
is equal to critical bid, which is defined as follows.

Definition 5 (Critical Bid): The critical bid cr(i) for data
provider i ∈ My is a threshold such that if i bids lower than
cr(i), she wins; otherwise she loses.

The critical bid of the winner i∗ can be calculated by the
following steps. If the data provider i∗ still wants to be the
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winner in the auction, her virtual cost ϕi∗(bi∗) must be lower
than the minimum virtual cost of the remaining data providers,
i.e., ϕi∗(bi∗) ≤ mini 
=i∗ ϕi (bi ); otherwise she will lose the
auction. Since the virtual cost function is a strictly increasing
function, there must exist a largest bid that satisfies the above
winning condition. Considering that this largest bid may be
larger than ci∗ , we set the critical bid of the winner i∗ as:

cr(i∗) � min
(
ϕ−1

i∗
(
ϕî

(
bî

))
, ci∗

)
, (13)

where î = arg mini 
=i∗ ϕi (bi ). Finally, the payment of the
winner i∗ is set as her critical bid cr(i∗), and the payments
of the losers are zero (Lines 8 to 9).

By Lemma 4 and Theorem 3, we have following theorem.
Theorem 5: VENUS-PAY is a strategy-proof data procure-

ment auction.
Proof: We first show that data provider i ∈ My cannot

obtain a higher utility by bidding untruthfully. We discuss the
analysis in the following two cases.
• The data provider i wins the auction and gets an utility

ui ≥ 0 when bidding truthfully, i.e., bi = ci . Suppose the data
provider still wins the auction when she cheats the bid, i.e.,
b′i 
= ci . The utility of the data provider remains the same,
because the payment is unchanged. If the data provider loses
the auction when she cheats the bid, her utility is zero, which is
not better than the non-negative utility when bidding truthfully.
• The data provider i loses the auction when bidding

truthfully, resulting in the utility to be zero. If she still loses
when bidding untruthfully, her utility cannot be changed.
We consider the scenario, in which she cheats the bid b′i 
= ci

and wins the auction. We represent the virtual bids ϕi (b′i )
and ϕi (bi ) when the data consumer i bids truthfully and
untruthfully, respectively. According to the winner selection
principle, we have ϕi (b′i ) ≤ ϕi (cr(i)) ≤ ϕi (bi ). As the virtual
cost function ϕi (·) is strictly increasing with respective to the
declared bid. We can get b′i ≤ cr(i) ≤ bi . Her utility now
becomes non-positive:

u′i = cr(i)− ci ≤ bi − ci = ci − ci = 0.

From the above analysis of two cases, we can see that
the data provider i cannot increases her utility by bidding
any other value than ci , and thus bidding truthfully is
a dominant strategy for each data provider. Therefore,
VENUS-PAY satisfies incentive compatibility.

We next prove that VENUS-PAY satisfies the property of
individual rationality. On one hand, data provider’s utility is
zero if she loses in the auction. On the other hand, winning
data provider gets utility:

ui = cr(i)− ci = min
(
ϕ−1

i (ϕî (bî )), c̄i

)
− bi ,

where ϕî (bî ) is the virtual bid of the critical bidder î , i.e.,
î = arg mini 
=i∗ ϕi (bi ). On one hand, since the data provider i
is a winner and ϕi (·) is a strictly increasing function, we have
ϕi (bi ) ≤ ϕî (bî) and then bi ≤ ϕ−1

i (ϕî (bî )). On the other hand,
c̄i is the upper bound of the bid, i.e., bi ≤ c̄i . Combining these
two equalities, we have bi ≤ min

(
ϕ−1

i (ϕî (bî )), c̄i

)
, implying

that the utility of the data provider is always non-negative in

Fig. 2. Map of Intel Berkeley Lab deployment, with the placement
of 54 sensors shown in dark hexagons. The green circles represent data
acquisition points in the 12 regions.

this scenario. Therefore, we can conclude that VENUS-PAY
satisfies individual rationality.

