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Abstract—With the rapid growth of smart devices, mobile
crowdsensing is becoming an important paradigm to acquire
information from physical environments. Considering that the
sensing data collected by mobile users are normally noisy and
imprecise, one of the pressing problems in mobile crowdsensing
is to evaluate the data quality in real time and to steer users
to acquire data with high quality. However, it is challenging
to estimate the data quality without the availability of ground
truth data. In this paper, we observe that sensing context has a
significant impact on data quality, which motivates us to propose
a context-aware data quality estimation scheme. With historical
sensing data, we train a context-quality classifier, which captures
the relation between context information and data quality, to
estimate data quality in an online manner. We apply such a
context-aware data quality estimation scheme to guide user re-
cruitment in mobile crowdsensing. We model the process of user
recruitment as a stochastic submodular maximization problem,
and design a random adaptive greedy algorithm to guarantee a
constant approximation ratio. We evaluate our algorithm on a
real-world temperature data set. The evaluation results show that
our algorithm outperforms other existing techniques, in terms of
prediction accuracy.

I. INTRODUCTION

In recent years, with the explosive increasing of smart
devices embedded with various powerful sensors (e.g., cam-
era, microphone, accelerometer, digital compass, gyroscope,
etc.), mobile crowdsensing (MCS) has been recognized as an
innovative sensing data gathering paradigm [10], [18]. It has
permeated many aspects of our daily life, including record-
ing personal body indexes for health care [25], measuring
environment phenomena like pollution level [10], monitoring
traffic conditions (e.g., availability of parking lot [19] and
road congestion [20]), and sharing exercise data in social
communities [11].

The main feature of mobile crowdsensing is the involvement
of mobile users, which may be a double edged sword. On
one hand, the service provider can leverage the intelligence
of mobile users to improve the efficiency of data acquisition.
For example, mobile users can easily identify the location
of available parking lots and report them with pictures and
comments, achieving much higher flexibility than the currently
used ultrasound-based scanning system. On the other hand,
compared with traditional wireless sensor networks [29], user’s
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involvement may introduce even higher uncertainty in data
quality, mainly due to various human activities during data
collection. For example, in a noise measurement crowdsensing
system, the collected sensing data would have poor quality if
mobile users put their smartphones in pockets or even walk
or run during data acquisition process.

Ensuring high data quality is a fundamental requirement to
guarantee the success of mobile crowdsensing, which is the
basic for other design components, such as user recruitment
and incentive mechanism design. The data quality measures
the degree of deviation to ground truth data, and is sometimes
defined as data noise. There are many factors, captured by
sensing context in this paper, that can influence the sensing
data quality. We further divide these factors into two cate-
gories: hardware factors (e.g., phone brand, sensor models,
sensor calibration level, and etc) and human behaviour factors
(e.g., holding position of smartphone, human movement during
sensing, and etc). Unfortunately, most of existing works in
mobile crowdsensing did not investigate the impact of sensing
context on data quality, or simply use a constant parameter to
describe data quality [15]. However, different user activities in
diverse context environments will lead to significantly different
data qualities, indicating that a single constant parameter is not
sufficient enough to describe the quality of data from mobile
users. Considering that data quality may change over time
(human behavior is always dynamic and variable), we have
to determine the data quality in a real time manner, which is
not a easy job without knowing the ground truth data. Peng et
al., [24] used unsupervised learning technique to estimate data
quality, but this can only be done after collecting the historical
data from all users. Our work, on the contrary, aims to develop
a framework that can estimate the data quality on-the-fly.

There exist many challenges in the design of data quality
estimation scheme. We list the major ones as follows:
• Lack of Ground Truth: It is trivial to estimate the data

quality with the availability of ground truth. The sensing data
consists of two parts: ground truth and data noise. With the
ground truth data, we can extract the data noises from the
sensing data directly, and further calculate its corresponding
data quality in real time. However, in most crowdsensing
applications, it is hard or even impossible to obtain the ground
truth data, leading to the failure of ground truth-based data
quality estimation schemes.
• Lack of Historical Data: Even without knowing the

ground truth data, we can still determine the data quality in an
offline manner as long as there is enough historical data. Given
the historical data for a certain task, we can first estimate its
corresponding ground truth, and then apply the ground truth-
based scheme to calculate the data quality. However, in many
scenarios, such as user recruitment, we have to determine the
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Figure 1: An example to illustrate the influence of different phone sensing contexts on the quality of sensing data.

data quality for a new task in an online manner, such that no
historical data could be used to calculate the ground truth and
estimate the data quality.

Considering the challenges above, it is difficult to esti-
mate data quality directly. In this paper, we seek to build a
connection between contextual information and data quality,
based on which we infer the data quality through the real-time
contextual information. Specifically, we design this context-
aware data quality estimation scheme by using supervised
learning algorithms to train a context-quality classifier. In order
to prepare training data set, we have to obtain data quality and
contextual information for each piece of historical data. For
data quality, we first build a Gaussian Mixture Model to de-
scribe sensing data, and propose an Expectation Maximization
(EM)-based algorithm to estimate the ground truth of each
task. Based on the ground truth data, we then calculate the
data noises of the historical data, and derive the data quality
distribution for each mobile user by applying the maximum
likelihood estimation (MLE) method. With the data quality
distribution as the prior distribution, we determine the data
quality for each piece of historical data using the maximum
a posterior probability (MAP) approach. To obtain contextual
information, we directly read the hardware information from
smart devices, and apply activity recognition technique to
detect human behaviour based on the sensing data from idle
sensors.

