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Abstract—Mobile health (mHealth) applications, benefiting
from mobile computing, have emerged rapidly in recent
years, and generated a large volume of mHealth data. How-
ever, these valuable data are dispersed across isolated devices
or organizations, which hinders discovering insights under-
lying the aggregated data. Considering the online character-
istics of mHealth tasks, there is an urgent need for online
data acquisition. In this paper, we present the first online data
Valuation And Pricing mechanism, namely VAP, to incentive
users to contribute mHealth data for machine learning (ML)
tasks in mHealth systems. Under the framework of Bayesian
ML, we propose a new metric based on the concept of entropy,
to evaluate data valuation during model training in an
online manner. In proportion to the data valuation, we then
determine payments as compensations for users to contribute
their data. We formulate this pricing problem as a contextual
multi-armed bandit with the goal of profit maximization
and propose a new algorithm based on the characteristics of
pricing. We also extend VAP to general ML models. Finally,
we have evaluated VAP on two real-world mHealth data sets.
Evaluation results show that VAP outperforms the state-
of-the-art valuation and pricing mechanisms in terms of
computational complexity and extracted profit.

Index Terms—Data Valuation, Mobile Health, Online Pric-
ing

I. Introduction

Mobile health (mHealth) technologies offer real-time mon-

itoring for health status, facilitate rapid diagnosis of health

conditions, and provide remote healthcare services [1]. The

recent developments towards intelligent mHealth systems,

such as Apple Health [2], Google Fit [3], Microsoft Health [4]

are pieces of evidence of these trends [5]. Various machine

learning (ML) models have been developed to extract in-

formation underlying mHealth data. However, the obstacle

to the wide adoption of ML in mHealth applications comes

from model uncertainty [6], which would provide unreliable

prediction and is unacceptable in health applications [7]. One

potential approach to eliminate this dilemma is to collect

large mHealth data from users as training data, harnessing

the wisdom of crowd [8].
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The valuable mHealth data are dispersed across isolated

devices and have not been exploited efficiently in machine

learning tasks. Users are reluctant to voluntarily share their

personal health data due to the potential incurred costs and

privacy concerns [9]. Therefore, it is highly necessary to

design an incentive mechanism to stimulate users to con-

tribute their mHealth data. For incentive mechanism design

in mHealth, we need to take the online characteristics of the

data acquisition into account. First, the sensing data collected

by mHealth can be obtained remotely in a streaming manner,

which is often used for real-time predictive modeling [10].

Second, within the changing mHealth contexts, traditional

static mHealth models may fail to respond with a correct

prediction result. For example, people may carry out the

same activity in a different manner, or suffer from the same

disease with various clinical symptoms [11]. Furthermore,

population demographics, the prevalence of the disease, and

the clinical practice may also evolve over time. This implies

that predictions based on static data and models can become

outdated and hence no longer accurate [12]. Last, the users’

participation in the data acquisition process is dynamic.

For example, in disease detection, the symptoms appear at

an unpredictable time. To address these dynamics, many

variants of online learning and incremental learning models

are proposed [11]–[14]. With these methods, the mHealth

models could update over time as new data is collected, and

adapt quickly to new contexts.

There are two critical components in designing an incen-

tive mechanism: data valuation and pricing. The data valu-

ation scheme quantifies the contribution of data within the

context of ML model training. Based on this data valuation

metric, the pricing mechanism determines the compensation

to users for their contributed data. We next summarize two

major challenges for data valuation and pricing, arising from

the online characteristics of the data acquisition process in

mHealth.

The first challenge is to evaluate the contribution of newly

arrived data in ML model training. The traditional data val-

uation schemes [15]–[19], built upon the concept of Shapley

value from cooperative game theory [20], are not suitable

for such an online learning situation. In these methods,

all the data are collected in advance for model training,

and the data contribution is evaluated at the end of model

training. In contrast, we need to measure the data valuation

in an online manner, based on the currently collected data,
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instead of the complete training data set. However, it is

difficult to infer the data valuation at the intermediate model

training without the global knowledge of the whole data set.

Moreover, considering the privacy considerations in mHealth,

compared to submitting complete data, it is more proper

that users only upload part of the data to query the price.

Therefore, the data valuation module should have the ability

to estimate the data contribution based on incomplete data.

The second challenge is on designing profit-maximizing

data pricing mechanisms with incomplete information. Some

auction-based mechanisms have been proposed for data pric-

ing [15], [21], [22]. However, the bidding model in the auction

is unnecessarily complicated to data pricing, as users may

often be reluctant to provide the minimum willing payment

about their data, or even do not know the exact value of

this information. To this end, we turn to the posted pricing

mechanism [23], where the service provider posts a public

price, and the users only need to determine whether to

accept the price and contribute the data. Nevertheless, the

posted pricing mechanism introduces a heavy burden on the

service provider. There is an information asymmetry over

the minimum payment to data between the users and the

service provider. Users’ arrival sequences are also unknown

to the service provider. Without the complete information

about the payment to data, it is hard for the service provider

to set an appropriate price. A price that is too high or too

low would cause a loss of profit. The optimization on profit

maximization needs to take both the revenue extracted from

data valuation and the expenditure for data acquisition into

account, which inevitably doubles the difficulty in the design

of data pricing mechanisms.

