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Abstract—Last decade has witnessed the explosion in the
number of smart mobile phones and other smart devices
equipped with powerful sensors. Therefore, various crowdsensing
applications which recruit people to complete sensing tasks have
sprung up. Designing incentive mechanism plays an indispensable
role in crowdsensing network. However, most existing works
about incentive mechanism base on the assumption that agents
will complete the allocated sensing tasks without any problem.
However, when we take the failures of agents into consideration,
most existing incentive mechanisms become invalid.

Considering a more practical scenario, we suppose that there
is a crucial sensing task which needs to remain high enough
probability of success completion for a certain period of time
and each alternative agent has a certain probability to cover
a certain period successfully. To ensure the fault tolerance
of the crowdsensing system, we propose two novel incentive
mechanisms, single slot coverage (SSC) mechanism and contin-
uous coverage (CC) mechanism, for different problem models,
respectively. In our mechanisms, agents’ probabilities of success,
costs of completing task, start time and end time are all private
information. Our objective is to minimize the total costs of
selected agents, while ensuring the task is fully covered with a
high enough probability over a certain period. Our work presents
detailed proofs of the computational efficiency, truthfulness and
individual rationality. Besides, we implement extensive simulation
to evaluate proposed mechanisms, which validates the properties
of our mechanisms.

I. INTRODUCTION

Following the explosive growth in the number of smart
phones, various kind of embedded sensors on mobile phones
are available for collecting information, such as GPS, ac-
celerometers, digital compasses, microphones, and cameras.
Furthermore, smart phones also integrate communication mod-
ule, storage module and computation module. It indicates that
ubiquitous smart phones are promising to play the role of
sensors in classic wireless sensor network(WSN). Since the
enormous potential of mobile phones, mobile crowdsensing,
as a novel sensing paradigm, has attracted great attention [1].
Various applications have been developed in wide fields, such
as transportation planning, environment monitoring, localiza-
tion, healthcare and so on [2]–[9].
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However, aforementioned applications, which recruit agents
to complete sensing tasks, need sufficient number of partici-
pants. Participants consume some resources to complete the
sensing tasks and bear the risk of disclosure of privacy. Few
agents prefer to participate in sensing unless they are motivated
enough. Therefore, incentive mechanism is essentially impor-
tant in crowdsensing, which is is covered with a number of
works in the survey [10]. Nevertheless, most existing incentive
mechanisms are proposed on the basis of assumption that
agents can complete allocated tasks without any problem. But
in pracice, failures of sensing tasks are common. For example,
we suppose that there is a task requiring people to monitor
noise in a target area continually. Due to the attenuation of
acoustical signal in propagation, the probability of monitoring
noise correctly decreases with increasing distance [11]. In
other sensing tasks, agents’ departure halfway, low-quality
data and the interference of environment also lead to failure
of the task.

In this work, we consider a continuous sensing task that
needs a guaranteed success probability for a period of time.
Agents prefer to cover the task over a certain period of
time and they maintain a certain probability of success (PoS)
over the sensing process. We assume that the agents could
estimate their own probability of successful sensing according
to the proposed route, location, and network environment.
Owing to the execution uncertainty of agents, the task needs
to recruit sufficient number of agents to ensure the success
rate of task satisfying the requirement of task, such that the
crowdsensing system is fault tolerant. We aim at minimizing
the total costs of participants while guaranteeing a threshold
probability of success of the task all the time. Besides, the
mechanism should persuade agents to report their private
infomation truthfully, i.e., the mechanism should be truthful
and individually rational. Since agents are always rational and
self-interested, they will try to misreport their type to gain
more benefits.

In our problem model, agents could misreport their infor-
mation on multi-dimensions, such as start time, end time,
PoS and cost. Thus, we need to design a multi-parameter
mechanism. Unfortunately, the multi-parameter mechanism
design problem has no general solution yet. Thus we resort to
the cost verification. Furthermore, the traditional mechanism
design based on VCG mechanism [12] is invalid. This is
because the problem aiming at minimizing the total costs of
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participants and satisfying PoS requirement simultaneously
is NP-hard, and thus is computational intractable. Even if
VCG mechanism can be used in NP-hard promble [13], it
is not applicable to the model. Because the pricing scheme in
VCG mechanism ignores the interdependencies between the
probability of success and agents’ valuations.