With the context-quality classifier, we are able to determine
the data quality with the aid of contextual information, in a
real-time manner. We integrate our context-aware data quality
estimation scheme into a specific application: user recruitment,
and model it as a stochastic submodular maximization prob-
lem. We cannot directly adopt the classical greedy algorithm
from submodular optimization, because the data quality of
each user is not determined in advance. Taking advantage of
adaptive submodularity property, we design a random adaptive
greedy algorithm, achieving a constant approximation ratio of
1/e.

We summarize the main contributions of this paper:
• First, we make an in-depth study on real-time data quality

estimation in mobile crowdsensing without the knowledge of
ground truth data.
• Second, we investigate the relation between contextual

information and data quality, and design a context-aware data
quality estimation scheme. We calculate data quality and detect
contextual information for each piece of historical data. With
the training data set (contextual information and data quality
pairs), we build a context-data quality classifier, which is used
to estimate the data quality in real time.
• Third, we use the context-aware data quality estimation

scheme to guide user recruitment process. We model it as
an adaptive non-monotone submodular maximization problem,

and propose a random adaptive greedy algorithm with a
constant approximation ratio of 1/e.
• Finally, we show the performance of our algorithm

through simulations on a real-world sensing data set. The
simulation results show that our algorithm outperforms the
previous techniques in terms of prediction accuracy.

The rest of this paper is organized as follows: In Section II,
we use a simple experiment to demonstrate the influence of
sensing context on data quality. The context-quality model
and problem formulation of user recruitment are presented in
Section III. In Section IV, we illustrate the design details of
the context-aware data quality estimation scheme, and further
apply it to guide user recruitment in Section V. The evaluation
results are shown in Section VI, followed by related work in
Section VII. Finally, we conclude the paper in Section VIII.

II. A MOTIVATING EXAMPLE

In order to capture the influence of different sensing contexts
on sensing data quality, we carry out a simple experiment
about noise pollution profile description in campus. In this
experiment, we mainly focus on the human factor, i.e., the
influence of user activity on the data quality.

We install Noisetube [23] app on four Apple iPhone 6, and
use the embedded acoustic sensor to measure the noise levels
in our campus. Four volunteers holding these devices measure
the noise level at the same location, but may be in different
contexts, simultaneously. Two volunteers keep still during
sensing, one volunteer keeps walking, and the remaining one
keeps running. The whole process lasts for about 115 time
slots. One slot is set to be two seconds.

We first compare the data quality collected by different
volunteers under the same activity. The noise measurements
from the two standing volunteers is presented in Figure 1(a).
We can see that the two lines almost overlap with each
other, implying that the impact of hardware on the data
quality is negligible. We then compare the measurements
from one standing volunteer and one walking volunteer. As
shown in Figure 1(b), there exists obvious difference between
the two lines, where the variance of the line corresponding
to the walking volunteer is apparently greater than that of
the standing volunteer. Finally, the measurements from one
standing volunteer and one running volunteer are reported in
Figure 1(c). We can observe that the variance of the line
corresponding to the running volunteer is even greater than
that of the walking volunteer.

The above experiment results indicate that different sensing
contexts indeed have a significant impact on the quality of
sensing data. It motivates us to explore the relation between
context and data quality, and leverage such relation to estimate
the data quality in the scenario that the ground truth data is
unavailable while the contextual information is easy to collect.
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Figure 2: System Overview

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first present a system overview. We
then describe the context-aware data quality estimation model.
After that, we formally formulate the problem of user recruit-
ment.

A. System Overview
A typical mobile crowdsensing system contains three major

components: a service provider, a set of clients, and a set
of mobile users. The service provider is the central platform
connecting clients and mobile users. The service provider
receives queries about information in specific locations from
clients, and announces a set of points of interest (PoIs)
L , {l1, l2, . . . , lM}. The PoIs are the physical locations,
at which the service provider intends to acquire sensing data
to answer the queries of clients. Based on the consideration
of their current locations and available resources, the mobile
users choose the preferred PoIs, indicating that they are willing
to carry out the corresponding sensing tasks at these PoIs. We
denote the M mobile users by a set V = {v1, v2, . . . , vM}.
For convenience of discussion, we assume there is exact one
mobile user at each of PoIs. Our results can be easily extended
to the scenario that multiple mobile users stay at one PoI.

Due to the unreliable sensors and dynamic environment, the
sensing data collected by mobile users are normally noisy and
imprecise. Considering the uncertainty of sensing data, the
service provider faces two fundamental problems in mobile
crowdsensing: how to evaluate the quality of collected sensing
data in real time and how to recruit the reliable mobile users to
maximize the service utility? As shown in Figure 2, the service
provider leverages the historical sensing data to estimate the
relation between contextual information and data quality, and
to measure the reliability of mobile users, which are two
critical steps to tackle the above two problems. For the context-
quality relation, we construct a classifier to map contextual
information to data quality, such that we can evaluate the data
quality through the real-time contextual information. For the
reliability measurement, the service provider uses the historical
sensing data of a mobile user to calculate her data quality
distribution, indicating the probability of data quality of this
user in future data acquisition. Such data quality distribution
is considered as the reliability of the mobile user. We adopt
the reliability of mobile users as selection criteria in user
recruitment, leading to a high service utility.