In this paper, jointly considering the above challenges, we

propose the first online data valuation and pricing mecha-

nism for ML tasks in mHealth, namely VAP. We summarize

our contributions as follows.

• First, under the Bayesian perspective, we propose the

first online metric of data valuation, which is related to the

impact of data on the ML model training process, and is

quantified by the entropy of the distributions over model

parameters. This new metric enables us to evaluate the data

valuation in an online manner and not need to collect the

whole dataset.

• Second, we propose an online data pricing mechanism

based on the evaluated data valuation and the willing pay-

ments from users. We model the payment determination

process as a contextual multi-armed bandit with the goal

of profit maximization, and propose a new method for data

pricing under this framework. We conduct an exploitation

and exploration process to discover the optimal data prices

by collecting the responses from users over different prices.

• Finally, we evaluate the performance of VAP with real-

world mHealth data sets. The evaluation results show that

our VAP outperforms the state-of-the-art data valuation and

pricing methods for online ML tasks in mHealth systems in

terms of online calculation and extracted profit.

Data Contributors

Online Learning 

Data Valuation

Data Pricing

submit data

mHealth data

The Service Provider

posted price

payment

1

2

3

4

Update

Fig. 1. Data acquisition process in a mHealth system

II. Preliminaries

We consider the data acquisition process for the mHealth

system in an adaptive way, as shown in Figure 1. There

are two types of participants involved in a mHealth system:

data contributors and a service provider. The service provider

trains online ML models upon the collected data from data

contributors to provide healthcare services. Due to the lim-

ited amount of data and the fading freshness of historical

data, the ML models’ performance would decay over time.

The service provider needs to acquire new mHealth data peri-

odically to retrain the ML models. A specific data acquisition

process is conducted as follows. At the time tc, first, a data

contributor arrive at the time slot tc, and query the price

of her data by submitting the training data xxx without the

label y, where the feature xxx would help the service provider

to evaluate the data valuation, and not releasing the label y
would preserve the content of data before the data exchange.

Second, the service provider evaluates the data based on

its contribution to ML model training, calculated by the

performance improvement between the current model and

the expected model after the data is added. Based on the data
valuation, the service provider posts the price determined

by the data pricing mechanism to the data contributor as

incentives. Third, if the data contributors are satisfied with

the price, she would contribute the complete training data

(xxx, y). Otherwise, she has no incentives to do so. Having

received the data from multiple data contributors, the service

provider would update the ML model, data valuation metric,

and data pricing mechanism. Finally, the service provider

gives the corresponding payment to the data contributor.

We need to design an appropriate data valuation metric and

a data pricing mechanism to quantify the performance im-

provement for model training, and make a trade-off between

the performance and data acquisition expenditure.

We present a system model to describe the above data

acquisition process. Each data contributor owns a set of

private mHealth training data, each of which is a pair of

a feature and the corresponding label, denoted by d = (xxx, y).
We use GXXX(xxx) to denote the contribution of a new data

sample d = (xxx, y) to the model training. We consider

each data contributor has a reserve value v to her data

set, which indicates the minimum willing price the data

contributor would like to share her data. Similar to the pre-

vious work [21], all data contributors’ reserve values follow

an independent and identical distribution with probability
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density function f(v) over the range [0, 1]. Different from

the classical Bayesian mechanism design [24], the probability

density function is unknown to the service provider and

needs to be learned from the interaction with data con-

tributors. When one data contributor arrives at the online

platform, the service provider posts an unit price p for

purchasing each piece of data. If the data contributor accepts

the offered price (i.e. p ≥ v), she would upload her data and

get the corresponding payment; otherwise (0 ≤ p < v), she

would leave without contributing her data. The goal of the

data pricing mechanism is to determine the posted price p
at each time slot to maximize the total profit, which will be

defined in Section IV later.

III. Data Valuation

A. A Simple Case: Bayesian Linear Regression

To illustrate the idea of data valuation, we first consider

a basic model in ML, linear regression [25] under Bayesian

framework. In mHealth, linear regression models are widely

used in heart rate monitoring [14], blood pressure mon-

itoring [26], mental illness detection [27], and etc. More

specifically, we use the ridge regression model as an example

in this subsection and extend the concept of data valuation

to more complex models such as Gaussian Process (GP) [28]

and Bayesian Neural Networks (BNN) [29] later.

Ridge regression can be explained under a Bayesian frame-

work as a type of Bayesian Linear Regression, in which

maximizing the parameter’s posterior probability by Bayesian

formula is the same as minimizing the loss function in the

traditional frequentist view. Without loss of generality, we

assume the prior probability of the parameters in ridge re-

gression satisfy Gaussian distribution, i.e. P (βββ) ∼ N
(
0, ℓ2I

)
with precision parameter (variance) ℓ2. The training process

of ridge regression is to use new data to obtain poste-

rior parameter distribution. Thus, the Bayesian framework

provides a new perspective to interpret the model training

process: the change of posterior parameter distribution can

represent the evolution of the model training process to some

extent. To calculate this change, we first express the posterior

probability of the model parameter βββ from the Bayesian

theorem:

P (βββ|YYY ) =
P (YYY |βββ)P (βββ)

