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Abstract—As more applications and businesses move to the
cloud, pricing for inter-datacenter links has become an important
problem. In this paper, we study revenue maximizing pricing
from the perspective of a network provider in inter-datacenter
networks. Designing a practical bandwidth pricing scheme requi-
res us to jointly consider the requirements of envy-freeness and
arbitrage-freeness, where envy-freeness guarantees the fairness
of resource allocation and arbitrage-freeness induces users to
truthfully reveal their data transfer requests. Considering the
non-convexity of the revenue maximization problem and the lack
of information about the users’ utilities, we propose a framework
for computationally efficient pricing to approximately maximize
revenue in a range of environments. We first study the case
of a single link accessed by many users, and design a (1 + ε)-
approximation pricing scheme with polynomial time complexity
and information complexity. Based on dynamic programming,
we then extend the pricing scheme for the tollbooth network,
preserving the (1+ε) approximation ratio and the computational
complexity. For the general network setting, we analyze the
revenue generated by uniform pricing, which determines a single
per unit price for all potential users. We show that when
users have similar utilities, uniform pricing can achieve a good
approximation ratio, which is independent of network topology
and data transfer requests. The pricing framework can be
extended to multiple time slots, enabling time-dependent pricing.

I. INTRODUCTION

With the growing deployment of globally-distributed appli-
cations, inter-datacenter networks are becoming an important
resource in cloud computing. Many services rely on low-
latency communication and high-throughput data transfers
among data centers to improve the quality of experience for
their consumers. For example, media companies can deli-
ver high definition video content to consumers in multiple
areas [1], search engines can synchronize search indexes
between data centers [2], and big data applications can move
datasets collected at one data center to another for further
analysis. Considering the emerging market demand for inter-
datacenter bandwidth, online service providers, such as Ama-
zon, Google, and Microsoft, have built dedicated wide area
networks (WANs) to connect their datacenters [2], [3], and
launched data transfer services like AWS direct connect [4],
to facilitate the success of globally-distributed applications.
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In this paper, we study the pricing for network connectivity
in inter-datacenter networks from a network provider’s point
of view. To access inter-datacenter networks, users submit
data transfer requests, containing source and destination data
centers and transmission time intervals, to the network provi-
der. The network provider designs a dynamic pricing scheme
to specify the bandwidth charges to potential users. Users
response to the charges by choosing a certain data rate to trans-
mit data over the network. A recent work [5] has considered
the objective of maximizing social welfare, which measures
the aggregated “happiness” of network provider and users.
This objective may not be in the interest of network provider,
especially in public WANs, where the network provider wants
to extract more revenue to maximize the return on investment
in inter-datacenter WAN. Thus, our focus here is on designing
pricing scheme for revenue maximization.

A practical revenue maximizing pricing scheme should
satisfy the properties of envy-freeness and arbitrage-freeness.
In economics, envy-freeness is a natural fairness criterion,
requiring that given a pricing rule, users would be allocated
the resources, i.e., data transmission rates in our context, that
maximize their utilities [6]. We further extend this criterion
to avoid other possible unfairness among users. We require
that users consuming a set of resources, should be charged no
less than the users consuming only a subset of the resources,
as they use more resources. In the context of inter-datacenter
networks, this requires the per unit price for users to transmit
data over a certain route, should be no smaller than that to
users, who only use a sub-path of the route. In designing
pricing schemes, the network provider also needs to consider
the potential arbitrage behaviors from users. One simple
arbitrage behavior may be purchasing a sequence of single
resources rather than buying a bundle of resources at one time,
if the total price of individual resource is less than the price of
the bundle. Suppose a user requires data transfer over a route
A → B → C. An intelligent user may have an incentive to
divide her request into two sub requests over routes A → B
and B → C, respectively, if the price of the whole request
is larger than the sum of prices of the two sub requests.
Hence, designing a pricing scheme with the guarantee of envy-
freeness and arbitrage-freeness can avoid discontent among
users and induce users to truthfully reveal their requests.

To design an efficient revenue maximizing pricing scheme,
we have to consider the computational complexity from
the perspectives of both time complexity and information



complexity. Existing works only examined the special cases
of revenue maximization problem, such as adopting specific
utility functions for users [7], [8] or considering a simplified
network topology [9]–[11], to derive positive results. However,
the revenue maximization problem in general is non-convex,
and thus it is computationally intractable to calculate the
optimal prices. Therefore, we are interested in designing com-
putationally efficient pricing to achieve approximate revenue
maximization in general scenarios. Different from the previous
works in the complete information setting [8], [12], we attempt
to maximize revenue without full knowledge of users’ utility
functions, taking only a limited amount of communication
with users. We measure the information complexity by the
number of rounds of interaction needed to achieve the optimal
revenue within some given approximation factor. Considering
the high computational complexity of deriving optimal reve-
nue, the network provider faces a trade-off between achieving
optimal revenue and keeping pricing schemes efficient.

