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Abstract
Automated bidding, an emerging intelligent deci-
sion making paradigm powered by machine learn-
ing, has become popular in online advertising. Ad-
vertisers in automated bidding evaluate the cumu-
lative utilities and have private financial constraints
over multiple ad auctions in a long-term period.
Based on these distinct features, we consider a new
ad auction model for automated bidding: the values
of advertisers are public while the financial con-
straints, such as budget and return on investment
(ROI) rate, are private types. We derive the truthful-
ness conditions with respect to private constraints
for this multi-dimensional setting, and demonstrate
any feasible allocation rule could be equivalently
reduced to a series of non-decreasing functions on
budget. However, the resulted allocation mapped
from these non-decreasing functions generally fol-
lows an irregular shape, making it difficult to obtain
a closed-form expression for the auction objective.
To overcome this design difficulty, we propose a
family of truthful automated bidding auction with
personalized rank scores, similar to the Generalized
Second-Price (GSP) auction. The intuition behind
our design is to leverage personalized rank scores
as the criteria to allocate items, and compute a crit-
ical ROI to transform the constraints on budget to
the same dimension as ROI. The experimental re-
sults demonstrate that the proposed auction mecha-
nism outperforms the widely used ad auctions, such
as first-price auction and second-price auction, in
various automated bidding environments.

1 Introduction
With the success of machine learning in online advertising
[Zhang et al., 2014; Gharibshah and Zhu, 2021], advertisers
turned to adopting automated bidding (auto-bidding) tools in-
stead of bidding manually, bringing significant changes to the
interaction between advertisers and online platforms [Google
Ads, 2021; Facebook Ads, 2021]. In auto-bidding services,
advertisers submit their high-level optimization objectives

∗Zhenzhen Zheng is the corresponding author.

and constraints to the platform, and then the bidding agents,
powered by machine learning algorithms, make detailed bid-
ding decisions in each of ad auctions on behalf of the adver-
tisers. With the help of automated bidding tools, advertisers
can optimize their overall advertising objectives with respect
to their financial constraints in a high-level way.

Under automated bidding, we revisit a fundamental prob-
lem in auction theory: whether the conventional auction
model, where advertisers have private values for items (i.e.,
ad impressions) and conduct corresponding strategic bidding
for each single auction, is still appropriate for the new adver-
tising paradigm. As the platform can access historical data
about the interactions between advertisers and users, we can
estimate the potential actions of users (such as clicks and con-
versions), which can be regarded as public values of items for
advertisers. In auto-bidding, the private information from ad-
vertisers are actually their constraints for the whole advertis-
ing campaign. These features require a new ad auction model
to incentivize advertisers to truthfully reveal the high-level
private constraints given the values of items are public.

In this work, we consider a new automated bidding auction
model, where advertisers submit budget as well as return on
investment (ROI) requirement as their (private) constraints,
and aim to maximize the cumulative values of winning im-
pressions from multiple auctions during a certain period. We
analyse the truthfulness conditions with respect to the private
constraints of budget and ROI. Remarkably, we show that
any truthful auction mechanism for this multi-dimensional
setting could be equivalently represented by a series of non-
decreasing functions with budget as input. When these non-
decreasing functions are realized to derive the correspond-
ing auction mechanism, the truthful conditions of budget and
ROI introduce a new value grouping phenomenon: different
budget-ROI types are grouped to share the same cumulative
value, and the grouping pattern is determined by a threshold
ROI function (transformed from the above non-decreasing
function). As the threshold ROI functions are not constrained
in monotonicity, the grouping shape of budget-ROI types is
generally irregular, making it difficult to obtain the closed-
form expression of grouping types and then the auction opti-
mization objectives, such as revenue and social welfare.