Considering these challenges, we propose two different
models: single slot coverage model and continuous coverage
model, where agents can select a single slot and a continuous
period to cover, respectively. Due to the cost verification,
We suppose that agents cannot cheat on their costs, such
that the multi-dimensional mechanism design problem reduces
to single-dimensional mechanism design problem. We design
two incentive mechanisms on the basis of reverse auction,
which both adopt greedy approximation algorithms for the
agent selection. The pricing scheme is draw on the execution
contingent pricing scheme in [14], which pays the agents
depending on whether they complete their tasks successfully.
We prove that our mechanisms both have good economical
properties, such as truthfulness, individual rationality. Com-
putation efficiency and guaranteed approximation ratio of our
mechanisms are also proved theoretically.

We highlight the contribution of our work as follows:

• We formulate the problem of designing incentive mech-
anisms for crowdsensing based on reverse aution consid-
ering the failures of agents. We propose a crucial task
needed to be covered with a certain PoS for a period of
time. The goal of the incentive mechanism is to minimize
the total cost of agents and ensure task to be completed
with higher PoS than requirement meanwhile.

• We design SSC mechanism for the single slot coverage
model. We propose a 2-approximation algorithm to for
the winner selection algorithm with a greedy manner.

• We design CC mechanism for the continuous coverage
model. We propose a greedy algorithm to select the agent
iteratively. The analysis shows that the approximation
ration of the winner selection is guaranteed .

• We extended the execution contingent pricing scheme to
tackle the execution uncertainty of agents. We provide
the detailed proof that the pricing scheme guarantees the
truthfullness of our mechanisms.

• Extensive evaluation has validated the properties of pro-
posed mechanisms, which is based on a real data set of
CitiBike data [15] in New York.

The remainder of this paper is organized as follows. We
discuss related work in Section II. Two problem models
are formulated in Section III. We then design two different
mechanisms for both models in Section III. We evluate our
mechanisms and show the results in Section V and conclude
this paper in Section VI.

II. RELATED WORK

The problem of incentive mechanism designing with game
theory method has received a lot of attention over last few
years. Yang et al. [16] proposed two incentive mechanisms

Fig. 1. A general crowdsensing system.

based on user-centric and platform-centric model. Koutsopou-
los et al. [17] designed a mechanism considering participa-
tion levels of agents. Luo et al. [18] studied the incentive
mechanism utilizing all-pay auction scheme. Zhao et al. [19]
proposed two online incentive mechanisms OMZ and OMG
for the scenario where agents arrived one by one. Feng et al.
[20] proposed the auction for location-aware sensing model.
Zhang et al. [21] designed a incentive tree mechanism to
reward users for both participation and solicitation. Indeed,
none of these incentive mechanisms considers the possibility
of task failure. There are a few works focusing on the quality
of agents or data [22]–[24], which is similar to the PoS in this
paper. However, in these papers the qualities of agents or data
either obey a certain probability distribution or are estimated
via learning methods, which are not private information of
agents. It is main difference from our model.

Zhang et al. [25] proposed a participant selection frame-
work named CrowdRecruiter. It considered the probabilistic
coverage constraint which is similar to our model. However,
their work does not include incentive mechanism for agents.
Porter et al. [14] investigated fault tolerant mechanism design
firstly. They presented a novel VCG-like mechanism to get
truthful and individually rational, which will fail for the
computational intractability. Conitzer et al. [26] and Stein et
al. [27] considered similar settings where execution time of
agents is uncertain. Ramchurn et al. [28] proposed trust-based
mechanisms where participants can play the role of requester
and evaluate others’ trust (PoS). However, they did not set
the uncertainty as a private information of agents as well.
Zheng et al. [29] proposed the mechanism aiming to achieve
high probability of tasks considering single task setting and
multi-task setting. However, this work only tackles with task
allocation problem, which is different from our continuous task
coverage problem. And the assumption that agents can only
bid integral probability of success is unreasonable.