We now summarize the main contributions in this paper.
• We model the interaction between network provider and

users: the network provider sets a per unit price for each user
and the user responds to the price by choosing a certain data
rate to transmit data. We consider two types of envy-free and
arbitrage-free pricing: item pricing and uniform pricing, to
determine the prices, and investigate their revenue guarantees
within a range of environments.
• We begin with studying a single link case, in which

the network provider determines the price of link to maxi-
mize revenue. Using a straightforward idea, we can design a
(1 + ε)-approximation pricing scheme with polynomial time
complexity and information complexity. This result is the basis
of developing solutions for more complex network cases.
• Motivated by the current pricing strategy in inter-

datacenter networks, we then consider a tollbooth case with
a tree network topology. Based on the idea of dynamic
programming, we propose an item pricing scheme to determine
the price for each link, and charge a user with the sum of
prices of links in her route. Our analysis shows that this item
pricing scheme preserves the (1 + ε) approximation ratio and
the computational complexity.
• For general network setting, we investigate two variants of

item pricing, and show that they are impractical due to either
high computational complexity or loose revenue guarantee.
Our main result shows that uniform pricing, which charges
a single per unit price to all users, satisfies the requirements
of envy-freeness and arbitrage-freeness, and has good revenue
guarantee when users have similar utility functions.
• We further extend pricing schemes to multiple time slots,

enabling time-dependent pricing. We show that the pricing
schemes preserve the approximation ratio and only introduce
an additional constant factor for computational complexity.
• Finally, we evaluate the performance of uniform pri-

cing with specific utility functions in a real inter-datacenter
networks. The evaluation results show that uniform pricing
outperforms a trivial item pricing, and the ratio between the
optimal revenue and the obtained revenue is less than 1.6.

II. RELATED WORK

Pricing for communication networks has been well studied
in the literature. The Transmission Control Protocol (TCP) can
be viewed as a congestion pricing scheme [13], [14], and new
network protocol can also be reverse-engineered as a pricing-
based solution to a Network Utility Maximization (NUM) [15]
with specific utility functions. The objective in NUM is to
maximize the sum of users’ utilities, which can be considered
as the social welfare of network. Our work differs from this
line of works, because our goal is to maximize revenue, which
is non-convex in general and is more challenging.

There is an extensive literature investigating revenue max-
imization with various pricing schemes in communication
network [7], [8], [10], [12], [16]. Acemoglu et al. studied
entry price strategy and power allocation rule in wireless
network [16]. Başar and Srikant designed usage-based pricing
schemes in a single link network [8] and a multiple-link
network [7], and derive the condition under which expanding
network capacity increases revenue. Shakkottai et al. proposed
the concept of price of simplicity to measure the revenue loss
due to using flat entry pricing in single link network [9]. Our
result can be considered as the extension of this concept to
multiple-link network. Our work differs from the above works
due to the factor that we consider general utility functions and
network topologies in incomplete information setting. Most of
the above works either adopted specific utility functions, such
as logarithmic function [7], [8], or considered a simplified
network topology, such as single link network [9]–[11]. The
problem of revenue maximization has also been extensively
studied in economics and theoretical computer science [6],
[17], [18]. However, most of these works focused on discrete
linear utilities [6], [17], rather than the continuous concave
utilities considered in this work. The work [18] needs to know
the distribution of users’ utilities to maximize revenue.

Employing software defined networking (SDN) technique,
large cloud companies have built dedicated WANs, such as
Google’s B4 [2] and Microsoft’s SWAN [3], to connect their
geo-distributed data centers. Kandula et al. presented Tempus,
a WAN data transfer framework, to schedule long-running data
transfers in spatial and temporal dimension [19]. Kumar et
al. presented Google’s Bandwidth Enforce (BwE) for WAN
bandwidth allocation, enabling WAN to run at a high level
of utilization [20]. These works enable network provider to
improve the utilization of inter-datacenter bandwidths from the
perspective of engineering, our work, from the perspective of
economics, attempts to design a revenue maximizing pricing
scheme for network provider to extract more revenue from
inter-datacenter bandwidth market.

III. PRELIMINARIES

A. System Model
A Network Provider: We consider a network provider

managing a WAN G = (V,E) of interconnected datacenters.
Each node v ∈ V denotes a data center, and each edge
e = (v, w) represents a WAN link connecting datacenters v
and w or an ingress/egress link between datacenter v and an
ISP w. We discretize time into T time slots, where each time



slot corresponds to a fixed time interval, such as five minute
interval. The provider associates a price pe,t for each link
e ∈ E at each time slot t, meaning that users have to pay pe,t
for transferring data with unit data rate over link e at time slot
t. We use matrix P = (pe,t) ∈ R|E|×T to denote the prices
for different links at different time slots. We assume that links
do not have explicit capacity constraints, and adjust demands
over links through the control of prices on the links [21].

Network Users: There is a set of N network users, denoted
by N = {1, 2, · · · , N}, who make data transfer requests.
The request from user i ∈ N can be specified as a tuple
{si, di, t1i , t2i , ui(·)}. The nodes si and di represent the source
and destination of data transfer, respectively, meaning that the
data can be transmitted along a set of possible paths (or routes)
Ri from si to di. For convenience of discussion, we only
express explicit solutions to the single-minded case, in which
each of user i ∈ N pre-determines a specific route ri from Ri,
to transmit data.1 We consider a data rate request scenario, in
which each of users requires a constant data transmission rate
over a certain period of time. The user i ∈ N also specifies
a time interval [t1i , t

2
i ], where t1i corresponds to the starting

time slot to transmit data and t2i represents the ending time
slot. We assume that the lengths of time intervals are bounded
by a constant t̄, i.e., t2i − t1i ≤ t̄,∀i ∈ N . The user i ∈ N
has a (private) utility ui(xi), which measures the worth of
the data transfer at data rate xi over the time interval [t1i , t

2
i ].

Throughout the paper, we adopt the following assumption on
the utility function u(x).