Facing these design difficulties, we propose a family of ad
auctions with personalized rank scores to optimize various
design objectives. Our auction adopts rank scores as the cri-
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teria to determine item allocations, which shares the similar
ideas with Generalized Second-Price (GSP) auction [Edel-
man et al., 2007]. In guaranteeing truthfulness for the pri-
vate constraints, we design critical ROI to be the largest ROI
that can win the most items without breaking the budget con-
straint. It equivalently transforms budget to the same dimen-
sion as ROI, thus allowing us to find a tight constraint limits
the bidder from getting extra utilities and utilize this tight con-
straint to prevent misreporting. We conduct extensive exper-
iments to evaluate the performances of the proposed auction
mechanism under various auto-bidding settings. The evalu-
ation results demonstrate that the designed truthful auction
can generally achieve more than 90% performance (in terms
of revenue and social welfare) of the optimal baselines with-
out the consideration of truthfulness. The main contributions
can be summarized as follows:
• We consider the unique features within the interaction be-
tween advertisers and online platforms in the context of au-
tomated bidding. Based on these features, we formulate a
new auto-bidding auction model, where value-maximizing
bidders have high-level constraints as private information and
the values of items are public.
• We investigate truthfulness conditions of two-dimensional
private constraints, budget and ROI, under public value set-
ting. We provide full characterizations for the feasible space
of allocation and payment for truthful auctions.
• Based on the derived truthfulness conditions, we design a
family of truthful ad auction mechanisms for automated bid-
ding. With the newly designed rank score functions, the pro-
posed ad auction is simple and flexible to be adapted into var-
ious auto-bidding settings with different optimization goals
such as revenue and social welfare.
• We evaluate our proposed auction mechanisms with vari-
ous experimental settings, and the empirical results validate
the effectiveness of the proposed auctions regarding its per-
formances in terms of social welfare and revenue.

2 Preliminaries
In this section, we first motivate the considered auction de-
sign problem by the online advertising system with auto-
mated bidding services, and afterwards propose the formal
auction model based on the features of automated bidding.

2.1 Online Advertising System
The working process of the online advertising auction system
is illustrated in Figure 1. From an advertiser’s perspective, it
can be described as follows:

1) The advertiser sets the bidding configuration in auto-
bidding interface: chooses optimization objectives (e.g., max-
imizing clicks or conversions) and sets cost constraints (e.g.,
budget per day, targeted return on investment (ROI) and max-
imum cost per click). The advertiser requires her realized
ROI, defined as the ratio of her gained value and payment, to
be higher than her targeted ROI.

2) Based on the advertiser’s configuration, an auto-bidding
agent represents the advertisers to make bid decisions in mul-
tiple auctions. When each user impression comes, the auto-
bidding agents attend an ad auction to compete for the ad dis-
play opportunities.
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Figure 1: Ad Auction System Overview

3) The auto-bidding agent adopts data-driven algorithms to
predict the value (click through rate or conversion rate) of the
incoming user impression, and bid for each impression while
taking the cost constraints into consideration.

4) During the multiple auctions, the advertiser can check
the cumulative auction outcomes, including spent budget, re-
ceived impressions, clicks, conversions and the average costs.
The advertisers can further adjust their auto-bidding settings
in the interface to achieve their own advertising objectives.

From the above interaction between advertisers and the
platform/auctioneer, we summarize three new features about
the online advertising with auto-bidding services. First, ad-
vertisers only report high-level optimization objectives and
constraints in the bidding configurations for multiple auc-
tions, but not the fine-grained bid for each auction. Second,
advertisers only evaluate cumulative long-term performances
and costs of multiple auctions, instead of the outcome of each
individual auction. Third, since the online platform can ac-
cess all the data produced in advertising, it is reasonable to
claim the monetary value of an incoming impression to a spe-
cific advertiser can be calculated exactly. As the behavior pat-
terns of advertisers and the online platform change distinctly
in automated bidding, we need to investigate the mechanism
design whose formats align with these new features.

2.2 Auction Model
Based on the motivations of the above online advertising sys-
tem with auto-bidding, we propose the formal auction model
considered in this work. There are n advertisers competing
for m items (user impressions) coming in sequence during a
time period with m time slots, where only one item would ap-
pear in each time slot.1 The advertisers are value-maximizing
bidders [Fadaei and Bichler, 2016; Balseiro et al., 2022;
Mehta, 2022], who care about the cumulative value of her

1We would use advertisers with bidders, and items with impres-
sions interchangeably throughout the work.
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allocated impressions across all the time slots when the pay-
ment is within their financial constraints. Each advertiser i
has budget (Bi ≥ 0) and ROI (Ri > 0) constraints, which are
private information and are also called as type ti = (Bi, Ri)
in mechanism design literature. We denote the type profile of
all the advertisers as t = (ti)

n
i=1 and the space of the type

profile as T =
∏n

i=1 Ti with t ∈ T and Ti = Bi × Ri. We
denote the reported type of the other bidders except bidder
i as t−i = (t1, . . . , ti−1, ti+1, . . . , tn) and T−i =

∏n
k ̸=i Tk.