B. Data Quality and Context
We assume that the data quality can only be chosen from

N different levels, each of which corresponds to an inde-
pendent gaussian distribution. The gaussian distribution has
been widely used to describe sensing data [9], [14]. Given a
sensing task, the sensing data from the φth data quality level
is regarded as a random sample from the Gaussian distribution

N (µ, σ2
φ), where the mean µ is the ground truth of the task and

the variance σ2
φ is a predefined constant number. We denote the

total possible data quality levels by a set N = (1, 2, · · · , N).
Mobile users may involve in various and dynamic contexts

during data acquisition process, leading to the collected data
in diverse data quality levels. It is not sufficient enough to use
a single fixed constant parameter to describe the data quality
level of each user over the time. Therefore, for each mobile
user vi ∈ V, we use a random variable Φi to represent her
possible data quality level. The random variable Φi follows a
multinomial distribution with the parameters {πi(φ), φ ∈ N},
where πi(φ) = P(Φi = φ), 0 ≤ πi(φ) ≤ 1 and

∑N
φ=1 πi(φ) =

1. We call such multinomial distribution {πi(φ)} as quality
distribution for the mobile user vi ∈ V. We use the vector
Φ = (Φ1,Φ2, · · · ,ΦM ) to denote the random variables of all
the mobile users.

As for contextual information, we represent it using a
feature vector c = (c1, c2, . . . , cQ), in which each element
denotes activity information or hardware information. For
example, we can use ci to denote whether the user is walking
or not. For hardware information, we can use one feature
element to represent mobile phone brand and another for
calibration level of sensors.

C. User Recruitment
We model user recruitment in the scenario of unknown data

quality level as a stochastic submodular maximization prob-
lem. The ground set is all the mobile users V. Mobile users
may have different possible data quality levels in different
context situations. For a specific context, we can realize the
random variable Φi to be a certain value φi, and denote the
realizations of all the mobile users as φ = (φ1, φ2, · · · , φM ).
Before selecting mobile users, the service provider only knows
the quality distributions of mobile users, and can calculate the
probability distribution P(φ) over a possible realization φ,
i.e., P(φ) =

∏M
i=1 πi(φi). Once the service provider selects

a mobile user, she can collect the contextual information and
exploit the context-quality classifier to determine the mobile
user’s specific data quality level. Therefore, for a selected
subset of mobile users, the service provider can observe their
partial realization, denoted by ψ ⊆ V×N, which is a collection
of mobile users-data quality level pairs (v, φ). For a partial
realization ψ, we use dom(ψ) to represent the contained users,
i.e., dom(ψ) = {v ∈ V | ∃φ ∈ N : (v, φ) ∈ ψ}. We write
ψ(v) = φ, when (v, φ) ∈ ψ. Additionally, we call a partial
realization ψ consistent with a full realization φ, denoted by
φ ∼ ψ when ψ(v) = φ(v), for all v ∈ dom(ψ), meaning
that the realized quality levels of a user subset according to ψ
agree with that of the ground set according to φ.

The utility function of the service provider is F : 2V ×
NV → R, which assigns a value to every subset of mobile
users and the corresponding data quality level realization. The
primal goal of the service provider is to select a user subset
V ⊆ V to maximize the resulting expected utility, subjecting
to the cardinality constraint |V| ≤ K. We can formulate the
user recruitment problem in unknown data quality scenario as:

V∗ = arg max
V∈V,|V|≤K

E[F (V,φ)], (1)

where E[F (V,φ)] is the expected utility with respect to the
realization probability distribution P(φ):

E[F (V,φ)] ,
∑
φ

P(φ)× F (V,φ). (2)



We now define an important property: adaptive submodular-
ity, that the utility function should satisfy to achieve good per-
formance guarantee. Adaptive submodularity is an extension
of submodularity to adapt to the scenarios of unknown quality
realization. We first give the formal definition of submodular
function.

Definition 1 (Submodularity). Given the ground set V, a set
function f : 2V → R is called submodular if, for any A ⊆
B ⊆ V and v ∈ V\B, it satisfies that: f(A ∪ {v})− f(A) ≥
f(B ∪ {v})− f(B).

Although many submodular maximization problems are NP-
hard, we can apply the simple greedy algorithms to derive
near-optimal performance [4], [5], [14]. However, the greedy
algorithms cannot guarantee performance when the realization
is not available before running the algorithms. Golovin and
Krause introduced the concept of adaptive submodularity [13]
to deal with the unknown realization scenario. We present the
definition of conditional expected marginal utility.

Definition 2 (Conditional Expected Marginal Utility). Given
a partial realization ψ and a user v, the conditional expected
marginal utility of v conditioned on ψ is:

∆(v|ψ) = E[F (dom(ψ) ∪ {v},φ)− F (dom(ψ),φ)|φ ∼ ψ]. (3)

ψ is consistent with φ, which is the realization of ground set.

Definition 3 (Adaptive Submodularity [13]). Given the ground
set V, a set function F: 2V × NV → R is called adaptive
submodular with respect to the realization distribution P(Φ)
if, for any partial realizations ψ and ψ′, where ψ is a
subrealization of ψ′ i.e., dom(ψ) ⊆ dom(ψ′), and for any
v ∈ V\dom(ψ′), it satisfies that: ∆(v|ψ) ≥ ∆(v|ψ′).
Definition 4 (Adaptive Monotonicity [13]). Given the ground
set V, a set function F: 2V × NV → R is called adaptive
monotone with respect to the distribution P(Φ) if, for any
partial realization ψ and user v, it satisfies that: ∆(v|ψ) ≥ 0.