Assumption 1. The utility function u : [0,∞]→ [0,∞] is an
increasing, strictly concave, and differentiable function.

Charge: The network provider charges a payment pi(xi) to
user i ∈ N for using the network with a data rate xi during
the time interval [t1i , t

2
i ]. In general, the price of a data transfer

is related to the allocated data rate, the source and destination
nodes, the requested transmission time interval, the market
competition for resources, etc. For simplicity, we consider a
linear usage-based pricing: the charge to a user is proportional
to the amount of allocated data rate, i.e., pi(xi) = pi×xi. For
convenience of discussion, we normalize the feasible prices
for pi into the interval [1, p̄]. To determine the per unit price
pi, we further investigate two different pricing schemes under
the requirements of envy-freeness and arbitrage-freeness:
• Item Pricing Scheme [6], [17]: We can set the per unit

price pi for user i ∈ N during the time interval [t1i , t
2
i ] as

pi ,
∑
t1i≤t≤t2i

pi,t, where pi,t is the unit price for user i at
time slot t, and is equal to the total price of links over the
selected route ri, i.e., pi,t ,

∑
e∈ri pe,t, leading to

pi =
∑

t1i≤t≤t2i

∑
e∈ri

pe,t. (1)

• Uniform Pricing Scheme: We also consider the simplest
usage-based pricing scheme: uniform pricing, which charges
a single per unit price for all potential users, independent of
their selected routes and requested time intervals.

1Our solution can also handle the multi-minded case, in which users can
transmit data over multiple paths simultaneously.

Demand: The net utility of user i can be expressed as the
difference between her utility and payment over the allocated
data transmission rate, i.e., ui(xi)− pi × xi. Given the price
quote pi, each user i ∈ N determines her demand for data
rate by solving a utility maximization problem:

Maximize ui(xi)− pi × xi over xi ≥ 0. (2)

Since ui(xi) is strictly concave by Assumption 1, the utility
maximization problem admits a unique solution x∗i such that

u′i(x
∗
i ) = pi, if x∗i > 0, and u′i(x

∗
i ) < pi if x∗i = 0.

We can also express the demand of user i with the per unit
price pi as:

Di(pi) ,
[
u′−1
i (pi)

]
+
, (3)

where
[
u′−1
i (pi)

]
+

denotes max(u′−1
i (pi), 0). Since the uti-

lity function ui(x) is strictly concave, u′i(x) is a decrea-
sing function, and thus the demand function Di(pi) is non-
increasing with respect to price pi over the range [0, u′i(0)].

B. Problem Formulation
We associate with the network provider a revenue maxi-

mization problem to determine the optimal prices to charge,
which can be formally formulated as follows:

Problem: Revenue Maximization with Item Pricing
Objective: Maximize L(P ) =

∑
i∈N pi × xi

Subject to:

pi =
∑

t1i≤t≤t2i

∑
e∈ri

pe,t, ∀i ∈ N ,

xi = Di (pi) , ∀i ∈ N ,
1 ≤ pi ≤ p̄, ∀i ∈ N .

The objective of the optimization problem is to maximize the
overall revenue L(P ) from N users. The decision variable
pe,t ∈ P denotes the unit price of link e at time slot t. The
first set of constraints states the unite price to each user given
the price matrix P = (pe,t), when we adopt item pricing. The
second set of constraints is the requirement of envy-free rate
allocation [6], meaning that each user receives the data rate
equal to her demand. The third set of constraints states the
feasible range of unite prices to users.

Solving the above revenue maximization problem is non-
trivial because of the following three major challenges. The
first challenge comes from the non-convexity of the objective
function. The revenue function piDi(pi) (or xiu′i(xi)) could
be non-convex in general. The second challenge comes from
the incomplete information of the network provider. In large
markets, the network provider may not have full knowledge
of users’ utilities, and can only observe the responses (or
demands) of users given certain prices. The last challenge
is the complex price correlation in both link and temporal
dimensions. The adjustment of the price on one single link at
a specific time slot has a/an direct/indirect effect on the charge
to potentially all users, due to coupling of users through shared
links and common time intervals. Jointly considering the above
challenges, we propose a framework of pricing mechanisms to



approximate the maximum revenue (in the sense of bounded
approximation ratios) under different scenarios. We formally
define the revenue loss metric used in this paper.

Definition 1 (α-Approximation Pricing Scheme). A pricing
scheme is called α-approximation if the ratio between optimal
revenue and the revenue obtained by the pricing scheme is less
than or equal to α for all instances of the problem. α is also
called the approximation ratio of the pricing scheme.

We measure the computational complexity of pricing sche-
mes from time complexity and information complexity. The in-
formation complexity measures the smallest number of rounds
of interaction (between network provider and users) needed to
maximize revenue within a desired approximation ratio [22].

IV. PRICING SCHEMES FOR A SPECIAL CASE

In this section, we first consider a special case of the
problem formulated above, where there is only one time slot,
i.e., T = 1. The assumption T = 1 is equivalent to considering
a problem where all users transmit for the same duration of
time, and thus, is an important special case to study in its
own right. In this special case, we only need to determine
the prices of links, not necessary to consider price constraints
in the temporal dimension. However, it is still non-trivial to
derive a complete solution for the general network setting. We
begin with designing pricing scheme for the simplest single
link case, and then extend it to adapt to the tollbooth case, in
which the network topology is restricted to a tree. We finally
derive some positive results for the general network topology
under some assumptions on demand functions.