Since VENUS-PAY satisfies both incentive compatibil-
ity and individual rationality, according to Definition 3,
VENUS-PAY is a strategy-proof mechanism. �

Remark: We note that VENUS-PAY with i.i.d bidders and
regular cost distributions F is simply the conventional second-
price auction. In this scenario, all the cost distributions F
reduce to a common distribution F , and thus the virtual cost
functions ϕi (ci ) are the same for all bidders. The bidder with
the lowest virtual cost is also the bidder with the lowest
cost. Furthermore, according to the expression of critical bid
(Equation (13)), the payment of the winner is exactly
the second lowest bid. In the asymmetric case, the cost
distributions are non-identical, but still independent and
regular. VENUS-PAY does not generally resemble any auc-
tions used in practice. In next section, we will show that
VENUS-PAY outperforms the second price auction in the
asymmetric case.

V. EVALUATION RESULTS

In this section, we present the evaluation results of VENUS
based on a real-world sensed data set.

A. Sensed Data Set

We first introduce the public data set collected by Intel
Research, Berkeley Lab [19]. As shown in Figure 2,
researchers deployed 54 Mica2Dot sensors in the lab to mea-
sure multiple environmental phenomena, e.g., light, humidity,
temperature and voltage readings. in a real time manner.
We tailor the data set, and focus on the temperature mea-
surements from all the 54 sensor nodes at 30 seconds intervals
between February 28th, 2004 to April 5th, 2004. We discretize
the collected data into 5 bins of 3 degrees Celsius each.
We artificially partition the lab into 12 non-overlapped regions,
and virtually deploy one data acquisition point in each of
region, to represent the average of the readings measured
by the sensors located in the corresponding region. We can
use the collected samples to build a joint distribution over
the 12 data acquisition points. For some selected random
variables XO , we can calculate its probability mass function
p(XO) by projecting the joint distribution p(XY ) over XO .
With Equations (1) and (2), we can calculate the conditional
distribution and the corresponding conditional entropy for any
selected random variables.
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B. Evaluation Setup

We set the number of versions as K = 8,
and set the corresponding quality vector as Q =
(0.25, 0.38, 0.53, 0.63, 0.70, 0.78, 0.89, 0.98). We fix the
number of data consumers as N = 500 through the
evaluation9. In order to examine the performance of VENUS
under different data consumers’ purchasing behavior models,
we choose two typical version preference distributions and
two common valuation distributions. Specifically, we adopt
the Poisson distributions with two different parameters
(parameter λ can be either 3 or 8) to be the version preference
distributions. We set two types of valuation distributions as
follows.

� Uniform Distribution: The data consumers’ valuations on
the kth version are uniformly distributed over a range [2k, 4k].

� Gaussian Distribution: The data consumers’ valuations
over the kth version are drawn from a Gaussian distribution
with mean 3k and variance 3, and with a lower bound 0.

Upon these distributions, we can obtain four different
behavior models, and use “Poisson-λ, Uniform (or Gaussian)”
to denote the Poisson distribution with parameter λ and the
uniform (or Gaussian) valuation distribution. While the uni-
form distribution describes that data consumers have diverse
valuations over the same set of data, the Gaussian distribution
can capture the scenario that data consumers have similar
valuations located in a centralized range. We note that the
parameter setting of the valuation distributions guarantees that
the valuation over the high version is always larger than that
of the lower version.

We evaluate the performance of VENUS-PAY for one ran-
domly selected data acquisition point in a single time slot, i.e.,
T = 1. The number of data providers for this data acquisition
point increases from 6 to 10 sequentially. We set the cost
distribution of the data providers as exponential distributions.
Specifically, the cost of data provider i is drawn from the
exponential distribution:

fi (x) =
{

αi e−αi x , if x ≥ 0,

0, otherwise,

where the support of the distribution is (0,∞). We further
consider identical cost distributions and non-identical cost
distributions scenarios in VENUS-PAY. In the identical case,
we set the parameters α to be 0.001 for all data providers,
and in non-identical case, we set αi = ei/105 for the
data provider i . All the results of performance are averaged
over 1000 runs.

1) Performance of VENUS-PRO: We implement VENUS-
PRO, and compare its performance with the optimal algorithm
and random algorithm. We obtain the optimal profit, denoted
by “OPT”, using the brute-force search method for the prob-
lem of profit maximization. The “OPT” result is served as the
reference of upper bound of profit. In “Random” algorithm,
we first randomly select a version as the result, and then use
a set of random data acquisition points to satisfy the quality

9It is worth emphasizing that all parameters can be different from the ones
used here. Considering that the evaluation results of using different parameters
are identical, we only show the results for these parameters in this paper.