III. PROBLEM MODEL

As illustrated by Fig. 1, a general crowdsensing system
consists of two components, including a platform residing in
the cloud and a set of agents with mobile devices denoted
by A = {a1, a2, .., an}. The crowdsensing process can be
described as follows. First, the platform releases a task T
which need to be covered during a time period [S,E] with
a threshold probability at least Thr, e.g., noise monitoring on
some areas from 8 am to 10 am with threshold probability
0.8. Then, there is a set A of n agents who are interested
in the sensing task. Each agent ai ∈ A reports her private



type θi = {ci, pi, si, ei} to platform, where ci denotes the
cost of agent ai incurred by participating in sensing task
from start time si to end time ei and pi dnotes the PoS of
the agent maintain. We assume that the cost ci is declared
truthfully, because we can verify it via monitoring the battery
consumption, recording steps or walking routes and other
methods, which is known as ex-post verification and is widely
utilized in mechanism design [30]. It is noteworthy that the
cost of an agent will incur no matter the agent completes
sensing tasks or not, for instance, agents consume battery
power to monitor noise no matter the task is completed
successfully or not. Besides, we dnote pit as the probability of
success of agent ai to cover the time t ∈ [S,E]. We suppose
that the agent maintains the same PoS pi during their covering
periods, which indicates

pit =

{
pi, t ∈ [si, ei),

0, t /∈ [si, ei).
.

If the task is covered by multiple agents at time t, the
probability of covering task at time t is

pt = 1−
∏
ai∈A

(1− pit).

By collecting profile of agents’ types, the platform selects
a subset I ⊆ A of agents to complete the sensing task. After
completing a sensing task, an agent will receive a reward ri.
We define the utility ui of an agent ai as her reward ri minus
the cost ci, i.e.,

ui =

{
ri − ci, ai ∈ I,
0, otherwise.

.

Due to the rational self-interest of agents, they would try to
maximize their own utilities. On the contrary, the objective of
platform is to maximize social welfare. The social welfare U
is defined as the value of a single sensing task V minus the
total cost of participants, which is presented as

U = V −
∑
ai∈I

ci.

Since the value of a single task is pre-determined, the objective
of the platform is to minimize total cost of selected agents,
while ensuring the task are covered with a PoS at least Thr,
i.e., we have

pt ≥ Thr, for any t ∈ [S,E] (1)

We define the weight of an agent ai as wi = − log(1 − pi),
and let W = − log(1 − Thr) denote the threshold weight.
Similarly, we let wit = − log(1 − pit) denote the weight of
an agent to cover the time t. Thus, the inequation (1) can be
expressed as∑

ai∈I
wit ≥W, for any t ∈ [S,E] (2)

As a notation convention, we use −i in subscript to denote
all users except i, e.g, we write types of all agents as θ =
(θi, θ−i), and θ−i denotes the types of all agents excluding
agent ai. We propose two different problem models.

A. Single Slot Coverage Model

In single slot coverage model, we divide the period [S, T ]
into a sequence of unit slots SL = {sl1, sl2, ..., slk}. Agent
ai ∈ A selects a slot set SLi ⊆ SL, duing which she
would like to participate in the sensing task. Every participant
promises to cover the whole slot, if she wins the auction.
Furthermore, selecting non-adjacent slots by the same agent is
permitted. The result of the auction in a slot does not influence
auctions in the other slots. Thus, we can focus on the auction in
a single slot slm. The type of agent ai reduces to θi = {ci, pi}.
Since there is only one slot, we let pi and wi denote pit and wit
in this model, respectively. Therefore, we can formulate the
optimization problem of selecting winners as an integer linear
programing problem ILP1 using inequation (2). Let Im ⊆ A
denote a set of agents who participate the auction in slot slm,
we have:

min
∑
ai∈Im

cixi (ILP1)

s.t.
∑
ai∈Im

wixi ≥W

xi ∈ {0, 1}, ∀ai ∈ Im
where xi = 1, if agent ai is selected, otherwise xi = 0.

B. Continuous Coverage Model

In continuous coverage model, agent ai bids type θi =
{ci, pi, si, ei}. During period [S,E], there are at most 2n
different time points when agents start or stop sensing tasks.
These discrete points between time point S and E are defined
as critical time points, and we denote the set of critical time
points as

T ={t|t = si or t = ei, ai ∈ A, si ∈ [S,E], ei ∈ [S,E]}
∪ {S,E}.