A. Single Link Case
In single link case, the network provider only needs to

determine a single price for the link to maximize revenue,
further reducing the complexity of price correlation. Hence,
we have a simple version of revenue maximization:

Maximize L(p) =
∑
i∈N

p×Di(p) over 1 ≤ p ≤ p̄. (4)

In general, this optimization problem remains to be non-
convex, and the demand functions are also unknown to the
network provider. By leveraging the specific structure of
this optimization problem, we propose a simple and efficient
pricing scheme to achieve good revenue guarantee. We define
a vector of candidate discrete prices as

p̂ , (p̂0, p̂1, · · · , p̂K), (5)

where p̂k = (1 + ε)k for k = 0, 1, · · · ,K and a constant
parameter ε > 0. Since the upper bound of feasible prices is
p̄, we can set K =

⌊
log(p̄)

log(1+ε)

⌋
. The specific pricing scheme

contains two steps:
• Step 1: For each candidate price p̂k, we calculate the total

revenue L(p̂k) =
∑
i∈N p̂k ×Di(p̂k).

• Step 2: We select the candidate price p̂k with the maxi-
mum revenue L(p̂k) as the final price.

Suppose the selected price is p̂∗, and the corresponding
revenue is ALG = L(p̂∗). We denote the optimal revenue

TABLE I
APPROXIMATION RATIO VS. COMPUTATIONAL COMPLEXITY (p̄ = 100)

Approximation ratio 1 + ε 1.1 1.2 1.5 2 3
Number of interactions per user K 48 25 11 6 4

as OPT = L(p∗), where p∗ is the optimal price. Using
a straightforward analysis, we can characterize the revenue
guarantee of the pricing scheme in the following theorem.

Theorem 1. For the single link case, we can achieve an
approximation ratio of (1+ε), with polynomial time complexity
and information complexity O (NK), where N is the number
of users and K =

⌊
log(p̄)

log(1+ε)

⌋
.

Proof. For the optimal price p∗, there exists some integer k ∈
[0,K] such that (1+ ε)k ≤ p∗ ≤ (1+ ε)k+1. Thus, we can get

OPT = p∗
∑
i∈N

Di(p
∗) ≤ (1 + ε)k+1

∑
i∈N

Di(p
∗)

≤ (1 + ε)× (1 + ε)k
∑
i∈N

Di

(
(1 + ε)k

)
(6)

≤ (1 + ε)×ALG. (7)

The inequality (6) comes from the fact that Di(p) is non-
increasing with respect to price p over the range [1, p̄]. The
inequality (7) holds due to Step 2 in the pricing scheme.

Since we have to calculate the revenue of all candidate
prices, each of which takes O(N) time, the time complexity
is O(NK). The network provider needs to interact with each
user for K times, to learn her demands under different candi-
date prices. Thus, the information complexity is O(NK).

It is worth emphasizing that the pricing scheme works for
general demand functions, only requiring the demand to be
a non-increasing function of the price. Another interesting
observation can be made from the theorem above is that the
pricing scheme achieves a good approximation ratio through
only evaluating the demand functions a polynomial number of
times, without full knowledge of demand functions. In other
words, the network provider only needs to interact with each
user K times to obtain a (1+ε) approximation ratio.2 We show
the trade-off between approximation ratio and computational
complexity in Table I when the upper bound of prices is 100.

B. Tollbooth Case
We now extend the pricing scheme in single link case to

a more complex network called tollbooth network. In the
tollbooth case, the network topology is a tree, and users share
one common source, which we consider as the root of the
tree. This case is motivated by the current pricing strategy in
inter-datacenter networks, where the network provider designs
different price quotes for data transfer requests from different
data centers. We illustrate the tollbooth case in Figure 1, which
is a minimum spanning tree of Google’s inter-deatacenter
networks in the United States [2].

2We assume users are price takers and will truthfully reveal their demands
given a price. We leave the consideration of strategic behaviors of users [23]
to our future work.



Fig. 1. A tollbooth network, which is a minimum spanning tree of Google’s
Inter-datacenter networks in the United States [2].

We propose a pricing scheme for the tollbooth case based
on dynamic programming. For each node w in the tree, we use
Nw to denote the set of users, who request data transfer over
the route rw from the root to the destination node w. We also
denote the children of node w by a set Vw. We define L(w, pw)
to be the maximum revenue that we can obtain from the users,
whose destinations are located in the subtree Trw, given that
the route rw has an exact price pw. We are then interested in
calculating L(wr, 0), where node wr is the root of tree. Using
these terminologies, we can now define the Bellman equation
of dynamic programming:

L(w, pw) = pw ×
∑
i∈Nw

Di(pw) +
∑
v∈Vw

max
pv≥pw

L(v, pv).

Here, we require pv to be no less than pw, because the price
of edge e = (w, v), i.e., pe = pv−pw, should be non-negative.
The Bellman equation above shows that revenue L(w, pw)
comes from two parts: the revenue of users with destinations
at node w (the first term) and the maximum revenue of users
with destinations at the descendants of node w (the second
term), given that the price of route rw is pw.

We have to examine every possible price if we directly solve
the above dynamic programming, resulting in exponential
computational complexity. The crucial observation is that we
can borrow the idea from single link case, and only need
to consider a polynomial number of discrete prices without
losing much performance. Specifically, in the revised Bellman
equation, we only examine the candidate discrete prices from
the vector p̂, which has been defined as earlier in (5). We can
write the Bellman equation in discrete price domain as

L(w, p̂w) = p̂w ×
∑
i∈Nw

Di(p̂w) +
∑
v∈Vw

max
p̂v≥p̂w

L(v, p̂v).