Fig. 3. Revenue curves for the first three versions when the version preference
distribution is Poisson distribution with parameter 3.

requirement of the selected version. The existing works about
data acquisition for mobile crowdsensing focused on other
optimization objectives, such as cost minimization [32] and
data quality [23], and ignored the revenue extracted from data
trading in the market. Thus, we do not compare VENUS-PRO
with the existing data acquisition mechanisms.

With the knowledge of data consumers’ purchasing behavior
models, we can plot the revenue curve rk in Equation (3)
with respective to price, for the first three versions. We set
the version preference distribution as the Poisson distribution
with parameter 3. We further examine the evaluation result of
uniform valuation distribution and Gaussian valuation distribu-
tion in Figure 3(a) and Figure 3(b), respectively. We obtain the
optimal expected revenue of each version by calculating the
optimal price point of its corresponding revenue curve. After
that, we can plot the optimal revenue for all of the versions
in Figure 4(a). From Figure 4(a), we can see that the data
broker obtains a large revenue by providing high version for
the information commodity. This is because the high version
can satisfy the data consumers with high quality requirements,
extracting additional revenue from these data consumers. From
Figure 4(a), we can also see that the revenue function with
respective to version has different trends and properties, under
different purchasing behavior models. This result demonstrates
that the property of revenue function is indeed complex, and
is hard to analyze in complicated data markets in terms of
diverse purchasing behavior models, making directly solving
the problem of profit maximization infeasible.

In order to calculate the data acquisition expenditure,
we have to know the minimum expected payment at each
data acquisition point. In this set of experiments, we assume
that data providers have the identical cost distributions, and
the number of data providers at each data acquisition point
is randomly chosen from [6] and [17]. With this information,
we can calculate the minimum expected payment for each
data acquisition point by Equation (12). For a fixed version,
VENUS-PRO applies the greedy algorithm, i.e., Algorithm 1,
to calculate an approximate data acquisition expenditure, and
the result is shown in Figure 4(b). From Figure 4(b), we can
see that the expenditure becomes large when high version
is provided in the data market. The reason is that we need
to select more data acquisition points to assure the high
quality requirement. We can also see that VENUS-PRO always
outperforms the Random algorithm, and approaches to the
optimum.

Based on the obtained revenue (i.e., Figure 4(a)) and the
acquisition expenditure (i.e., Figure 4(b)), we can plot the
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Fig. 4. Performance of VENUS-PRO, OPT, and Random.

Fig. 5. Performance of VENUS-PAY, First-Price Auction, and Second-Price
Auction.

profits under different data consumers’ purchasing behavior
models in Figure 4(c). The result shows that VENUS-PRO
is very close to the optimum in all the four representative
purchasing behavior models, demonstrating the efficiency of
VENUS-PRO for the crowd-sensed data trading. We note that
in the “Poisson-3, Uniform” model, the expected profit of the
random algorithm is negative, so the data broker would not sell
the information commodity. We omit the profit of the random
algorithm in this case.

2) Performance of VENUS-PAY: We now present the eval-
uation results of VENUS-PAY. We implement VENUS-PAY,
and compare its performance with two classical auctions:
first-price auction and second-price auction. The non-truthful
first-price auction always disburse less payment compared
to VENUS-PAY, because VENUS-PAY overpays the winner
to guarantee strategy-proofness. We compare the results of
first-price auction and VENUS-PAY to illustrate the sys-
tem performance degradation caused by the requirement of
strategy-proofness.

By varying the number of data providers, we collect a set of
performance results, as illustrated in Figure 5. In Figure 5(a),
VENUS-PAY has the same performance as the second-price
auction in the identical cost distribution scenario. This coin-
cides with our analysis that VENUS-PAY reduces to the
second-price auction when the costs of data providers follow
the same distribution. Figure 5(b) shows the evaluation results
in the non-identical scenario. From Figure 5(b), we can see that
VENUS-PAY outperforms the second-price auction, which
does not take advantage of the knowledge of cost distributions.
This result demonstrates that exploiting the information of
cost distributions can reduce the expected payment to some
extent. In both identical and non-identical cases, the result
of VENUS-PAY is close to that of the first-price auction,
denoting that VENUS-PAY sacrifices limited performance to

satisfy the strategy-proofness. Although the first price auction
always achieves the lowest disbursed payment, we can not
apply it to the context of data procurement, because it has not
any guarantee on economic properties.