If a critical time point t ∈ [si, ei), the point could be covered
by the agent ai. In other words, agent ai is interested in
covering critical time point t. Then the optimization problem
reduces to the integer programming problem ILP2 as follow:

min
I⊆A

∑
ai∈I

cixi (ILP2)

s.t.
∑
ai∈I

witxi ≥W,∀t ∈ T ∪ {S,E}

xi ∈ {0, 1}, ∀ai ∈ I

where xi = 1, if agent ai is selected, otherwise xi = 0.
If agent ai is selected as a winner, she will cover the whole

period [si, ei), i.e., she wins all auctions at critical time points
she could cover. We could regard these critical time points
as items of an auction, and agents bid for a specified bundle
of items. They prefer to win the whole bundle, and give up
the auction for any other bundle. Thus, we could regard the
agents as single-minded agents who are only satisfied with
only winning all the critical time points during her cover
period [12].



C. Economic Properties

Besides the optimization objective mentioned above, our
goals include designing mechanisms to satisfy the following
economical properties:
• Computational Efficiency: A mechanism is computa-

tional efficient if it can compute allocation and rewards
in polynomial time.

• Truthfulness (in expectation): A mechanism is truthful
(in expectation) if agent cannot improve her (expected
utility) by misreporting her type regardless of others’
bids. In other words, the (expected) utility of agent ai
by reporting true type θ is larger than by reporting any
other type θ′. i.e., ui(θi, θ−i) ≥ ui(θ′i, θ−i)

• Individual Rationality:A mechanism is individually ra-
tional if agent ai will get non-negative expected utility
by reporting true type θi, i.e., ui(θi, θ−i) ≥ 0

IV. MECHANISM DESIGN

Traditional pricing schemes [16]–[19] dose not consider that
the success probabiliies of agents also effect the optimization
solution.

To address above challenges, we design two mechanisms
based on reverse auction, including winner selection algo-
rithms and pricing schemes.

A. Single Slot Coverage Mechanism

Winner Selection: With the discussion in Section III-A, the
winner selection problem can be expressed as a representive
minimum knapsack problem [31] which is proved to be NP-
hard. There is no polynomial algorithm to find an optimal
solution yet. Instead, we design an approximation algorithm to
determine winners in a greedy manner, as Algorithm 1 shows.
First, agents who would participate in the auction in slot slm
are essentially sorted in ascending according to their cost per
weight (i.e., c1/w1 ≤ c2/w2 ≤ . . . ≤ cn/wn). From Line 5 to
13, we start to check agents iteratively in the given order. If
the weight requirement is not satisfied after selecting the agent
ai as a winner, we add ai to the set of candidates Icur. If the
weight requirement would be satisfied after adding agent ai
to the set Icur, the agent set Icur∪{ai} will lead to a feasible
solution of ILP1. Every new feasible solution in each iteration
is compared to the best solution so far and the better one is
stored. With the feasible solution existing, the Algorithm 1
returns a winner set I satisfying the weight requirement.

Pricing Scheme: The reward for a winning agent is based
on critical value and ex-post execution. Since the cost is
reported truthfully, the critical value of an agent is defined as
the minimum PoS that agent should declare to win the auction
[12]. We present the details in Algorithm 2. To get the critical
value of agent ai, we temporarily set aside the winner ai and
rerun the Algorithm 1 over the rest of agents to get a new
winner set I ′. If agent ai declares wi/ci greater than minimum
wj/cj in I ′, the winner selection algorithm will select agent
ai as a winner because of the monotonicity of mechanism,
of which we will provide a proof later. We can obtain the
critical PoS by p̂i = 1− eŵi . After the winning agent tries to

Algorithm 1 SingleSlotAllocation(A,W, c, w)
Input: A set A of n users, threshold weight W , a profile of

cost c, a profile of weight w
Output: A set of selected agents I

1: Order users such that c1/w1 ≤ c2/w2 ≤ . . . ≤ ci/wi;
2: I ← ∅;Icur ← ∅;
3: COpt ←∞; Ccur ← 0;
4: Wcur ← 0;
5: for i← 1 to n do
6: if Wcur + wi < W then
7: Wcur ← wi +Wcur; Ccur ← ci + Ccur;