We then use the backwards dynamic programming recursion
to solve for the optimal price in discrete price domain. Finally,
we recursively construct the price p̂∗w for every possible path
rw. With these path prices, we can set the price pe for edge
e = (w, v) as pe = p̂∗v− p̂∗w, and the per unit price for user i ∈
N as pi =

∑
e∈ri pe. We have the following lemma for any

subproblem L(w, pw),3 which allows us to bound the revenue
loss due to the restriction of only considering discrete prices.

Lemma 1. For the subproblem L(w, pw), we have

L(w, pw) ≤ (1 + ε)× L(w, p̂w),

3We abuse notations, and use L(w, pw) and L(w, p̂w) to denote the
subproblems at w that use continuous prices and discrete prices, respectively.

where p̂w is the largest discrete price that is smaller than pw,
i.e., p̂w = (1 + ε)k and (1 + ε)k ≤ pw ≤ (1 + ε)k+1.

Proof. We can prove this theorem by induction, starting at the
leaves of the tree.
• For leaf node w, we have the same revenue maximization

problem in the single link case: there exists some integer k ∈
[0,K] such that (1 + ε)k ≤ pw ≤ (1 + ε)k+1, and

L(w, pw) = pw
∑
i∈Nw

Di(pw) ≤ (1 + ε)× p̂w
∑
i∈Nw

Di(p̂w)

= (1 + ε)× L(w, p̂w).

Therefore, the lemma holds for leaf nodes.
• For internal node w, suppose the lemma holds for node

w’s children: i.e., L(v, pv) ≤ (1+ε)×L(v, p̂v), for all v ∈ Vw,
we then have

L(w, pw) = pw ×
∑
i∈Nw

Di(pw) +
∑
v∈Vw

L(v, pv)

≤ (1 + ε)p̂w
∑
i∈Nw

Di(p̂w) + (1 + ε)
∑
v∈Vw

L(v, p̂v) (8)

≤ (1 + ε)× L(w, p̂w). (9)

The inequality (8) follows from the result of single link case
and the induction hypothesis. In the continuous price domain,
the price pv of node v ∈ Vw is always no less than the price
pw of her parent w. We have to preserve this property in the
discrete price domain. This property indeed holds, because p̂v
(and p̂w) is the largest discrete price that is smaller than pv
(and pw). Hence, the set of discrete prices {p̂v|v ∈ Vw} is a
feasible solution to the subproblem at node w. By definition,
L(w, p̂w) is the optimal solution for this subproblem in the
discrete price domain. Therefore, we can then derive inequality
(9), and get the result for internal nodes.

The proof follows from the above discussion.

We now have the main theorem for the tollbooth case.

Theorem 2. For the tollbooth problem with a common source,
we can achieve an approximation ratio of (1 + ε) with time
complexity O(|V |K2N) and information complexity O(NK).

Proof. Let OPT and ALG denote the revenue achieved by
the optimal solution and our pricing scheme, respectively. Let
p∗v and p̂∗v be the corresponding optimal price and the price
selected by our scheme, respectively. By Lemma 1, we have

OPT =
∑
v∈Vwr

L(v, p∗v) ≤ (1 + ε)
∑
v∈Vwr

L(v, p̂v)

≤ (1 + ε)
∑
v∈Vwr

L(v, p̂∗v) = (1 + ε)×ALG,

where the second inequality follows from the fact that ALG
is the optimal solution in discrete price domain.

Since we only have to consider discrete prices in the
Bellman equation, the dynamic programming table has size
O(|V |K). In addition, each entry L(w, p̂w) can be computed
in polynomial time O(KN). Thus, the time complexity is
O(|V |K2N). Similar to the single link case, we need O(NK)
rounds of interaction to know the demands of users, resulting
in the information complexity of O(NK).



C. General Network Case
We next consider general network case, and derive three

results: two item pricing schemes and one uniform pricing
scheme, for different situations. Similar to the idea of single
link case, our first pricing scheme is to enumerate every
possible price profile of all links, and output the one with the
maximum revenue as the final result. The candidate prices for
each link also come from the vector p̂ in (5). Given a possible
set of prices P = {pe}, each user i would declare her demand
Di(pi) to the network provider, where pi =

∑
e∈ri pe. With

the demands from users, the network provider can calculate the
overall revenue for each price profile. The network provider
finally selects the price profile with the maximum revenue. We
have the following theorem for this pricing scheme. The proof
is similar to that in single link case, and we reserve it in the
technical report [24].

Theorem 3. For the general network case, we can achieve an
approximation ratio of (1+ ε) with exponential computational
complexity O(NK |E|).

Considering the high computational complexity of the above
scheme, we turn to two other simple and efficient pricing
schemes. Instead of enumerating every possible price for all
links, a simple item pricing scheme is to set a single price for
all links, which we call single link pricing. Following the same
principle as before, we examine the revenue of each possible
price from p̂ in (5), and select the price with the maximum
revenue. We show that such single link pricing scheme is
computationally efficient, and has a bounded approximation
ratio. We can complete the proof by extending the analysis in
single link case, and reserve it to the technical report [24].

Theorem 4. For the general network case, we can achieve
an approximation ratio of p̄ with polynomial computational
complexity O(NK), where p̄ is the upper bound of price.