IV. CONTEXT-AWARE DATA QUALITY ESTIMATION

In this section, we describe the design details of our context-
aware data quality estimation scheme. The basic idea is to
exploit contextual information to infer the data quality of
mobile users, without knowing the ground truth of the sensing
tasks. To fulfill this goal, we build a connection between
contextual information and data quality by training a context-
data quality classifier based on the historical sensing data.

A. Quality Estimation
Expectation Maximization (EM) algorithm is a classical

iterative method for finding maximum likelihood or maximum
posteriori estimation of parameters in statistical models [8].
The key parts of adopting the EM algorithm are the choice
of unobserved latent variables and the design of likelihood
function. Different from the previous work about data quality
management in mobile crowdsensing [24], [27], which choose
the ground truth as the latent variable, we regard the latent
variable as the data quality level Φ of mobile users. We assume
that there are T tasks in historical data set, and uj is the
ground truth of the jth task. We use a M × T matrix X
to denote the historical data set, where xij is the data that
the mobile user i collects for the jth task. Without loss of
generality, we assume that each mobile user has carried out
all the T tasks, i.e., xij > 0. We represent the collected data
of the mobile user i and the observations for the jth task as

xi,∗ = (xi1, xi2, · · · , xiT ) and x∗,j = (x1j , x2j , · · · , xMj),
respectively.

Before estimating the data quality distribution, we first
calculate the ground truth for each task by introducing a
Gaussian Mixture Model (GMM). We can consider the M
data X∗,j for the jth task are i.i.d samples from a probability
density distribution (pdf) pθ(x), which is the mixture of N
univariate Gaussian distributions:

pθ(x) =

M∑
i=1

gi

N∑
φ=1

πi(φ)N(x;µj , σ
2
φ) =

N∑
φ=1

π̄(φ)N(x;µj , σ
2
φ),

where N(x, µj , σ
2
φ) denotes the Gaussian pdf with mean µj

and variance σ2
φ:

N(x;µj , σ
2
φ) ,

1√
2πσφ

exp

(
−x− µj

2σ2
φ

)
.

The value gi = 1/M is the probability that the data comes
from the mobile user i. The probability π̄(φ) can be considered
as the average of all the πi(φ), i.e., π̄(φ) =

∑M
i=1 giπi(φ). We

note that the Gaussian distributions share the same mean uj ,
which is the ground truth of the jth sensing task. To simply
the notation, we omit the index j in the following discussion.
We can interpret such GMM model for the generalization of
the observation data: we first draw a data quality level that
takes value φ with probability π̄(φ), and then generate the
observation data Xi ∼ N(µ, σ2

φ).
In GMM model, we consider mean u and average proba-

bilities {π̄(φ)} as the parameters: θ , {u, π̄(φ), 1 ≤ φ ≤ N},
while the variance {σ2

φ} is the given constant numbers. The
latent variable is the average data quality level Φ̄, which fol-
lows the multinomial distribution with {π̄(φ)}. We introduce
the incomplete-data log likelihood function for θ as

lid(θ) =

M∑
i=1

log pθ(xi) =

M∑
i=1

log

N∑
φ=1

π̄(φ)N(xi;µ, σ
2
φ).

Maximizing this likelihood function with respect to the pa-
rameters θ is a nonconcave maximization problem, leading to
the intractability to derive closed form solutions. Therefore,
we adopt EM algorithm to iteratively estimate the parameters.

We first introduce the complete data log likelihood function.
Let the complete data be (Xi, Φ̄i), 1 ≤ i ≤ M , where Φ̄i is
the random variable selected to produce the data Xi.

lcd(θ) =

M∑
i=1

log rθ(xi, φ̄i) =

M∑
i=1

[
log π̄(φ̄i) + log pθ(xi|φ̄i)

]
=

M∑
i=1

[
log π̄(φ̄i) + logN(xi;µ, σ

2
φ̄i

)
]

= −M
2

log(2π) +

M∑
i=1

[
log π̄(φ̄i)− log σφ̄i −

(xi − µ)2

2σ2
φ̄i

]
.

EM algorithm consists of two major steps: the expectation
(E) step and the maximization (M) step.
• E-step: Compute the expectation of the complete data

log likelihood function lcd(θ), with respect to the conditional



distribution of latent variables Φ̄ under the current estimate of
parameters θ(k):

Q(θ|θ(k)) , Eθ(k) [lcd(θ)|X∗,j = x∗,j ]

(a)
= − M

2
log(2π)

+

M∑
i=1

Eθ(k)

{[
log π̄(Φ̄i)− log σΦ̄i

− (xi − µ)2

2σ2
Φ̄i

] ∣∣∣∣∣Xi = xi

}
(b)
= − M

2
log(2π)

+

M∑
i=1

N∑
φ=1

[
log π̄(φ)− log σφ −

(xi − µ)2

2σ2
φ

]
π̄θ(k)(φ|xi), (4)

where the (a) holds because the random variable Φ̄i is con-
ditionally independent of {Xk}k 6=i given Xi. In (b), we have
introduced the conditional probability distribution

π̄θ(k)(φ|x) ,
π̄(k)(φ)N(x;µ(k), σ2

φ)∑N
φ=1 π̄

(k)(φ)N(x;µ(k), σ2
φ)
, 1 ≤ φ ≤ N. (5)

• M-step: Calculate the updated parameters θ(k+1) that
maximize the Q(θ|θ(k)) in Equation (4), i.e.,

θ(k+1) = arg max
θ

Q(θ|θ(k)). (6)

The function Q(θ|θ(k)) is concave quadratic in µ. Setting the
partial derivatives of Q(θ|θ(k)) with respect to µ to zero, we
obtain

0 =
Q(θ|θ(k))

∂µ
=

M∑
i=1

N∑
φ=1

[
xi − µ
σ2
φ

πθ(k)(φ|xi)

]
.