P (YYY )
∝ P (YYY |βββ)P (βββ), (1)

where YYY is the corresponding label of the data set (XXX,YYY ),
and P (YYY |βββ) is the generation probability of YYY under the

parameter βββ, and follow the Gaussian distribution. As the

product of two Gaussian distributions P (YYY |βββ)P (βββ) is still

Gaussian, the posterior parameter distribution P (βββ|YYY ) fol-

lows a Gaussian distribution. We denote the corresponding

mean as β̄̄β̄β, and the variance as Σ. In this Gaussian distribu-

tion, the exponential power should be equal, so that(
βββ − β̄̄β̄β

)T
Σ−1 (βββ − β̄̄β̄β

)
=

1

δ2
(YYY −XXXβββ)T(YYY −XXXβββ)+

1

ℓ2
βββTβββ. (2)

Deriving from Equation (2), we can get P (βββ|YYY ) follows a

Gaussian distribution with the mean and the variance of

β̄̄β̄β =
(
XXXTXXX + ℓ2

δ2 I
)−1

XXXTYYY and Σ =
(

1
δ2XXX

TXXX + 1
ℓ2 I

)−1
,

respectively.

We regard the data’s contribution as how much informa-

tion the data provides to the model training process. We

use the metric of differential entropy [30] of parameter’s

distribution, a concept from information theory, to mea-

sure the information contained underlying the corresponding

model. When a new data sample is added to the training

set, the parameter distribution is shrinking, implying the

reduction of the model parameters’ uncertainty. We quantify

this uncertainty reduction as the differential entropy of

the prior parameter distribution and posterior parameter

distribution, and use the extent of this reduction to measure

the contribution of a data sample to the model training.

The differential entropy of a Gaussian distribution is defined

as: H(βββ) = 1
2 ln [(2πe)

n[Σ]], which is only related to the

variance Σ. We denote the differential entropy of parameter

distribution H(βββ|YYY ) on the data set (XXX,YYY ) as H(XXX), then

the differential entropy of parameter distribution with the

training data set (XXX,YYY ) can be calculated by:

H(XXX) =
1

2
ln
(
(2πe)ddet (ΣXXX)

)
=

d

2
ln 2πe+

1

2
ln det(ΣXXX),

(3)

After adding new data sample (xxx, y), the differential entropy

is updated to

H(XXX + xxx) =
1

2
ln

(
(2πe)ddet

((
Σ−1

XXX + xxxxxxT
)−1

))
=

d

2
ln 2πe− 1

2
ln det

(
Σ−1

XXX + xxxxxxT
)
.

(4)

The posterior entropy reduction of the model is

GXXX(xxx) = H(XXX)−H(XXX + xxx)

=
1

2
ln
(
1 + xxxTΣXXXxxx

)
.

(5)

Definition 1. The posterior parameter distribution entropy
reduction of the model by adding the data (xxx, y) on data set
(XXX,YYY ) is measured by GXXX(xxx) = 1

2 ln
(
1 + xxxTΣXXXxxx

)
.

B. Properties of Data Valuation Metric

Compared with traditional data valuation methods in ML

such as Shapley value [15]–[19], VAP-Valuation has the

following characteristics:

1) Submodular: For any data sets S, T s.t. S ⊆ T we

define the set U = T − S . We use UUU , TTT , SSS to denote the

features of data in U , T , S :

∆ = GSSS(xxx)−GTTT (xxx)

=
1

2
ln

det

(
Σ−1

SSS + xxxxxxT
)

detΣSSS

det

(
Σ−1

TTT + xxxxxxT
)

detΣTTT

=
1

2
ln

det

(
Σ−1

SSS + xxxxxxT
)

detΣSSSdet

(
Σ−1

SSS +UUUTUUU
)

det

(
Σ−1

SSS +UUUTUUU + xxxxxxT
)

=
1

2
ln det

(
I+ xxxxxxTΣSSSUUU

TUUU

Σ−1
SSS +UUUTUUU + xxxxxxT

)
> 0.

(6)
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Thus, we can get GSSS(xxx) > GTTT (xxx), which means the data val-

uation function GXXX(xxx) we proposed in VAP is submodular.

A more intuitive understanding is the diminishing marginal

contribution of the data, which means that for the same

data, the earlier the data contributor submits, the higher the

contribution generates.

2) Additivity: For a collection of data sets submitted by a

data contributor within a certain period, the total contribu-

tion of all the data (i.e., the total entropy reduction of the

model parameter distribution) is the sum of the individual

contribution of each data set. It is unrelated to the internal

order of the data sets. That is, the data valuation metric is a

set function: Owning (XXX,YYY ), for any new data set S , using

G(S) to denote the data valuation of data set S , calculated

by the features SSS of data in S , it is a fixed value:

G(S) = GXXX(SSS) = H(XXX)−H(XXX +SSS)

=
1

2
ln det

(
Σ−1

XXX +SSSTSSS
)

det(ΣXXX)

=
1

2
ln det

(
I+SSSTSSSΣXXX

)
.

(7)

More specifically, G(S) =
∑

si∈S G∑i−1
j=1 sssj

(sssi) regardless

the position of si in S , though the specific value of

G∑i−1
j=1 sssj

(sssi) changes under different order of data sets.