We assume advertisers’ valuations on items are public infor-
mation to the platform. We use vi,j > 0 to represent the
advertiser i’s valuation on item j.

After collecting the budget and ROI of all the bidders, the
online platform employs some auction mechanism (A,P) to
decide ad allocations and payments, where A denote a (ran-
domized) allocation rule A : T → [0, 1]n×m and P denote a
(randomized) payment rule P : T → Rn. Specifically, for a
reported type profile t′ ∈ T , the probability of bidder i being
allocated item j is denoted by ai,j(t

′) and the expected pay-
ment of bidder i is denoted by pi(t

′). For any item j ∈ [m],
the allocation constraint is

∑n
i=1 ai,j(t

′) ≤ 1. Bidder i’s cu-
mulative value in these auctions is

vi(t
′) =

m∑
j=1

vi,jai,j(t
′),

and her realized ROI is ROIi(t
′) := vi(t

′)/pi(t
′) (consid-

ered as +∞ if pi(t′) = 0).
The utility for a bidder with budget and ROI constraints

and true type ti when reporting t′i is defined as

ui (ti, t
′) =

{
vi(t

′), if pi(t′) ≤ Bi and ROIi(t
′) ≥ Ri,

−∞, otherwise,
where the type profile t′ = (t′i, t

′
−i).

In this work, we focus on designing truthful auction mech-
anisms satisfying incentive compatible (IC) and individual
rationality (IR) conditions for budget and ROI, which is a
two-dimensional mechanism design problem. Various multi-
dimensional mechanism design problems are shown to be dif-
ficult in both analytical and computational aspects [Pavlov,
2011; Chen et al., 2014; Daskalakis, 2015]. In particular, we
consider dominant-strategy incentive compatible (DSIC) and
individual rationality (IR) direct-revelation mechanisms.
Definition 2.1. An auction mechanism is dominant strategy
incentive compatible (DSIC) if ∀i ∈ [n], ti, t′i ∈ Ti, t−i ∈
T−i: ui(ti, (ti, t−i)) ≥ ui(ti, (t

′
i, t−i)).

Definition 2.2. An auction mechanism is individual rational-
ity (IR) if ∀t ∈ T , i ∈ [n]: pi(t) ≤ Bi and ROIi(t) ≥ Ri.

The online platform typically has some objectives to max-
imize. Two common design objectives are revenue and so-
cial welfare. Revenue is defined as the sum of payment from
bidders, i.e.,

∑
i pi(t). For social welfare, we need a synony-

mous metric, liquid welfare, defined as the maximum revenue
that can be extracted from bidders without breaking IR con-
straints, to incorporate the existence of financial constraints
[Azar et al., 2017; Aggarwal et al., 2019]. In our context,
liquid welfare can be defined as

LW =
∑

i∈[n],ui(ti,t′)≥0

min

(
vi(t

′)

Ri
, Bi

)
. (Eq.1)

3 Characterization of Truthfulness
3.1 Conditions for Truthfulness
In this section, we investigate the truthfulness conditions for
this multi-dimensional mechanism design problem. Due to
the limitation of space, we present the detailed proofs of our
results in the full version of this paper [Xing et al., 2023].

To provide an intuition about the differences between auc-
tion models with private constraint and private valuation, we
start from the analysis of one private constraint. To satisfy the
IC property on budget, we need to guarantee the bidders for
not obtaining a higher utility by reporting a smaller or larger
budget. As reporting a smaller budget will not lead a bidder to
break her original budget constraint, the gained utility should
decrease for reducing the budget. For the bidder misreport-
ing a larger budget and obtaining higher values, we need to
charge the bidder to break her original budget constraint, re-
sulting in negative infinite utility to prevent misreporting.
Theorem 3.1. An auction mechanism is DSIC on budget B
only if ∀i ∈ [n], R ∈ Ri, t−i ∈ T−i:
(1) vi ((B,R), t−i) is non-decreasing in B;
(2) If vi ((B′, R), t−i) > vi ((B,R), t−i) for B′ > B, then

pi ((B
′, R), t−i) > B.