Hence, the updated mean µ(k+1) is:

µ(k+1) =

∑M
i=1 xi

∑N
φ=1

π̄
θ(k) (φ|xi)
σ2
φ∑M

i=1

∑N
φ=1

π̄
θ(k) (φ|xi)
σ2
φ

,

which is a weight average of the observations x∗,j .
To derive the update of the mixture probabilities, we max-

imize the Q(θ|θ(k)) with respect to the π̄(φ). Here, we must
take account of the constraint that the mixture probabilities
sum to one, i.e.,

∑N
φ=1 π̄(φ) = 1. This can be achieved using

a Lagrange multiplier and maximizing the following quantity:

Q(θ|θ(k)) + λ

 N∑
φ=1

π̄(φ)− 1

 .

Setting the partial derivatives of the above equality with
respect to π̄φ, and we have

0 =

M∑
i=1

1

π̄(φ)
π̄θ(k)(φ|xi) + λ.

If we now multiple both side by π̄(φ) and sum over N , we can
derive λ = −M . Using this to eliminate λ and rearranging,
we obtain the updated mixture probability π̄(k+1)(φ):

π̄(k+1)(φ) =
1

M

M∑
i=1

π̄θ(k)(φ|xi), ∀1 ≤ φ ≤ N.

We iteratively execute the E-step and the M-step until the
converge condition holds. We can manually set the conver-
gence condition, e.g., the difference of log likelihood function
between two iterations goes below a predefined threshold. The
final ground truth for the task j is denoted by µ∗j .

We now turn to calculate the data quality distribution, i.e.,
the mixture probabilities {πi(φ)}, for each mobile user. We
emphasize that the data quality levels are not relevant to the
ground truths of the tasks, but only capture the noise of the
collected data. We define the noise of the data collected by the
mobile user i for the task j as yij , xij−µ∗j . For each mobile
user i, we use the vector yi,∗ to denote the noises for all the
collected data, i.e., yi,∗ = (yi1, yi2, · · · , yiT ). We can consider
that the data noises are drawn i.i.d from a probability density
function pθ(y), which is the mixture of N univariate Gaussian
distributions with respective probability πi(φ), means 0, and
variances σ2

φ, for 1 ≤ φ ≤ N :

pθ(y) =

N∑
φ=1

πi(φ)N(y; 0, σ2
φ),

where N(y; 0, σ2
φ) is the Gaussian distribution with mean 0

and variance σ2
φ. In this Gaussian Mixture Model, the param-

eters θ are the mixture probabilities {πi(φ)}, 1 ≤ φ ≤ N . We
try to derive the parameters θ to maximize the log likelihood
function, subjecting to the constraint that the sum of the
mixture probabilities is equal to 1. We formulate this log
likelihood maximization problem as MAX-ML:

Maximize lid(θ)

Subject to:
N∑
φ=1

πi(φ) = 1, (7)

where the log likelihood function is defined as:

lid(θ) ,
T∑
j=1

log pθ(yj) =

T∑
j=1

log

N∑
φ=1

πi(φ)N(yj ; 0, σ2
φ).

Since the quantities yj and σ2
φ have been given, N(yj ; 0, σ2

φ)
is a constant value, such that MAX-ML is a concave maximiza-
tion problem. We can derive the optimal results, denoted as
π∗i (φ), by applying the classical optimization technique [3].

We describe the detailed steps of the quality estimation
scheme in Algorithm 1. The input of the algorithm is the
historical sensing data X over T tasks from M mobile users,
and the output of the algorithm is the data quality distribution
of each mobile user. We first estimate the ground truth µ∗j of
each task j using the EM algorithm with the input of data
x∗,j from the M mobile users, and then derive the quality
distribution {π∗i (φ)} for each mobile user i by solving a
concave maximization problem over the data xi,∗ of T tasks.
In the EM algorithm, we set the initial ground truth of the
jth task to be the average of all the data for the jth task, and
the average quality distribution to be a uniform distribution
(Lines 3 to 6). After the initialization stage, we iteratively
execute the E-step (Lines 9 to 10) and the M-step (Lines 12
to 15) until the converge condition holds. To derive the data
quality distribution {π∗i (φ)} for the mobile user i, we calculate
the noise vector yi,∗ for her collected data based on the
estimated ground truths for the tasks, and then solve the MAX-
ML problem using the optimization technique (Lines 20 to 22).



Algorithm 1: EM-based Quality Estimation Algorithm
Input: Historical data set X; A set of variances {σ2

φ}
Output: Data quality distribution {π∗i (φ)} of each user i ∈ V.