Icur ← Icur ∪ {ai};
8: else
9: if Ccur + ci < COpt then

10: COpt ← Ccur + ci; I ← Icur ∪ {ai};
11: end if
12: end if
13: end for
14: return I

Algorithm 2 SingleSlotReward
Input: A set A of n agents, a threshold weight W , a profile

of cost c, a profile of weight w, and a user ai ∈ I win
the auction

Output: The reward ri of the agent ai
1: I ′ ← SingleSlotAllocation(A−i,W, c−i, w−i);
2: ŵi ← minaj∈I′ ci

wj

cj
;

3: p̂i ← 1− e−ŵi ;
4: if agent complete the task then
5: ri ← β(1− p̂i) + ci;
6: else
7: ri ← −βp̂i + ci;
8: end if
9: return ri

complete the sensing task, she will receive different rewards
depending on whether she complete the task successfully. If an
agent ai complete task successfully, we would pay the agent
β(1 − p̂i) + ci, otherwise she would receive −βp̂i + ci as a
reward. The β is a pre-determine coefficient here.

We first prove that the SSC mechanism is monotone with
PoS, which is indispensability for following proof. Monotonic-
ity in PoS of mechanism implies that if user win auction with
declaring PoS pi, they will still win the auction by declaring
higher PoS.

Lemma 1. The winner selection algorithm in SSC mechanism
is monotone in PoS.

Proof: By raising PoS, the agent ai would be inserted in
a more prior order in Algorithm 1. If the agent ai is selected
by Icur (Line 6), she would be selected by Icur in an earlier
iteration by misreporting PoS. Otherwise the set Icur ∪ {ai}
was chosen as the best solution at last(Line 9). Thus, she would
be added to Icur or to I by reporting higher PoS. Therefore,
the Algorithm 1 is monotone in PoS.



Lemma 2. The SSC mechanism is computationally efficient.

Proof: In Algorithm 1, sorting n agents takes O(n log n)
time and selecting winners form agents takes O(n) time. The
pricing scheme runs the winner selecting algorithm once. Since
there are at most n winners, the time complexity of reward
calculation is O(n2 log n). Hence, the running time of the
mechanism is bounded by O(n2 log n), implying that the SSC
mechanism is computationally efficient.

Lemma 3. The SSC mechanism is individually rational.

Proof: Denote pi as the true PoS of an agent ai. We
consider the expected utility ūi of the winner ai. If the agent
win the auction, her expected utility is ūi = β(p − p̂i).
Obviously ūi is non-negative. And her utility is 0 when she
loses the auction. To sum up, agent has a non-negative utility
when she declares true type.

Lemma 4. The SSC mechanism is truthful (in expectation).

Proof: If an agent ai wins the auction by reporting pi,
it indicates that pi ≥ p̂i. With discussion above, the agent,
who declares a higher PoS, still wins the auction and gets
the same expected utility. If the agent reduces the PoS she
bids, she may probably lose the auction and get a utility of
0. Therefore, winners cannot get better expected utility by
misreporting PoS.

If the agent ai loses the auction by reporting pi, it implies
that pi < p̂i. The expected utility of the agent will be negative
when the agent tries to win the auction by declaring higher
PoS. The utility of a losing agent is not better than the utility
by biding true type.

Consequently, no matter whether the agent wins the auction
or not, she has no incentive to misreport her PoS.

Lemma 5. The approximation ratio of SingleSlotAllocation
algorithm is 2.

Due to the space limit, the detailed proof can be found in
our online technical report [32].

B. Continuous Coverage Mechanism
Under the sing-minded setting, our mechanism CC is also

based on the reverse auction, consisting of a winner selection
algorithm and a pricing scheme for the continuous coverage
model.

Winner Selection: The winner selection problem can be
reduced from the weighted set cover probelm in polynomial
time, which is already known to be NP-hard [33]. To get a
near-optimal solution, we resort to the property of submodu-
larity in the auction, which is defined as follow:

Definition 1. (Monotone Submodular Function) Let V be a
finite set. A function f : 2V → R is submodular if and only if

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B),

for any A ⊆ B ⊆ V and v ∈ V \B, and f is monotonically
increasing if and only if f(A) ≤ f(B), for any A ⊆ B.