We can form a similar statement for ROI by showing that
there is no incentive for a bidder to misreport her ROI.
Theorem 3.2. An auction mechanism is DSIC on ROI R only
if ∀i ∈ [n], B ∈ Bi, t−i ∈ T−i:
(1) vi ((B,R), t−i) is non-increasing in R;
(2) If vi ((B,R′), t−i) > vi ((B,R), t−i) for R′ < R, then

ROIi ((B,R′), t−i) < R.

Although the monotone properties required by conditions (1)
in Theorem 3.1 and 3.2 seem similar to the truthfulness condi-
tions for quasi-linear bidder with private valuations, e.g., My-
erson’s Lemma [Myerson, 1981], conditions (2) reveal their
basic differences: assigning a payment to break at least one
constraint (lead to negative infinite utility) is indispensable to
prevent misreporting for private constraints.

Theorem 3.1 and 3.2 naturally provide necessary condi-
tions on the DSIC of two-dimensional type (B,R). The fol-
lowing result shows that these conditions also provide the suf-
ficient conditions. That is, if a bidder cannot obtain higher
utility through misreporting one of her constraints, misreport-
ing the two constraints can also not obtain higher utility.
Theorem 3.3. An auction mechanism is DSIC on both budget
and ROI if and only if it satisfies Theorem 3.1 and 3.2.

Theorem 3.3 is proved through showing none of the mis-
reporting may bring the bidder higher utility when conditions
in Theorem 3.1 and 3.2 hold, which relies on the mathemat-
ical relationship between payment and ROI. In Theorem 3.3,
the truthful conditions in Theorem 3.1 for budget appear to be
independent with the truthful conditions in Theorem 3.2 for
ROI. Nevertheless, the payment term actually appear in both
the conditions (recall ROI = v/p), i.e., we have to use the
same payment scheme to satisfy these two sets of conditions.
In order to step toward the full characterization of truthful-
ness, we need to further analyse how payment is influenced
and constrained by financial constraints and allocation.
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To facilitate our discussion, we define an allocation rule A
to be feasible if there exists a payment rule P such that the
mechanism (A,P) is truthful. The set of feasible allocation
rule is the space we can search for truthful auctions. Although
there may exist multiple payment rules that constitute a truth-
ful auction for a feasible allocation rule A, the following the-
orem allows us to focus on the maximum payment rule.
Theorem 3.4. For a feasible allocation rule A, assigning

pi ((Bi, Ri), t−i) = min

(
vi ((Bi, Ri), t−i)

Ri
, Bi

)
, (Eq.2)

for ∀i ∈ [n], (Bi, Ri) ∈ Ti, t−i ∈ T−i constitutes a truthful
auction mechanism.

Theorem 3.4 naturally holds because each type is charged
the maximum payment under her financial constraints. If
some other payment could constitute a truthful auction with
A, then improving the payment to this maximum amount
would not break the originally held conditions (2) in Theo-
rem 3.1 and Theorem 3.2. By Theorem 3.4, given any feasi-
ble allocation ruleA, we could find a corresponding payment
rule to constitute a truthful auction. As the bidders do not
evaluate detailed allocation results of each individual auction,
searching for the truthful allocation rule is equal to designing
cumulative value functions vi((Bi, Ri), t−i) that can be real-
ized. Thus, we could use the corresponding cumulative value
function to represent a feasible allocation rule.

Our next step is to further shrink the consideration space
of comparison in conditions of truthfulness. Previous
conditions in Theorem 3.3 include comparisons between
any two type sharing the same budget or ROI, e.g., com-
paring any (B,R) and (B′, R) in Theorem 3.1, which is
still a large consideration space and leads to difficulties in
finding the cumulative value functions. To enable analysis
between “neighbouring” types, for any allocation rule A
and its cumulative value function v(t), we assume the limits
limB→B−

i
vi ((B,Ri), t−i) and limR→R+

i
vi ((Bi, R), t−i)

exist for any t ∈ T , i ∈ [n]. Through considering these
infinitely close types and substituting the payment terms in
Theorem 3.3 by the payment rule (Eq.2), conditions that con-
strain the payment or realized ROI of misreporting another
type to break the original constraints could be converted to
conditions regarding cumulative value of the type itself.
Theorem 3.5. An allocation ruleA can derive a truthful auc-
tion if and only if ∀t ∈ T , i ∈ [n]:
(1) The cumulative value vi ((B,R), t−i) is non-decreasing
in B for R = Ri and non-increasing in R for B = Bi;
(2) If vi ((Bi, Ri), t−i) > limB→B−

i
vi ((B,Ri), t−i), then

vi ((Bi, Ri), t−i) ≥ Bi ×Ri;