3) Group Rationality: The valuation of the entire dataset

I is completely distributed among all data contributors, i.e.
G(I) =

∑
i∈I G(i), which is easily derived by the additivity.

4) Online Fairness: Two data which are identical in what

they contribute to the model have the same valuation in an

online manner. That is, for any data s and s′ are equivalent

in the sense that G(S ∪{s}) = G(S ∪{s′}),∀S ⊆ I\{s, s′},

then GS(si) = GS(sj). Meanwhile, data with zero marginal

contribution to the model has zero valuation, i.e., if G(S ∪
{s}) = G(S}, then GS(SSS) = 0, where SSS is the features of

s. Actually, because the variance of parameter distribution

is non-negative, if a data has zero valuation, it means the

variance is zero, then Gaussian function becomes a Dirac

delta function, in which βββ only has one possible value.

5) Inferrability: According to the Definition 1, in VAP-

Valuation, each data’s valuation can be calculated only de-

pending on the data features xxx, without using the data label

y, which can preserve the content of the data before data

exchange.

IV. Data Pricing

A. Profit Maximization Mechanism

In this section, we present a posted pricing mechanism to

maximize the service provider’s profit in an online manner.

According to Definition 1, GXXX(xxx) denote the contribution

that one piece of data XXX brings to the performance improve-

ment of model training, from which the service provider can

extract the profit. The profit that the service provider obtains

from one data contributor with a reserve value v is:

u(p, v) =

{
π(GXXX(xxx))− p p ≥ v,

0 0 ≤ p < v.
(8)

where p is the unit price of each data and π(GXXX(xxx)) is

the revenue extracted from data valuation. We use F (p) =∫ p

0
f(v)dv to denote the probability that a data contributor

accepts the data price p. Thus, given the distribution of the

reserve value v and the price p, the expected profit extracted

from n data contributors can be written as:

E[u(p, v)] = Fv(p)(π(GXXX(xxx))− np), (9)

Specifically, by the additivity of data valuation metric in

Section III-B2, we can get G(S + T ) = G(S) + G(T ).
To make the pricing mechanism extend the additivity, i.e.

π(G(S + T )) = π(G(S)) + π(G(T )), it is easy to prove

by Cauchy’s equation [31] that π(·) should be the linear

function. In this paper we set π(GXXX(xxx)) = k · GXXX(xxx) − ϵ,
where k can uniform the magnitude and ϵ can control

the trade-off between total entropy reduction and the total

budget, which we will show in the evaluation part.

As we do not know the value distribution, we tackle

the above pricing optimization problem by exploiting the

exploration and exploitation technique from bandit litera-

ture [32]. At each time slot t ∈ {1, 2, · · · , T}, a new data

contributor with a value vt arrives. The service provider

chooses a posted price from the set of candidate prices

P ≜
{
pi | pi = i

K , i = 1, · · · ,K
}

as the traditional setting

in [33]. We regard each price pi ∈ P as an arm. The

classical method UCB1 algorithm [34] estimates the unknown

expected reward of each arm by making a linear combination

of previously observed rewards of the arm. However, in our

problem, the reward distribution behind each candidate price

(arm) is not fixed, which is also determined by the data

valuation provided by the data contributor. Thus, we cannot

directly use UCB1 to solve our online pricing problem. We see

the data valuation as a type of context associated with each

arm. The pricing problem can be formulated as a contextual

bandit problem [35]. To solve it, firstly, we rewrite the profit

function as:

E[u(p, v)] = Fv(p)(π(GXXX(xxx))− np)

= π(GXXX(xxx))Fv(p)− npFv(p)

=
[
π(GXXX(xxx)) n

] [ Fv(p)
−pFv(p)

]
.

(10)

At time slot t, we define Πt = (π(Gt), nt)
T

as the features

of the context, where Gt denotes the total contribution of

the arriving data set and nt is the amount of data. Then the

expected reward of arm pi can be expressed as:

µi,t = ΠT
t ωωω

∗
i , (11)

where ωωω∗
i ≜ (Fv (pi) ,−piFv (pi))

T
represents the unknown

coefficient vector. To post the reasonable price, that is, to

select the best arm of each round, the service provider needs

to estimate the expected rewards in Equation (11) of arms

accurately. As for now, the service provider can quickly get

Πt based on the data valuation metric. Then we should learn

ωωωi of each arm, which can be explained as learning the data

contributors’ reserve value distribution implicitly. In this way,

we regard features of the context as independent variables,
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and the expected reward is the dependent variable. Therefore,

we can treat the observed context-reward pairs as training

samples and train a regression model for each arm.