Algorithm 3 ContinousCoverageAllocation(A, θ,W, S,E)
Input: A set A of n agents with type θ = {c, w, s, e} and a

threshold weight W , the staring time S and stoping time
E of the sensing task.

Output: A set of selected agents I
1: T ← {S,E}
2: for i← 1 to n do
3: if si ∈ [S,E] then
4: T ← T ∪ {si};
5: end if
6: if ei ∈ [S,E] then
7: T ← T ∪ {ei};
8: end if
9: end for

10: sort T in increasing order;
11: for all i in T do
12: Wi ← 0;
13: end for
14: while ∃k : Wk < W do
15: ai ← arg max

ai∈A\I

∑
j∈T min(wij ,W −Wj)/ci;

16: I ← I ∪ {ai};
17: for all j ∈ T do
18: Wj ← min(W,Wj + wij);
19: end for
20: end while
21: return I;

Algorithm 4 ContinuousCoverageReward
Input: A set A of n agents with type θ = {c, p, s, e}, a

threshold weight W , a winning agent ai ∈ I
Output: A reward ri for ai

1: I ′ ← ContinousCoverageAllocation(A−i, θ−i,W, S,E)
2: for all aj ∈ I ′ do
3: ŵi ← min{ŵi, ci

∑
t∈T min(wit,W −Wk)/cj}

4: update all Wk

5: end for
6: p̂i ← 1− e−ŵi

7: if agent complete the task then
8: ri ← β(1− p̂i) + ci;
9: else

10: ri ← −βp̂i + ci;
11: end if
12: return ri

Considering the computational intractability, we design a
algorithm in a greedy manner as illustrated in Algorithm 3.
First, we generate a set of critical time points according to the
reporting types of candidates(Line 1 to 9). Then we let Wj

denote the sum of weights caused by the agents who would
cover the time point j. Agents will be selected iteratively
until all Wj satisfy the threshold weight requirement. In each
iteration, we select the agent with maximal ratio of total
weights to cost (i.e.,

∑
j∈T min(wij ,W −Wj)/ci), as Line

15 to 16 shows. Then Wj of each critical time point is
updated(Line 17 to 19).



Pricing Scheme: Similar to the single slot coverage model,
the reward for an agent is based on the critical value and de-
pends the execution of agent. The critical value is also defined
as the minimum PoS to ensure a agent winning. To determine
the reward of a winner ai, Algorithm 4 sets the agent ai aside
and reruns ContinousCoverageAllocation algorithm. However,
ai may be selected as a winner in different iterations in the
winner selection algorithm. As a result, ai may have diverse
critical value in different iterations. Thus, we pick the minimal
critical weight as the critical weight ŵ (Line 2 to Line 5).
Then the critical value p̂i of the agent ai can be obtained by
the equation p̂i = 1−e−ŵi . If the agent complete the sensing
task over her covering period successfully, we will reward her
β(1− p̂i) + ci, otherwise she will get −βp̂i + ci. The β is a
pre-determine coefficient here.

Before discussing the properties of CC mechanism, we
prove the monotonicity of the winner selection algorithm.

Lemma 6. The winner selection algorithm in CC mechanism
is monotone in PoS.

Proof: If an agent ai with the type θi = {ci, pi, si, ei} is
selected as a winner, ai will still win by declaring a higher
PoS. Because higher PoS helps ai to be chosen in a earlier
iteration or the same iteration accoring to Algorithm 4.

Lemma 7. The CC mechanism is individually rational.

Proof: Denote pi as the true PoS of an agent ai. Since
all agents are single-minded, agents will cover the whole
set of critical time points successfully or unsuccessfully. The
expected utility of the winning agent is β(pi − p̂i), which is
non-negative when the agent declares true type. When agent
lose auction, she will get a utility 0. Ultimately, the CC
mechanism is individually rational.

Lemma 8. The CC mechanism is truthful (in expectation).

Proof: If agent ai wins the auction by declaring true type,
she will still win with reporting higher PoS because of the
monotonicity of the winner selection algorithm. However, due
to the independence between the expected utility and declaring
PoS, the agent gets the same expected utility when she wins
the auction. If she reports lower PoS, she takes a risk of losing
auction and getting a utility 0. In conclusion, misreporting of
winning agents cannot lead to a better expected utility than
declaring true type.