The above pricing scheme only guarantees a bounded
approximation ratio, which may be pretty large in practice,
we now further improve the approximation ratio under some
reasonable assumptions. We recall that the hardness of item
pricing in a general network arises from the price constraints,
which requires the price of a user to be equal to the total
price of the links in her selected route. However, other pricing
schemes are possible to ensure envy-freeness and arbitrage-
freeness. If our goal is to maximize revenue, other pricing
schemes may be better and lead to better revenue guarantees.
For example, one can first determine link prices as an interme-
diate step and charge a user something other than the sum of
link prices. Therefore, we now generalize our requirement on
the pricing scheme, which we present as Assumption 2 below,
and discuss why such a pricing scheme is quite reasonable.

Assumption 2. The per unit price pi to user i satisfies a
relaxed price constraint: i.e., maxe∈ri pe ≤ pi ≤

∑
e∈ri pe.

The above assumption on prices is motivated by the requi-
rements of envy-freeness and arbitrage-freeness in practice.
On the one hand, as the user with the route over multiple
links consumes more resources, the charge to her should be

no less than that of the user who uses only one single link,
guaranteeing the fairness to some extent. On the other hand,
the charge to a user should be no more than the total price of
the links in her selected route; otherwise, the user may have
an incentive to engage in the following arbitrage behavior:
declaring a sequence of data transfer requests, each over a
single link, rather than a single request over a route.4

With such a price assumption, we can reformulate the
problem of revenue maximization as

Problem: General Revenue Maximization
Objective: Maximize L(P ) =

∑
i∈N pi × xi

Subject to:

max
e∈ri

pe ≤ pi ≤
∑
e∈ri

pe, ∀i ∈ N ,

1 ≤ pi ≤ p̄, ∀i ∈ N .

We note that the optimal solution to this relaxed optimization
is an upper bound of the original revenue maximization
problem. Unfortunately, it is still challenging to directly solve
the above problem. Here, we are interested in the loss of
revenue incurred by using simple envy-free and arbitrage-free
pricing schemes. We adopt another simple pricing strategy:
charging each user with the same per unit price. We call such
pricing scheme as uniform pricing, which has been widely
adopted today by Internet service providers and cloud band-
width providers. We can verify that uniform pricing satisfies
Assumption 2, and is envy-free and arbitrage-free.

In order to determine the uniform price and derive a
good approximation ratio, we introduce an assumption on the
demand functions of users. Such assumption would hold in
practice when users have similar utility functions.

Assumption 3. There exists a representative demand function
D(p), such that

¯
βD(p) ≤ Di(p) ≤ β̄D(p), for any user i ∈ N

and any possible price p ∈ [1, p̄].

With this assumption, the uniform pricing scheme is
quite simple. We optimally solve the optimization problem:
Maximize1≤p≤p̄ p × D(p), and denote the resulting price
as p̂∗0.5 We charge users with the per unit price p̂∗0, and
collect revenue p̂∗0×

∑
i∈N Di(p̂

∗
0). We show that such uniform

pricing scheme can achieve a good approximation ratio.

Theorem 5. For the general network under Assumptions 2
and 3, we can achieve an approximation ratio of β̄

¯
β with the

computational complexity of solving Maximize1≤p≤p̄ pD(p).

Proof. Let {p∗i , i ∈ N} to be the optimal prices in the problem
of general revenue maximization. According to Assumption 3,

4We can further extend Assumption 2 to satisfy more general concept of
fairness and to avoid more complex arbitrage behaviors. For example, we can
require the unit price pi of user i to be no less than the price of any sub-path
of route ri. We could also constrain pi to be no larger than the total price of
sub-pathes of ri, that also form a path between the source and destination.

5For some specific demand functions, we can derive the (almost) optimal so-
lution using efficient algorithms, such as applying Golden-section search [25]
for strictly unimodular functions. For the general demand function, we can
adopt the technique in single link case to obtain the sub-optimal solution with
an approximation ratio of 1 + ε.



we can have

OPT =
∑
i∈N

p∗iDi(p
∗
i ) ≤ β̄

∑
i∈N

p∗iD(p∗i )

≤ β̄
∑
i∈N

p̂∗0D(p̂∗0) ≤ β̄

¯
β

∑
i∈N

p̂∗0Di(p̂
∗
0). (10)

The second inequality follows from that p̂∗0 is the optimal
solution of maximizing pD(p).

It is worth noting that the approximation ratio of uniform
pricing only depends on the similarity of demand functions,
but not on network topology or data transfer routes.

The remaining task is to construct a representative demand
function D(p) that satisfies Assumption 3 and minimizes the
ratio β̄/

¯
β. For general demand functions, it might be difficult

to derive the optimal D(p). In the technical report [24], we
provide one example using a standard demand function to shed
light on the principle of finding D(p). However, this approach
requires the knowledge of demand functions. We can achieve
an approximation ratio of β̄

¯
β (1+ε), without knowing D(p), by

solving the revenue maximization in single link case (4), and
regarding the resulting price p̂∗ as the uniform price. Using
Theorem 1, we can further derive (10) to

(10) ≤ β̄

¯
β

∑
i∈N

p∗Di(p
∗) ≤ β̄

¯
β

(1 + ε)
∑
i∈N

p̂∗Di(p̂
∗),

where p∗ is the optimal price in single link case. We have the
following result for this approach.