1 // Estimate the ground truth
2 for j = 1 to T do
3 µj =

∑M
i=1 xij
M

;
4 for φ = 1 to N do
5 π̄(φ) = 1

N
;

6 k ← 0; θ(k) ← ({π̄(φ)}, µj);
7 while not converged do
8 // E-step:
9 Calculate π̄θ(k)(φ|xij) using Equation (5);

10 Q(θ|θ(k))← −M
2

log(2π) +∑M
i=1

∑N
φ=1

[
log π̄(φ)− log σφ − (xij−µj)2

2σ2
φ

]
π̄θ(k)(φ|xij);

11 // M-step:

12 µ
(k+1)
j ←

∑M
i=1 xij

∑N
φ=1

π̄
θ(k) (φ|xij)

σ2
φ∑M

i=1

∑N
φ=1

π̄
θ(k) (φ|xij)

σ2
φ

;

13 for φ = 1 to N do
14 π̄(k+1)(φ)← 1

M

∑M
i=1 π̄θ(k)(φ|xij);

15 θ(k+1) ← ({π̄k+1(φ)}, µk+1
j );

16 k ← k + 1;

17 µ∗j ← µkj ;
18 // Estimate the data quality distribution
19 for i = 1 to M do
20 for j = 1 to T do
21 yij ← xij − µ∗j ;

22 {π∗i (φ)} ← Solving the MAX-ML problem in (7);
23 return {π∗i (φ)} for each user i ∈ V;

We can use the obtained data quality distribution to deter-
mine the data quality level of each historical sensing data,
which will be regarded as the training data set in the context-
quality classifier. Here, we follow the idea of maximum a pos-
teriori estimation: selecting the parameter φij that maximizes
the posterior distribution to be the quality level of the data
xij .

φij = arg max
φ

π∗i (φ)N(yij ; 0, σ2
φ), ∀1 ≤ i ≤M, 1 ≤ j ≤ T.

B. Context Recognition
We now discuss the context recognition, which is to collect

hardware information and activity information. The hardware
information, such as the accuracy of accelerometer and the
resolution of camera, can be read directly from the devices.
Thus, the remaining challenge lies in how to assess the user
activity during data acquisition process.

Mobile phones are embedded with a bundle of powerful
sensors, such as accelerometers, microphones, GPS, and etc.
We can exploit the data collected from these sensors to
recognize diverse activities in different environments. The
activity recognition through analyzing the sensing data have
been widely studied in the ubiquitous computing literature [2],
[17], [21]. For example, Kwapisz et al. implemented a system
that uses accelerometers to perform activity recognition [17].
Mun et al. designed a hybrid approach utilizing both Wi-Fi
and GSM signals to infer the mobility patterns of users [21].
For specific mobile crowdsensing application, we can adopt

selected approaches to conduct the activity recognition. Comb-
ing with the obtained hardware information, we can construct
the complete context vector.

C. Context-Quality Classifier

We rely on the previous two components: data quality
estimation and context recognition, to train context-quality
classifier. The historical sensing data consists of primary data
(the data used to answer the queries of clients) and secondary
data (the data used to obtain context information). For each
piece of historical data, we derive data quality from the
primary data by applying the data quality estimation scheme,
and extract context vector from the secondary data using the
activity recognition technique. Taking these context and data
quality level pairs as the training set, the service provider con-
struct a context-quality classifier using the classical supervised
learning algorithm. We intend to train a multi-class classifier
through the binary classification algorithm, such as support
vector machine (SVM) [6]. We adopt a classical method that
train a binary classifier between each data quality level and
the rest. Once we build the context-quality classifier, we can
determine the data quality for the collected data only through
the contextual information, even without knowing the ground
truth of the sensing task, in a real-time manner.

V. ADAPTIVE USER SELECTION

In this section, we apply the context-quality classifier to
guide the process of user recruitment. We first extend the
classical Gaussian Process to model sensing data in the sce-
narios of diverse data quality levels, and define the specific
utility function based on the concept of mutual information.
Taking advantage of the adaptive submodularity property of
the utility function, we design a random adaptive user selection
algorithm, achieving a constant approximation ratio.

A. Quality-related Gaussian Process

We introduce the classical Gaussian Process (GP) model
for sensing data, and extend it to involve the consideration of
data quality. In GP model, every point is associated with a
random variable, following a univariate Gaussian distribution.
The joint distribution over a set of random variables is a
multivariate normal distribution. The parameters of GP model
are a mean vector µ and a covariance matrix Σ, which is a
symmetric positive-definite matrix. In mobile crowdsensing,
we can use the Gaussian Process to model the sensing data
collected at POIs. Specifically, we associate each PoI l ∈ L
with a random variable Xl, which follows a one-dimension
Gaussian distribution with mean µl and variance Σl,l. For
each PoIs pair l1, l2 ∈ L, their covariance is Σl1,l2 . The GP
model is extremely powerful to represent sensing data [14].
If we observe sensing data on a set of PoIs, we can predict
the data at unobserved PoIs, and provide the variance of
such prediction. The classical GP model either does not
consider the noises of the observed data, or simply assume
that all the data noises are sampled from the same distribution.
However, as we have discussed, different context environments
may result in different data quality levels, implying that the
observed data may have different levels of noises. Thus, the
classical GP model fails to describe the diverse data quality
in crowdsensing.