If agent ai loses the auction by biding truthful, she would
get a negative expected utility by misreporting type to win the
auction, which is not better than zero utility.

Consequently, continuous coverage mechanism is truthful.

Lemma 9. The CC mechanism is computationally efficient.

Proof: The ContinousCoverageAllocation algorithm gen-
erates the at most 2n critical time points, and sorts them with
time bound O(n log n). The algorithm selects winners itera-
tively, which is executed at most 2n times. In each iteration,
we traversal at most n agents who are interested in no more

Fig. 2. Spatial distribution of the CitiBike data set.

than 2n critical time points. Hence, the time complexity of
Algorithm 3 is O(n3). Algorithm 4 runs the winner selection
algorithm at most n times, whose time complexity is O(n4).
Therefore, the CC mechanism is computationally efficient.

We define the total covering weights of agents set I as a
function:

f(I) =
∑
j∈T

min(
∑
ai∈I

wij ,W ),

which can be proved to be monotonically non-decreasing
submodular. We denote ∆i(S) = f(S∪{ai})−f(S). We work
on the assumption that there are k iterations in Algorithm 3
and let Ii denote a set of agents after the i-th iterations. Thus,
Ik denotes a set of selected agents produced by Algorithm 3
terminally. Renaming the agent winning in the t-th iteration in
Algorithm 3 as at, the coverage contribution caused by agent
at is ct/

∑
j∈T min(wtj ,W −Wj) , which is denoted as µt.

We first present two lemma, the proof of which is given in
our online technical report [32] due to the space limit.

Lemma 10. For any agent ai ∈ A , we have:
µ1∆i(I

0) + (µ2 − µ1)∆i(I
1) + . . .+ (µk − µk−1)∆i(I

k−1)

≤ ci(1 + min{ ∆i(I
0)

∆i(Ik−1)
, µ

k

µ1 }).

Due to the interest of space, we leave the detailed proof to
our technical report [21]

Lemma 11. The approximation ratio of the ContinousCover-
ageAllocation algorithm is 1 + ln min

{
max
ai∈A

∆i(I
0)

∆i(Ik−1)
, µ

k

µ1

}
.

V. EVALUATION

To evaluate the performance of our fault tolerant mech-
anisms closely, we implemented SSC mechanism and CC
mechanism based on the trip data set of CitiBike [15] around
Manhattan, New York. We present our evaluation results in
this section.

A. Experimental Setup

We assume that all sharing bikes are embedded with some
sensors to monitor noise, and sensors can be powered by a
mini electric generator embedded on wheels. Sensors in a
bicycle are regarded working during a ride and are expected to
stop working when the agent returns the bike. To generate the
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Fig.4. Totalcostinsingleslotcoveragemodel.

PoSofagents,weadoptsensingmodelbasedonexponential
attenuationprobabilisticmodelin WSN[11]. Wechoosea
certainareainManhattanasthemonitoringarea,thePoSof
sensorsdecayswiththeincreasingdistancetothemonitoring
area,i.e.,p=e−αd+ξ,whereαisadecayfactorinfluencing
attenuationspeed,drepresentsthedistancebetweenbikes
andmonitoringarea.Inoursimulation,wesetαfixed0.05.
Randomvalueξdenotestheindividualdifferenceofeach
agent,whichisdrawnfromauniformdistributiononthe
interval[0,0.005].SincethePoSofanagentduringarideis
constant,wegeneratethePoSofanagentbyusingtheaverage
distanceduringherride,whichiscalculatedaccordingtothe
pathproducedbyGoogleMapsBicycleNavigationAPI[34].
Besides,thethresholdrequirementThrisfixed0.8. Wealso
fixtherewardfactorβas10.Wegeneratethecostofagents
bymultiplyingridingdurationbyarandomvaluesampling
fromtheGaussiandistributionwithmean20andvariance5.
WechoosethedatasetinJanuary2017,whichhasmore

than120,000records.Thestarttime,stoptime,startlocation
(longitudeandlatitude)andstoplocationofeachrideare
recordedbythedataset.Fig.2illustratesthespatialdis-
tributionofthebikedata,wherebluepointsrepresentthe
bikestationswhichareeitherstartingpointsordestinations
oftheirrides. Wedenotethemonitoringareaasaredpoint.
ThebicycleroutesaredrawnwithbluelinesbyGoogleMap
onbicyclemodel. Wealsoplotthenumberofusersinthe
distributionoftimeinFig.3.