Theorem 6. For the general network under Assumptions 2
and 3, we can achieve an approximation ratio of β̄

¯
β (1 + ε)

with time complexity and information complexity O (NK).

We trade-off a small revenue loss (an additional factor of
(1 + ε)) to bypass the difficulty in finding the exact represen-
tative demand function, which would be more attractive in the
scenarios with complicated demand functions.

V. EXTENSION TO MULTIPLE TIME SLOTS

We now return to the original problem with multiple time
slots, and extend the previous pricing schemes to enable time-
dependent pricing [26]. By a slight abuse of notations, we
will use the same notations as in the previous section, when
appropriate. Due to space limitations, we only express the
solution in single link case, which provides insight into the
extensions to multiple time slots, and reserve the discussion
of tollbooth case and network case to the technical report [24].

The basic idea to design time-dependent pricing scheme is
to enumerate possible prices for link(s) at different time slots,
and reduce the time complexity via dynamic programming.
Due to the assumption that the lengths of time intervals are
upper bounded by a constant t̄, we just need to examine the
prices at only a constant number of time slots in the dynamic
programming. Let vector pt−t̄+1

t = (pt, pt−1, · · · , pt−t̄+1)
denote the possible prices for the single link at t̄ sequential
time slots t, t−1, · · · , t− t̄+1. In the dynamic programming,
we maintain a state table L̃(t,pt−t̄+1

t ), where each entry

records the maximum revenue that we can obtain from users
with time intervals ending at time slot t or before, given
that the prices at time slots t, t − 1, · · · , t − t̄ + 1 are set as
pt, pt−1, · · · , pt−t̄+1, respectively. We use Nt to denote the set
of users, whose time intervals ends exactly at slot t. We now
can define the Bellman equation for dynamic programming

L̃(t,pt−t̄+1
t ) =

∑
i∈Nt

piDi(pi) + max
pt−t̄

L̃(t− 1,pt−t̄+1
t−1 , pt−t̄),

where pi is the per unit price to user i, i.e., pi =
∑
t∈[t1i ,t2i ]

pt.

We note that price vector pt−t̄+1
t is sufficient to calculate the

price pi and then the revenue of users Nt (the first term of
the equation), because no time interval has length larger than
t̄. The second term of the equation is the maximum revenue
among the subproblem at time slot t−1 with prices pt−t̄+1

t−1 to
time slots t−1, t−2, · · · , t− t̄+1. Similar to the development
in the previous section, we only consider discrete prices in
the Bellman equation. Using the standard backward recursion
approach, we can solve the dynamic programming in discrete
price regime, and obtain the price p̂t for each time slot t.
The following lemma bounds the revenue loss due to only
considering discrete prices in the dynamic programming.

Lemma 2. For any state L̃(t,pt−t̄+1
t ), there always exists a

state L̃(t, p̂t−t̄+1
t ) using only discrete prices, such that

L̃(t,pt−t̄+1
t ) ≤ (1 + ε)× L̃(t, p̂t−t̄+1

t ),

where p̂t−t̄+1
t = (p̂t, p̂t−1, · · · , p̂t−t̄+1), and p̂t is the largest

discrete price that is smaller than pt, i.e., p̂t = (1 + ε)k and
(1 + ε)k ≤ pt ≤ (1 + ε)k+1 for some integer k ∈ [0,K].

Using the preceding result, we can show the performance
guarantee of the time-dependent pricing for single link case.

Theorem 7. For the single link with multiple time slots, we can
achieve an approximation ratio of (1+ε) with time complexity
O(TK t̄+1N) and information complexity O(NK), where T
is the number of time slots.

Due to space limitations, we put the detailed proofs of
Lemma 2 and Theorem 7 into our technical report [24].

VI. EVALUATION RESULTS

In this section, we only provide evaluation results for the
general network case, considering that we can obtain near-
optimal results for the single link and tollbooth network cases.
We also observe that the evaluation result in multiple time slot
setting is similar to that in single time slot, and thus we only
report results for the special single time slot case.

A. Methodology

We first present the evaluation setting. The network to-
pology we consider in our evaluation is B4, a WAN con-
necting Google’s data centers across the world in 2011 [2].
In this WAN graph, there are 19 links/edges connecting 12
regions/nodes. We randomly generate a pair of source and
destination nodes for each user, and regard the shortest path
between the source and destination as her selected route to
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Fig. 2. Revenue curves for two different α-fair utility functions (one with
parameters α = 0.7, w = 50 and the other with α = 1.3, w = 100) and
one exponential utility function with parameters α = 1.2, w = 200.

transmit data. We consider two specific classes of utility
functions: α-fair utility function

ui(xi) =

{
wi

x
1−αi
i

1−αi , αi > 0, αi 6= 1,

wi log xi, αi = 1,

and exponential utility function ui(xi) = wi(1 − e−αix). By
the definition of demand function in (3), we can obtain the
corresponding revenue functions