(3) If vi ((Bi, Ri), t−i) > limR→R+
i
vi ((Bi, R), t−i), then

vi ((Bi, Ri), t−i) ≤ Bi ×Ri.

3.2 Structures of Feasible Allocation Rule
Theorem 3.5 fully characterizes the conditions of a feasible
allocation rule. In this subsection, we would further exploit
the structures of feasible allocation rule indicated by Theorem
3.5 to provide more instructions on truthful auction design.
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Figure 2: An example of mapping from a threshold ROI function to
cumulative values fixing the others’ types t−i.

By Theorem 3.5, the relation between cumulative value v
and the term B × R strictly characterizes whether this type
shares the same cumulative value with its neighbouring types,
which allows us to further clearly represent the structure of
v. Fixing the budget, with the decrease of ROI, the cumula-
tive value assigned to the type should be increasing, notice
the term B × R decreases along with R; however, condi-
tion (3) in Theorem 3.5 requires that if the cumulative value
strictly increases in this process, then its value should not ex-
ceed B×R. Thus, there must exist some threshold ROI, such
that the increasing cumulative value intersects with the de-
creasing B ×R, and the cumulative value could not increase
anymore. Based on the above observation, we define

thri(B, t−i) = sup
R∈Ri

(vi ((B,R), t−i) ≥ B ×R)

if the considered set is non-empty and bounded, or otherwise
be 0. It turns out that the cumulative value assigned to this
threshold ROI is exactly B ×R.
Theorem 3.6. ∀i ∈ [n], t−i ∈ T−i, Bi ∈ Bi, Ri ≤
thri(Bi, t−i):

vi ((Bi, Ri), t−i) = thri(Bi, t−i)Bi.

We could then combine different budgets together to ob-
tain the complete characterization of feasible allocation in the
two-dimensional type space. Since all types above the thresh-
old ROI has cumulative value v < B×R by the definition of
thr function, they could not satisfy the condition (2) in The-
orem 3.5, and thus are forced to have the same cumulative
value with their neighbouring types with a smaller budget.
Theorem 3.7. ∀i ∈ [n], t−i ∈ T−i, Bi ∈ Bi\{0}, Ri >
thri(Bi, t−i):

vi((Bi, Ri), t−i) = lim
B→B−

i

vi ((B,Ri), t−i) .

Since the types below (Theorem 3.6) and above (Theo-
rem 3.7) the ROI threshold have both been fully described,
the cumulative values on the entire type space could be fully
defined if thri(Bi, t−i) is given and t−i is fixed. We provide
an example in Figure 2 to illustrate these characterizations.
For types below the threshold ROI curve and have the same
budget B (i.e., types lie in the same vertical line), they share

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2918



the same cumulative value thri(B)×B. For each type above
the curve, its cumulative value is equal to that of its neigh-
bouring type with a smaller budget until it reaches some type
on the threshold ROI curve. This is equivalent to search hor-
izontally to the left to find the closest type on its correspond-
ing ROI threshold, where all the types along this horizontal
search share the same cumulative value.

We have shown that each feasible two-dimensional cumu-
lative value function (whose input is (B,R)) for a single
bidder could be represented by a one-dimensional threshold
ROI function (whose input is B) when other bidders’ pro-
file is fixed, but it is unknown what kinds of one-dimensional
threshold ROI functions could represent a feasible cumulative
value function. By condition (1) in Theorem 3.5, the cumula-
tive value when R is infinitely close to 0 should be increasing
for different B, which indicates thri(B, t−i) × B needs to
be non-decreasing in B. Since every cumulative value func-
tion mapped from a non-decreasing thri(B, t−i) × B satis-
fies Theorem 3.5, this becomes the only requirement for a
feasible thri function. For convenience in notations, we de-
note gi(Bi, t−i) = thri(Bi, t−i) × Bi. We denote V as the
space of feasible cumulative value function when i and t−i

are fixed, i.e., vi : Ti → R+, and denote G as the space of
non-decreasing function g : R+ → R+ with g(0) = 0.