B.ImpactofAgentNumberandTaskDuration

1)TotalCost:Firstly,weevaluatetheimpactofagent
numberontotalcostinsingleslotcoverage model. We
randomlychoosesomeagentswhoprefertocovertheperiod
between9amand10am.Toserveasabaseline,wedesign
anaiveheuristicalgorithmnamedGreedyNaivewhichitera-
tivelychoosestheagentwiththeminimalw/c
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Fig.5. Totalcostincontinuouscoveragemodel.

Fig.6. Totalpaymentinsingleslotcoveragemodel.

namedOPT asabenchmark,whichadoptstheexhaustive
method.TheresultsareshowninFig.4. Weobservethat
thetotalcostdecreasesslightlywiththenumberofagents
increasing.Thereasonisthatmoreplayersintheauctionlead
tomorehigh-qualityagents,whosew/cissmaller.

Incontinuouscoverage model,agentsarriveanddepart
randomly,suchthatthenumberofagentsduringacertain
periodisuncontrollable.Therefore,weturntotheimpact
oftaskduration. Wechoosethewholeagentswhopreferto
coveraperiodbetween9amand10amascandidates. We
evaluatethetotalcostwithvarioustaskdurations.Wechoose
thenear-optimalsolutionnamelyOPTasacomparsion,which
iscaculatedbyGurobiOptimizer[35].Fig.5depictsthat
thetotalcostraisesquicklywhilethetaskdurationincreases.
Wecantellthatthetaskwithlongerdurationneedstoselect
moreagentstoensureprobabilityofsuccess,leadingtolarger
sensingcost.

2)TotalPayment:Insingleslotcoveragemodel,wein-
vestigatetheimpactofagentnumberintotalpaymentwitha
tunableparameterβ.TheresultsareplottedinFig.6.Wecan
seethatthetotalpaymentdecreasessteadilyasthenumber
ofagentincreases,whenβissmall. Withalargeβ,the
totalpaymentfirstdeclinesdramatically,andthenfluctuates.
Thereasonisthatthetotalcostoccupiesthemajorityofthe
totalpaymentwhenβissmall.Onthecontrary,thecritical
payment,whichhaspositivecorrelationwithagentsnumber,
occupiesthemajorityoftotalpaymentwithalargeβ.

Incontinuouscoveragemodel,Fig.7illustratestheimpact
oftaskdurationwithdiverseβ.Thepaymentkeepsraising,
whilethetaskdurationincreaseswithallβ.Besides,we
furthercomparethetotalcosttocompletethesamesensing
taskindifferenttimeperiods. Wechoosetheagentswho
appeararound9am,12amand10pmascandidatesto
completethesamesensingtask,respectively.Fig.8shows
thatthetotalpaymentsduringallperiodsgrowwiththetask
durationincreasing.Furthermore,thetotalpaymentaround10
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pmisalwaysfewerthanthepaymentaround9am,whilethe
paymentaround12amisthemiddle.InFig.3,weobserve
thatmostagentsappeararound9amwhilefewagentsappear
around10pm.Therefore,wecantellthatthetotalpayment
increasesasthenumberofagentsincreases.

VI.CONCLUSION

Inthispaperwehavemadeastudyonincentivemechanism
designofcrowdsensingconsideringthefailuresofagentsto
completethesensingtasks. Wehavepresentedtwoproblem
modelsandproposedtwomechanismswithguaranteedap-
proximationratioandgoodeconomicproperties. Wehave
providedtheoreticalproofandevaluatedthemechanismto
showsomepropertiesofourmechanisms.Asforthefuture
works,weprefertodesignamechanismthatcanadaptive
selectnewagentswhenthefailuresoftasksisdetected.In
addition,wewouldstudyonfaulttolerantmechanisminspace
whichguaranteethesuccessratioofmultipleareasinspace.
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