Li(p) = p×
(
p

wi

)− 1
αi

and Li(p) = − p

αi
× log

p

wiαi

for α-fair utility and exponential utility, respectively. In Fi-
gure 2, we plot the curves for three revenue functions with
different parameters over price range [1, 300]. From the figure,
we can observe that for α > 1, the revenue of α-fair utility
increases with price p, whereas for α < 1 it decreases with
price. The revenue function of exponential utility is concave,
reaches the maximum value at price wiαi/e, and becomes
negative when price is larger than wiαi. In Figure 2, we
also draw the overall revenue function, which is non-convex
and demonstrates the difficulty in directly solving the revenue
maximization problem. Each of users is associated with either
an α-fair utility or an exponential utility with equal probability.
The parameters (αi and wi) of utility functions are draw
from some distributions. Specifically, αi follows a uniform
distribution over the interval [0.5, 1.5], and wi follows either a
uniform distribution or a Pareto distribution. We adopt Pareto
distribution for wi to model the scenario that most of users
have similar utilities. As we observe in Figure 2, the revenue
of exponential utility would be negative when p > wiαi, and
thus we set a relatively large wi for exponential utility. The
supports of the uniform distributions for w in α-fair utility and
exponential utility are set as [1, 60] and [1, 1000], respectively.
The scale and shape pairs of the Pareto distributions for w
in α-fair utility and exponential utility are set as (1, 1) and
(50, 1), respectively. We investigate the performance of pricing
schemes with different number of users, varying from 20 to
200 with increment of 20, and with different upper bounds

of prices, ranging from 20 to 200 with increase 20. All the
evaluation results are averaged over 1000 runs.6

We implement uniform pricing and single link pricing,
and compare their performance with that of random uniform
pricing and random single link pricing. Considering that we
cannot optimally solve the general revenue maximization in
Section IV-C, we compute a trivial upper bound of the optimal
revenue by solving Maximize1≤pi≤p̄

∑
i∈N pi × Di(pi). As

we do not have specific price correlation among users in this
optimization, we can separately maximize each term in the
objective, which is easy to deal with in the context of α-fair
utility and exponential utility. We compare the performance of
pricing schemes with this upper bound, to measure the revenue
loss of considering the envy-freeness and arbitrage-freeness.

B. Performance of Pricing Schemes

Figure 3 shows the revenue achieved by different pricing
schemes under various evaluation settings. Generally, we can
see from Figure 3(b) and Figure 3(d) that in the market with
larger number of users, all pricing schemes obtain higher
revenue. For the cases of w-Uniform distribution (Figure 3(a)),
the revenue increases with p̄, because pricing schemes have
higher probability to obtain large revenue when there are more
candidate prices to choose. However, when w follows a Pareto
distribution (Figure 3(c)), the revenue does not have an explicit
relation with p̄. Although Pareto distribution only has small
probability to generate a large w, if this happens (independent
of p̄), the revenue from the user with such large w would
dominate the revenue of other users, leading to a surge in the
overall revenue.

We now compare the performance of uniform pricing with
that of other pricing schemes to show its advantage in maxi-
mizing revenue. From Figure 3, we can observe that the ratio
between the upper bound of optimal revenue and the revenue
achieved by uniform pricing is not so large, especially when
w follows a Pareto distribution. This indicates that we do
not sacrifice too much revenue to guarantee the properties of
envy-freeness and arbitrage-freeness. Theorem 5 states that the
approximation ratio of uniform pricing is β̄/

¯
β, which is related

to the similarity of utility (or demand) functions among users.
The observations from the evaluation results explicitly indicate
this relation. As shown in Figure 3(a), the ratio stays at around
1.6 for all the possible p̄. The reason is that the similarity
of utility functions does not change much in different rounds
when N is fixed. In contrast, we can see from Figure 3(b)
that the ratio becomes large with the increase of N , because
utility functions would be more diverse when N is larger.
Again, we have the same observations from Figure 3(c) and
Figure 3(d) when w follows a Pareto distribution. We also find
that the ratio in the case of w-Pareto Distribution is smaller
than that in the case of w-Uniform Distribution under the same
simulation setting. This is because most of w’s generated by
Pareto distribution locate densely in a small interval, reflecting
the high similarity of utility functions.

6All parameters can be different from the ones used here. As the evaluation
results of using other parameters are similar, we only report the results for
these parameters in this paper.
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(b) w-Uniform Distribution, p̄ = 200
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Fig. 3. Performance of different pricing schemes under various evaluation settings.

From Figure 3, we can observe that uniform pricing always
outperforms single link pricing, which demonstrates that we
can extract more revenue by relaxing the price constraints in
item pricing, and using the price constraints in Assumption 2.
In single link pricing scheme, we require that the per unit
price to a user should be proportional to the length of her
route. As we also require the per unit price to be less than an
upper bound, the feasible prices to links would be quite small
if there exist some users who transmit data over long routes
in network. This would result in large revenue loss especially
when the overall revenue increases with price.

In Figure 3, both uniform pricing and single link pricing
achieve higher revenue than their random counterparts. This
indicates that we can significantly improve the performance of
pricing schemes through a polynomial number of interactions
with users. These interactions provide information for the
network provider to optimize price and then extract more
revenue. Thus, the network provider has an economic incentive
to interact with users to learn their demands,

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied a revenue maximization
problem in inter-datacenter networks, where a network service
provider sets the price to each user and then users decide a
certain rate to transmit data over the network. We focus on
the family of envy-free and arbitrage-free pricing schemes.
For single link and tollbooth cases, we have designed a
(1 + ε)-approximation pricing scheme with polynomial time
complexity and information complexity. For general network
case, we have established the following result: when users
have similar utility functions, uniform pricing can achieve a
good approximation ratio, which is independent of network
topology and data transfer requests.

One possible direction for future work is to consider capa-
city constraints and congest effect in pricing scheme design.
Another interesting research topic is to design item pricing for
revenue maximization in general network topology.
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