Suppose the set of PoIs selected to observe data is A ⊆ L
and the rest unobserved PoIs are B = L\A.1 We have the
following expressions for the means and variances:

µ =

[
µA
µB

]
Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
In order to make GP model accordant with our data quality
model, we introduce a noise matrix Γ, where the diagonal
entries represent the variances of the noise distributions at the
corresponding PoIs and the others are zeros. In this case, we
can capture the scenario that the data collected at different
PoIs have different noise levels. We note that the vector of the
diagonal entries from the matrix Γ is actually a realization Φ
of data quality levels from mobile users. Given the observa-
tions xA at the selected PoIs A, we can predict the values
at the unobserved PoIs B, i.e., the probability distribution
P (XB |xA), which is a conditional Gaussian distribution with
mean µB|A and variance ΣB|A:{

µB|A = µB + ΣBA(ΣAA + ΓAA)−1(xA − µA)

ΣB|A = ΣBB −ΣBA(ΣAA + ΓAA)−1ΣAB
(8)

With the quality-related Gaussian Process model, now we
can quantitatively measure the utility of the selected PoIs,
and then define the detailed format of the utility function.
Intuitively, the service provider always wants to select a set of
PoIs A that most significantly reduces the uncertainty about
the prediction on the rest of PoIs B [14]. A nature notion of
uncertainty is entropy. Thus, for a set of selected PoIs A and a
data quality level realization Φ, we define the utility function
as the reduction of the entropy of the unselected PoIs B before
and after observing the random variables XA:

F (A,Φ) , H(XB)−H(XB |XA). (9)

We note that this reduction is also known as the mutual
information between the selected PoIs A and the rest of the
PoIs B [7]. According to the definition of entropy, we can
calculate the entropy of the Gaussian random variable XB
and the entropy of the random variable XB condition on the
set of variables XA:

H(XB) =
1

2
ln
[
(2πe)|B| |ΣBB |

]
H(XB |XA) =

1

2
ln
[
(2πe)|B||ΣB|A|

]
We integrate the above two equalities into Equation (9) to
derive the specific format of the utility function. It is worth
noting that the utility function depends on both the selected
PoIs A and the realization Φ. The realization Φ determines
the noise matrix Γ in calculating H(XB |XA).

B. Design Details
The challenges of designing efficient algorithms for stochas-

tic submodular maximization problem lies in the unknown
data quality levels of mobile users during the optimization.
One trivial solution is to enumerate the possible realization of
the data quality levels, and run the simple greedy algorithm,
which guarantees the constant approximation ratio in non-
stochastic submodular maximization setting [14], for each
realization. There are N possible quality levels for each
mobile user. To compute the expectation of the utility over
the user subset of size K, we have to take average of O(NM )

1As we have assumed there is exact one mobile user at one PoI, selecting
PoIs is equal to selecting the corresponding mobile users at the PoIs.

Algorithm 2: Random Adaptive Greedy User Selection
Input: A set of mobile users V; a context-quality

classifier Q, data quality distribution {πi(φ)} for
each user i ∈ V, cardinality constraint K.

Output: A set of selected mobile user V .
1 V ← ∅, ψ ← ∅;
2 for i = 1 to K do
3 Vi(ψ)← ∅;
4 Compute ∆(v|ψ) for all v ∈ V\V;
5 for k = 1 to K do
6 Vi(ψ)← Vi(ψ)

⋃
arg max

v∈(D∪V)\(V∪Vi(ψ))

{∆(v|ψ)};

7 Select vi randomly from Vi(ψ);
8 V ← V ∪ {vi};
9 Assign selected user to conduct the sensing task and

obtain her context vector ci and sensing data xi;
10 φi ← Q(ci);
11 ψ ← ψ ∪ {(vi, φi)};
12 Remove all dummy users from V;
13 return V;

instances of possible realizations. Thus, such solution leads to
an exponential time complexity.

We turn to an adaptive selection policy. The service provider
selects only one mobile user according to a certain criterion
in each round. After that, the service provider assigns her a
sensing task, receives her sensing data, and determines her data
quality level. Based on the collected data and the realized data
quality level, the service provider then updates the GP model
according to Equations (8). The service provider iteratively
executes these steps until selecting K qualified mobile users.
With such adaptive selection policy, we can reduce the time
complexity to a polynomial order O(KM).

In order to design a good selection criterion, we take
advantage of the adaptive submodularity of the utility function.

Lemma 1. The utility function F (·, ·) defined in Equation (9)
is adaptive submodular.

Due to the limitation of space, we leave the detailed proof
into our technical report [1].

We observe that F (L,Φ) = F (∅,Φ) = 0, thus the
utility function is not adaptive monotone. When running the
traditional adaptive greedy policy for the monotone objective
function: selecting the user with the highest marginal utility
∆(v|ψ) in each round, the non-monotonicity would lead to
the traps of low utility. We slightly modify the traditional
adaptive greedy policy by introducing a random procedure,
to deal with such traps. In order to avoid selecting the user
with a negative marginal value, we introduce 2K−1 additional
dummy users, denoted by D, to the ground set. The expectation
of marginal utility for each dummy user d ∈ D is always 0, i.e.,
∆(d|ψ) = 0. It is obvious that the dummy users do not affect
the optimal policy, and can be removed from the solution of
any selection policy, without affecting its expected utility.

We present the detailed steps of the random adaptive greedy
user selection policy in Algorithm 2. We select K candidate
mobile users in an adaptive manner. In each iteration, given
the current partial realization, we first calculate the expected
marginal utility for each available users (Line 4). Then, we
select K candidate users with the maximum expected marginal
utility, and randomly choose one of them as the selected user
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Figure 3: Comparision between different gaussian process models.

in this iteration (Lines 5 to 8). When the selected user finishes
the sensing task, we can obtain her contextual information and
the sensing data. Taking the contextual information as input,
the context-quality classifier outputs the data quality level of
the user, which is used to update the partial realization. After
selecting K mobile users, we remove all the dummy users,
and return the ultimate set as the result.

We now show that the random adaptive greedy algorithm
achieves a constant approximation ratio of 1/e.