VI. RELATED WORK

In this section, we briefly review related work.

A. Data Market Design
In recent years, designing pricing mechanisms for online

data markets attracts increasing interests, especially from
database research community [3], [30], [31], [35]. These
previous works mainly focused on designing computationally
efficient and economic-robust data pricing mechanisms,
achieving two important axioms, i.e., arbitrage-free and
discount-free [31]. Koutris et al. [30] showed that the prices
of a large class of queries can be computed using an ILP
solver. Later Lin and Kifer [35] designed an arbitrage-free
pricing function for arbitrary query formats. However, these
works did not consider the problem of data acquisition in data
marketplaces. While there are a number of pricing mechanisms
for different kinds of network services [27], [36], [37], [49],
they cannot be directly applied into data marketplaces due to
the unique characteristics of crowd-sensed data in terms of
cost structure and uncertain feature.

B. Mobile Crowdsensing
Recently, mobile crowdsensing has emerged as a new

paradigm to generate collective knowledge about phenomena
at interested regions. Data acquisition is a critical compo-
nent in mobile crowdsensing system, and various incentive
mechanisms have been proposed to motivate mobile users
to contribute data [7], [11], [18], [23], [25], [32], [58].
Yang et al. [58] applied Stackelberg game and reverse auction
theory to design incentive mechanisms for two basic data
acquisition models. Chen et al. [6] considered the network
effect in user recruitment in crowdsoucing. Cheung et al. [7]
designed an asynchronous and distributed algorithm to recruit
mobile users for time sensitive tasks. Considering the locations
of tasks and the movements of mobile users, He et al. [18]
proposed two incentive mechanisms based on discounted-
reward TSP algorithm and bargaining theory. Inspired by
opportunistic networks, Karaliopoulos et al. [25] examined a
practical crowdsensing scenario, in which mobile users can
play the roles of both data collectors and data transmitter.
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Karaliopoulos et al. [24] studied the payment distribution
problem in light of learning the user profiles. Our data
acquisition model for the problem of payment minimization is
similar to Koutsopoulos [32], in which he designed an optimal
reverse auction, achieving Bayesian Nash equilibrium. In this
paper, we proposed an optimal data procurement auction with
the guarantee of strategy-proofness, which is a stronger solu-
tion concept than Bayesian Nash equilibrium. Furthermore,
we built a data trading model to capture the economic value
of data in the market. Thus, our ultima goal is to extract
maximum profit from data trading, which is different from
the objective of minimizing the expected payment in [32].

C. Auction Mechanism Design

Myerson [39] initially studied the optimal single-item for-
ward auction, and proved that the prevalent reserve-price-based
auctions can achieve maximum expected revenue. In contrast
to the forward auction, few of works studied the procurement
auction design. Procurement auctions, introduced to computer
science already in [40], were at first studied to minimize social
welfare [12], [40], which is different from our objective of
payment minimization. Recently, researchers have studied the
problem of payment optimization under different definitions
of frugality ratio, which measures the amount by which
an auction “overpays” [26], [28]. By extending Myerson’s
seminal work, we designed the first strategy-proof and optimal
procurement auction, and applied it into a new context of
Internet economic system, i.e., crwod-sensed data markets.

VII. CONCLUSION

In this paper, by jointly considering the problems of profit
maximization and payment minimization, we have proposed
the first framework of profit-driven data acquisition, namely
VENUS, in the crowd-sensed data marketplace. Given the
expected payment for each data acquisition point, we have pro-
posed VENUS-PRO to achieve a sub-optimal profit. In order
to determine the minimum payment for each data acquisition
point, we have designed VENUS-PAY, which is an optimal,
strategy-proof data procurement auction in Bayesian setting.
We have implemented VENUS, and evaluated its perfor-
mance on a real-world data set. Our evaluation results have
shown that VENUS-PRO approaches the optimal profit, and
VENUS-PAY outperforms the canonical second-price auction
in terms of payments.
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