However, different to the traditional setting in the Lin-

UCB [35] to solve the contextual MAB problem, in our

problem, pricing here, the information from each choice of

one arm (i.e. one possible posted price) not only affects the

current arm but can also be used as training inputs for other

arms. That is when one data contributor rejects the current

price pi, which means 0 ≤ pi < v, she would also reject the

price p when p < pi. Similarly, when one data contributor

accepts the current price pi, which means pi ≥ v, she would

also accept the price p when p > pi. Thus, in this paper, we

define MMM i be a design matrix of dimension j∗i ×2 at time slot

t, whose rows correspond to j∗i = ji+jl+js training inputs,

where ji is the data offered price pi, jl is the data offered

p > pi and the data contributor rejects the price p, js is the

data offered p < pi and the data contributor accepts the price

p. And ci be the corresponding response vector (i.e., rewards

corresponding to these contexts). With more training data,

applying ridge regression to the new training data (MMM i, ccci),
we can have a better estimate of the coefficients:

ω̂ωωi =
(
MMMT

i MMM i + I
)−1

MMMT
i ccci (12)

where I is the 2 × 2 identity matrix. Algorithm 1 gives

a detailed description of the entire LinUCB algorithm for

pricing, in which AAAi =MMMT
i MMM i+ I and bbbi =MMMT

i ccci. It can be

shown that with probability at least 1− γ:∣∣ΠT
t ω̂ωωi − E[µi,t]

∣∣ ≤ α

√
ΠT

t AAA
−1
i Πt (13)

for any γ > 0, where α = 1 +
√

ln(2/γ)/2 is a con-

stant. The inequality gives a reasonably tight UCB for the

expected reward of arm pIt , from which a UCB type arm-

selection strategy can be derived: at each time slot t, choose

It = argmax
i=1,··· ,K

(
ΠT

t ω̂ωωi + α
√

ΠT
t AAA

−1
i Πt

)
. The criterion for

arm selection can also be regarded as an additive trade-

off between the reward estimate and model uncertainty

reduction.

Moreover, as we mentioned, the system is an online learn-

ing algorithm so that the service provider can acquire data

with different attitudes. A suitable π(·) can control the trade-

off between the data collection scale and the total budget.

B. Properties of Data Pricing Mechanism

The data pricing mechanism we proposed in VAP has the

following characteristics:

1) Incentive Mechanism: Our pricing mechanism motivates

data contributors to submit data as early as possible because

the data valuation function GXXX(xxx) is submodular. Specifi-

cally, in VAP, earlier data contributors will have a more data

contribution and get more profit, implying that we encourage

data contributors to submit data as soon as possible in the

online data collection process.

2) Robust to Strategic Behaviors: To guarantee the property

of symmetry, Shapley value leaves possibility for selfish data

Algorithm 1: VAP-Pricing

Input: α ∈ R+
, GXXX(xxx)

1 for t = 1 to T do
2 Observe the features of current data

Πt = (π(GXXX(xxx)), nt)
T

3 for i = 1 to K do
4 if pi is new then
5 AAAi ← I, bbbi ← 0

6 ω̂ωωi ← AAA−1
i bbbi, µ̂i,t ← ΠT

t ω̂ωωi + α
√

ΠT
t AAA

−1
i Πt

7 Choose arm It = argmax
i=1,··· ,K

µi,t

8 Posted price p = min(pIt , ⌊π(GXXX(xxx))⌋)
9 Observe and record the result 1(pIt ≥ vt)

10 if 1(pIt ≥ vt) == 1 then
11 for i = It to K do
12 rt = π(GXXX(xxx))− ntpi
13 AAAi ← AAAi +ΠtΠ

T
t , bi ← bbbi + rtΠt

14 XXX =XXX + xxxt

15 else
16 for i = 1 to It do
17 rt = 0
18 AAAi ← AAAi +ΠtΠ

T
t , bi ← bbbi + rtΠt

19 Update function GXXX(xxx)

contributors to carry out strategic behaviors, such as copying

data, and gain extra benefits. There are some solutions to

solve this issue, such as discounting the value of the same

data [15], but it will break the property of fairness in Shapley

value. However, VAP can naturally discount similar data’s

valuation, as the later data will not impact the model too

much due to the submodularity of VAP-Valuation, guaran-

teeing the fairness to some extent.

3) Arbitrage-Freeness: Due to the additivity of VAP-

Valuation, regardless of the data order in a data set, the sum

of the data valuation for a data xset is the same, resulting

in the identical posted price. Suppose the data contributor

divides a data set into several subsets, and submit it in several

times. In this case, she would not get a higher payment than

submit the data set as a whole. We denote E1 as the expected

profit of the service provider if the data contributor chooses

to divide the data set, and E2 as the expected profit under

the whole data set:

maxE1 = max

n∑
i=1

Fv(p) (π (Gi)− pi)

= maxFv(p)

(
n∑

i=1

π (Gi)−
n∑

i=1

pi

)

≥ maxFv(p)

(
π

(
n∑

i=1

Gi

)
− pn

)
= maxE2,

(14)

where Gi = GXXX(xxxi). It is easy to prove that E1 ≥ E2,

while

∑n
i=1 π (Gi) = π (

∑n
i=1 Gi), so that

∑n
i=1 pi ≤ pn,

which means data contributors can not get more payment by

splitting the data set and submitting them separately (ignore

the change of Fv(p) at each time slot).
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(a) Change of parameter distribution. The amount of training data increases from left to right (2, 100, and 600). We only show two dimensions of

parameter β1 and β2 for straightforward representation.
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(b) Change of prediction uncertainty. The amount of training data increases from left to right (2, 100, and 600). x1 is one of the features of training

data, and y is the corresponding label. The pink line is the prediction of the current model, and the blue shaded area is the corresponding prediction

uncertainty.