Theorem 1. For the adaptive submodular utility function
F (·, ·), the user set V returned by the random adaptive greedy
algorithm attains at least 1/e of the optimal value, that is:

E [F (V,Φ)] ≥ 1

e
max
|V∗|≤K

E [F (V∗,Φ)] . (10)

Due to the limitation of space, we supply the complete proof
in our technical report [1].

VI. EVALUATION RESULTS

In this section, we report the evaluation results on adaptive
user selection process. We base on a real-world temperature
data set to perform a sequence of simulations to emulate the
behavior of mobile phone users and user selection process. 54
sensor nodes were deployed in a lab and kept collecting tem-
perature information for several days. We select the samples
between 1 am and 2 am to train a primal covariance matrix,
which is used to compute the mutual information. Since the
sensor readings have much smaller noises than user data, we
regard the sensor readings as the ground truth here.

Then, we assume that there are 200 users willing to partici-
pate in this project. We generate a random quality distribution
vector for each user, where there are 5 predefined qualities.
They respectively map to the gaussian noise with variance 0.1,
0.5, 1, 2, and 5. User locations are randomly selected from the
54 sensor locations deployed in the lab.

In our first experiment, we construct four gaussian process
models using data from (a)sensor readings from all of the
54 locations, (b)”noisy” readings from 20 users selected by
non-adaptive simple greedy algorithm only based on their
locations, (c)”noisy” readings from 20 users selected by our

Table I: Relative Deviation Comparision

GP model Relative Deviation

Complete Data Set 0.0133
Random Adaptive Greedy Algorithm 0.0414

Non-adaptive Greedy Algorithm 0.0592
Random Algorithm 0.0876

random adaptive greedy algorithm, and (d)”noisy” readings
from 20 randomly selected users. The ”noisy” reading of user
is generated as follows: After determining the quality of the
selected user, we sample a gaussian noise randomly from the
corresponding normal distribution. Add the generated gaussian
noise to the sensor reading, we then get the ”noisy” user data.
The recovering results of these four gaussian process models
are presented in Figure 3. The predicted mean values are
shown in (a), (b), (c), and (d), while the prediction variances
are shown in (e), (f), (g), and (h). Besides, the relative
deviations of these four recovered models are presented in
Table I, which is defined as: Relative Deviation = ||ŷ−y||2

||y||2
where y denotes ground truth at those 54 locations, and ŷ
denotes the vector of predicted values.

As we can see, the GP model recovered from all of the
54 sensor readings are the best, with the lowest variance and
relative deviation. The GP model recovered by our random
adaptive greedy algorithm, although has relatively higher
variance than complete model, shows better performance than
the model recovered by random algorithm and non-adaptive
greedy algorithm in both prediction variance and prediction
accuracy. The non-adaptive greedy algorithm only considers
the impact of locations, but not the impact of data quality. So
it only outperforms the random algorithm, but is inferior to
our random adaptive greedy algorithm.

In our second experiment, we compare the mutual infor-
mation of the sets returned by our random adaptive greedy
algorithm, random algorithm, non-adaptive greedy algorithm
and the simple adaptive greedy algorithm. Each point in
Figure 4 is the average of 10 runs of the algorithms. As
shown in Figure 4, when the cardinality constraint is small,
i.e., less than 30, the simple adaptive greedy algorithm and
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Figure 4: Mutual information of different algorithms.

the random adaptive greedy algorithm obtain similar mutual
information. However, due to the non-monotonicity of mutual
information, when the cardinality constraint gets approach to
50, the mutual information of sets returned by other three
algorithm all decreases. Since we add enough dummy users
and provide a random step in our random adaptive greedy
algorithm, the mutual information gain will not decrease even
when the cardinality constraint increases to 50. Moreover,
since the non-adaptive greedy algorithm only considers the
influence of location, mutual information of selected users is
always lower than sets returned by simple adaptive greedy
algorithm and random adaptive greedy algorithm. Here we can
see the superiority of our random adaptive greedy algorithm.

VII. RELATED WORK

In this section, we briefly review the related works.
Data Quality in crowdsensing. In recent years, many re-

searchers have paid their attention to the data quality problem
in crowdsensing. However, they either ignored how to estimate
the data quality and used it directly [15], [16], [26], [28], or
only focused on estimating the data quality without further
usage [24]. To the best of our knowledge, our work is the first
to estimate the data quality and use it to guide user selection.
Different from the labeling task in crowesourcing [30], sensor
data in crosdsensing is always continuous. It is not suitable to
describe its quality with confusion matrix model. We exploit
the gaussian process model and use variance of gaussian noise
to describe the quality of sensing data.

Submodular maximization is a well-studied mathematical
problem. Nemhauser et.al. [22] firstly proved the approx-
imation ratio of greedy algorithm in the maximization of
monotone submodular functions. Then, in 2010, Golovin and
Krause [13] proposed the concept of adaptive submodularity
and proved the approximation ratio of simple adaptive greedy
algorithm. There are some recent works on the maximization
of non-monotone submodular function [4], [12].

VIII. CONCLUSION

In this paper, we have studied real-time data quality esti-
mation in mobile crowdesing. We have investigated the rela-
tion between sensing context and data quality, and proposed
the context-aware data quality estimation scheme. We have
integrated the data quality estimation scheme to guide user
recruitment. We have modeled the user recruitment process as
an adaptive non-monotone submodular maximization problem,
and designed a random adaptive greedy algorithm to achieve
a constant approximation ratio. Through simulation on a real-
world temperature data set, we have shown the excellent

performance of our algorithm when recovering the GP model
in the whole target area with finite observed locations.
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