Fig. 2. Model Changes during data addition

4) Data Privacy Preserving for mHealth: Model uncertainty

and privacy are important in medical decisions. Under our

data valuation and pricing framework, the data we allocate

higher price can largely reduce the model uncertainty. Fur-

thermore, using the function π(·), the service provider can

control the trade-off between the scale of data collection and

the total budget. Moreover, the label yi is not involved in

the data valuation and pricing processes, reducing the risk

of privacy leakage. Moreover, in the data collection process,

the data contributors have the right to decide whether the

data is used for model training under the VAP framework.

V. Extensions to General Models

In this section, we extend VAP to more complicated ML

models. In Bayesian linear regression, we can easily calcu-

late the posterior parameter distribution. However, in other

more complicated ML models, parameter spaces are often

high dimensional, and computing their entropies is usually

intractable. Furthermore, for non-parametric processes, the

parameter space is infinite-dimensional, so the VAP-Valuation

becomes poorly calculated.

To solve this problem, we range the objective from com-

puting uncertainty in parameter space to y space to avoid

gridding parameter space (exponentially hard with dimen-

sionality). In the prediction space, for a new set of features

x̃xx to be predicted, the predictive distribution takes the form

P (y|x̃xx,βββ) = N
(
x̃xx|βββTx̃xx, σ2

N (x̃xx)
)
, where the variance σ2

N (x̃xx)
of the predictive distribution is given by

σ2
N (x̃xx) = σ2 + x̃xxTΣXx̃xx (15)

The first term represents the noise, whereas the second term

can reflect the uncertainty associated with the parameter βββ.

Figure 2 shows the comparison of parameter probability

density distribution and prediction uncertainty. We can easily

find that they have the same shrinking trend as adding more

training data. The model’s grasp of the parameter is getting

higher, implying the model uncertainty and prediction un-

certainty reduction. Thus, the data valuation we obtained

can be regarded as a measure of uncertainty. The difference

is that Equation (15) calculates the predictive distribution

variance in the prediction task, the aim of which is to get the

uncertainty in the current test data to judge the credibility

of a prediction. However, the Equation (5) calculates the pos-

terior distribution entropy reduction of parameter βββ caused

by new data from the training data set. The aim is to get the

model uncertainty changes caused by current training data

to measure each data’s contribution.

Thus, we can calculate entropy in low dimensional output

space using the idea of prediction uncertainty. For new

data, d = (xxx, y), we calculate its contribution by regarding

xxx as the features of the prediction task to calculate its

prediction uncertainty. Specifically, for a representative non-

parametric model, we write GPR as yyy = f(xxx) + εεε with

the unknown function f follows a N (µ, k) and εεε follows

a N (0, δ2I) [28]. Different from parameter βββ in range re-

gression, there is no specific parameters in f . Thus, GPR

is a non-parametric model. Consider the current purchased

data set D = {di}ni=1 containing n data with di = (xxxi, yi),

[f (xxx1) , f (xxx2) , . . . , f (xxxn)]
T ∼ N (µµµ,K), where µµµ is the

mean vector and KKK is the n × n covariance matrix, KKKij =
k (xxxi,xxxj). To make a prediction of new data sample xxx by the

current model, the predictive distribution is:

p (f(xxx) |XXX,YYY ,xxx) = N (µ̂µµ,Σxxx), (16)
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where the predictive distribution variance is:

Σxxx =KKK(xxx,xxx)

−KKK(XXX,xxx)T
(
KKK(XXX,XXX) + δ2I

)−1
KKK(XXX,xxx).

(17)

Then, similar to the Equation (5), the valuation function in

GPR can be set as

GXXX(xxx) =
1

2
ln(1 + Σxxx). (18)

Moreover, for the complex parametric model, neural net-

work, similar to the Bayesian linear regression, we can put

a prior distribution over its weights, such as a Gaussian

prior distribution: WWW ∼ N (0, I). Such a model is referred

to as a Bayesian neural network (BNN) [36]. For each new

data x, we can obtain the corresponding predictive distribu-

tion uncertainty using the BNN uncertainty [6]. Firstly, we

optimize the parameters of the simple distribution instead

of optimizing the original neural network’s parameters in

BNN, where the posterior p(WWW |XXX,YYY ) is fitted with a simple

distribution q∗θθθ(WWW ), parameterized by θθθ. Then by the Dropout

in BNN, which can be interpreted as a variational Bayesian

approximation, epistemic uncertainty can be measured. For

classification, the model prediction can be approximated

using Monte Carlo integration as follows:

p(fWWW (xxx) = r | XXX,YYY ,xxx) ≈ 1

T

T∑
t=1

softmax
(
fŴWW t(xxx)

)
, (19)

with T sampled masked model weights ŴWW t ∼ q∗θθθ(WWW ), where

qθθθ(WWW ) is the Dropout distribution [6]. Then the valuation

function can be calculated by:

GXXX(xxx) = −
r∑

R=1

pr log pr. (20)

For regression, the predictions in this epistemic model done

by approximating the predictive mean:

E(fWWW (xxx)) ≈ 1

T

T∑
t=1

fŴWW t(xxx). (21)

The prediction epistemic uncertainty is captured by the

predictive variance, which can be approximated as:

Var(fWWW (xxx)) ≈ 1

T

T∑
t=1

fŴWW t(xxx)TfŴWW t (xxx)− ETE, (22)

Similarly, the valuation function can be calculated by:

GXXX(xxx) =
1

2
ln(1 + Var(fWWW (xxx))). (23)

Thus, we can extend the VAP for various online ML

models, as long as they can calculate prediction uncertainty,

such as GPR and the model under the Bayesian framework.

More intuitively, rather than collecting data for significantly

reducing the parameter distribution’s differential entropy,

we marginally seek the data for which the model is most

uncertain about the predictions. If there is a higher degree

of uncertainty about the prediction of arriving data, we

do not have enough data whose features are similar to its

features, so we have less confidence in it. So when we

add this data to our training data set, it will significantly

reduce the model uncertainty in this data region. Thus,

such data will contribute more to the model, leading to

more entropy reduction of parameter distribution, and the

service provider would like to post a higher price for it.

In addition to online learning models, VAP-Valuation can

be used in some other domains to guide the data collection

process. For example, in domains such as active learning [37]

and Bayesian reinforcement learning [38], where the model

should have the ability to identify the most valuable data for

model training and add it to the training set.

VI. Evaluation Results

In this section, we evaluate our VAP through extensive

experiments on real-world human behavior indicators data,

which can be involved in mHealth.

A. Evaluation Setup

We present the evaluation results based on two real-world

human behavior data sets: 1) ) Human Activity Recognition

(HAR) database [39], a data set built from the recordings

of 30 data contributors performing daily living activities

while carrying a waist-mounted smartphone with embedded

inertial sensors. 2) Pima Indians Diabetes (PID) [40], a data

set to diagnostically predict whether a patient has diabetes,

based on specific diagnostic measurements included in the

data set.

B. Results of Data Valuation

1) VAP on Different Models and Tasks: We evaluate the

performance of VAP-Valuation. Figure 3 shows that VAP-

Valuation is a proper model value evaluation metric leading

to smaller model uncertainty and higher model accuracy.

First, as for RC, in Figure 3(a) and Figure 3(d), the general

trend in total entropy reduction and prediction accuracy

boost is consistent, which means the goals of data collection

and model optimization are consistent under VAP. Mean-

while, in Figure 3(b) and Figure 3(e), by observing that the

model accuracy increases slowly with the decrease of VAP-

Valuation, and that the turning points of them are close (for

about 20 in Figure 3(a) and 500 in Figure 3(c), we can conclude

that the VAP is able to judge the proper scale of the data

collection. That is to say, after collecting such an amount of

data, the valuation of the new data is relatively small, and

the accuracy of the model is relatively stabilized.

As for GPC and BNN, using the VAP-Valuation in Section

V, we value the data on the outcome space. As the PID is a

smaller data set, we adopt the GPC model to it. Meanwhile,

HAR is a more extensive data set, which is more suitable for

training with the BNN model. In Figure 3(c) and Figure 3(f),

we can get a similar result with the RC model. By adding a

new data sample, the model uncertainty is smaller, leading

each data’s contribution to the model more negligible, and the

model accuracy is increasing. Also, the turning points of them

are close, for about 20 in Figure 3(c) and 1000 in Figure 3(f).

Moreover, from all the results in these three models, we can

notice that the contribution of each data point shows the
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Fig. 3. VAP-Valuation on different models(Ridge classification (RC), Gaussian process classification (GPC)) and Tasks (HAR and PID Database)
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Fig. 4. Performance of different data valuation metrics. (a) Comparison of

the valuation of the first 100 PID data; (b) The effect of removing high-

valuation data points under different data valuation metrics.

characteristic of diminishing marginal, which is consistent

with the properties we described in Section III-B1. Valuation

on the outcome space (Figure 3(c) and Figure 3(f)) will range

larger than the valuation on the parameter space. We can

also notice some prominent high points in VAP-Valuation.

Such data points may be the data points of new distributions

in the system that have not been acquired before.

2) Performance of Different Data Valuation Metrics: We

compare our method with other static data valuation met-

rics for machine learning, including TMC-Shapley [17], G-

Shapley [17] and Random (one possible online metric) in

Figure 4. Compared with other methods, VAP-Valuation is

more suitable for online learning for the following reasons.

First, as figure 4(a) shows, the VAP-Valuation shows many

excellent characteristics for data pricing and collection. It

has a significant downward trend as the gradual increase

of data over time considers the arrival order, which can

incentive an earlier data submission. Besides, we can see

that VAP-Valuation is always strictly positive, which provides

convenience for data pricing. Moreover, Shapley value and its

variants are common practices in data valuation for the ML

field, so here we emphasize why VAP outperforms Shapley in

online learning tasks. Compared to the Shapley value, VAP-

Valuation can perform online calculations without corre-

sponding label and testing data according to the inferrability

of VAP-Valuation we mentioned in III-B5. Simultaneously,

the computational complexity will increase significantly with

the larger scale of the data set in static Shapely value.

Although there are some approximate calculation methods

such as TMC-Shapley [17], it still requires a lot of test

data and high computational cost, which is impossible and

inappropriate to achieve in a real-world mHealth system. G-

Shapley, an approximation of TMC-Shapley, can be adapted

to online learning. The marginal contribution in G-Shapley is

the change of the model’s performance. However, as shown

in Figure 4(a), we can find the G-Shapley does not achieve a

good approximation of TMC-Shapley, because the calculation

result can be affected by various factors, the size of the

test set, learning rate, haphazard, etc. Finally, We can see

that VAP-Valuation consistently outperforms the other two

mechanisms as illustrated in Figure 4(b), as it shows a better

decrease over time than others as removing high-valuation

data points. Thus, VAP-Valuation is more suitable for online

learning tasks.

C. Results of Data Pricing

First, we compare the performance of different data pricing

mechanisms: VAP-Pricing, Random, Half Fix, Half Valuation,

LinUCB [35] and UCB1 [34]. In Random pricing, the posted

price p is uniformly distributed within [0, 1]. In Half Fix

pricing, we set p = 0.5. And in Half Valuation pricing,

we set p = min(0.5 · GXXX(xxx), 1). In Figure 5, we can see

that VAP-Pricing is always better than any other policies

under different settings of reserve values of data contributors.

Besides, we evaluate the performance of different ϵ. In Fig-

ure 6, we can see that a bigger ϵ leads to the smaller budget

and total entropy reduction, while leaving the total profit

uninfluenced. Supposing that the service provider chooses a
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Fig. 5. Performance of different data pricing mechanisms under different reserve values’ distribution, from left to right: A uniform distribution within

[0, 1]; A constant distribution as f(v) = 0.5; An approximately normal distribution within [0, 1], where the mean is 0.5, and variance is 0.1.

0 200 400
Data Sample

0

50

100

150

Bu
dg

et

ϵ=0
ϵ=0.1
ϵ=0.5

0 200 400
Data Sample

0

100

200

300

To
ta

l E
nt

ro
py

 R
ed

uc
tio

n

ϵ=0
ϵ=0.1
ϵ=0.5

Fig. 6. Performance of Different ϵ on budget and entropy reduction.

0 100 200 300 400 500
Data Sample

0.5
1.0

Pr
ice

0 100 200 300 400 500
Data Sample

0.5
1.0

Pr
ice

0 100 200 300 400 500
Data Sample

0.5
1.0

Pr
ice

0 100 200 300 400 500
Data Sample

0.5
1.0

Pr
ice

Fig. 7. Price Comparison of Different Pricing Mechanisms (From top to

bottom are VAP-Pricing, Half Valuation, LinUCB and UCB1).

higher ϵ, correspondingly, he tends to use the limited budget

to collect a smaller data set, which can significantly reduce

the uncertainty of model predictions like active learning. On

the contrary, if the service provider chooses a smaller ϵ, he

wants to use more budget to collect more data.

Comparing the price of different pricing policies in Figure

7, we can see that the VAP-Pricing method can maintain the

downward trend of valuation compared to Half Valuation,

which is also fairer than other Random or Half Fix. Compared

with other advanced bandit methods, i.e., UCB1 and LinUCB,

VAP-pricing can better estimate the reserve value distribution

of contributors, leading to a faster converge and a more

reasonable price. It can monitor changes in data valuation,

and adjust posted price promptly to maximize the profit.

VII. Related Work

A. Mobile Health

The researchers develop multiple models by combin-

ing principled medical approaches with ML techniques in

mHealth in a variety of domains, including diabetes [41],

activity recognition [42], and blood pressure monitoring [26].

Recently, researchers are making recent progress in COVID-

19 [43]. Many online learning methods and incremental

learning methods are proposed [11]–[14], in which the

mHealth models would continuously update over time as

more information is collected and made available. However,

these works are currently considering designs of hardware

devices and ML models’ improvements. Few of them consider

the data acquisition mechanism, neither data valuation, and

data pricing mechanism.

B. Data Valuation and Pricing for ML Tasks

Lately, Shapley value has been widely used in the data

valuation and pricing problem for ML tasks. Agarwal et
al. [15] design a market mechanism to price training data

and match buyers to sellers based on Shapley value. Jia

et al. introduce several additional approximation methods

for efficient computation of Shapley values for training

data [16]; subsequently, they provided an algorithm for the

exact computation of Shapley values for the specific case of

nearest-neighbor classifiers [19]. Meanwhile, Ghorbani et al.
developed a truncated Monte Carlo sampling scheme (TMC-

Shapley), demonstrating empirical effectiveness across vari-

ous ML tasks [17]; subsequently, they proposed distributional

Shapley, where the value of a point is defined in the context

of an underlying data distribution [18]. However, these data

valuation methods are not suitable for online ML tasks.

VIII. Conclusion

In this paper, we have presented VAP, the first online data

valuation and pricing mechanism for ML tasks in mHealth.

We value the data by measuring its contribution to the ML

training process under Bayesian perspective and guiding the

data acquisition process. Based on the data valuation, we

have considered the problem of profit maximization, and pro-

posed an online posted price data pricing mechanism under a

contextual multi-armed bandit framework. Furthermore, we

have also expanded VAP from Bayesian linear regression

to more complicated models. The evaluation results show

that VAP outperforms the existing data valuation and pricing

mechanisms.
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