Corollary 3.8. There exists a bijective map m : G → V with

(m◦g)(B,R) =


g(B) if R ≤ g(B)

B
,

g

(
sup
B′≤B

{R ≤ g(B′)

B′ }
)

otherwise,

where we define sup∅ = 0.

In other words, given any one-dimensional non-decreasing
function with g(0) = 0, we could transform it to a feasible2

cumulative value function by the above mapping process.

4 Truthful Auction Design
The derived structure of feasible allocation rules give rise to
a value grouping phenomenon. Viewing the above process of
finding the cumulative value of a certain type given threshold
ROI curve in a reverse way, every type on the threshold ROI
curve shares the same cumulative value with two groups of
types: the types vertically below it, as well as the types locate
horizontally right to it and above its corresponding thresh-
old ROI, as shown in Figure 2. This intricate value group-
ing phenomenon are enforced by the truthful conditions in-
stead of the optimization requirement. As we can observe in
Figure 2, since the horizontal search terminates when meet-
ing a type on the threshold ROI curve, the grouping shape
is determined by the relative rank of thri(Bi, t−i) for differ-
ent Bi. However, though thri(Bi, t−i) is required to keep
g(B) non-decreasing, it is not required to be monotone it-
self, which leads the terminate of horizontal search and the
grouping shapes to be irregular. This also brings difficulties
in deriving general closed-form conditions for the group of

2Our feasibility is with respective to truthfulness, and does not
specify how to realize the allocations from detailed items.

Algorithm 1: A Family of Simple Truthful Auctions
Input: Bidder’s reported type (Bi, Ri), and

non-increasing rank score functions fi,j .
Output: Bidder’s allocated items Ai and payment pi.

1 Initialize Ai = {} for i ∈ [n];
2 Compute virtual bids bi,j ← vi,j × fi,j(Ri);
3 for each item j ∈ [m] do
4 Find bidder i0 with the highest virtual bid bi0,j ;
5 Record the second highest bid cj ← maxi̸=i0 bi,j ;
6 Add item j into Ai0 and set ai0,j = 1;
7 for each bidder i ∈ [n] do
8 Compute ROI ri,j = f−1

i,j (
cj
vi,j

) required for
winning the item j ∈ Ai;

9 Find a largest Rc
i ∈ Ri s.t.∑

j∈Ai
I (Rc

i ≤ ri,j)× vi,j

Rc
i
≥ Bi, and let

d← the difference between left-hand side and
right-hand side of the above inequality;

10 if d > 0 then
11 Find the items j′ with ri,j′ = Rc

i , and remove
parts of these items with value d/Rc

i ;
12 if Ri ≤ Rc

i then
13 Remove the items with ri,j < Rc

i from Ai;

14 pi ← min
(∑

j∈Ai
vi,j ·ai,j

Ri
, Bi

)
;

15 return (Ai, pi) for i ∈ [n].

types to share the same allocation. Furthermore, although the
cumulative values of the grouping types are forced to be the
same, their payment are calculated by Theorem 3.4, leading
to varying payments between grouping types and the non-
linear revenue with respective to the threshold ROI.

The above characteristics of value grouping phenomenon,
i.e., irregularity in grouping shape and non-linear payment,
make any analytical or mathematical programming approach
difficult to adopt. To reach feasible and implementable auc-
tion design, we propose a family of simple truthful auctions
based on newly designed rank score functions.

The detailed auction mechanism is presented in Algo-
rithm 1. For each item, bidders are ranked based on their
virtual bids bi,j , which is defined as vi,j multiplying a rank
score fi,j(Ri) with some pre-defined non-increasing function
fi,j (Line 2). The items are then temporarily allocated to each
bidder with the highest virtual bids (Line 3-6). After the can-
didate allocation set Ai for each bidder i has been determined,
we compute the the corresponding ROI requirement ri,j for
the bidder i to rank the first in item j ∈ Ai, i.e., bidder i needs
to report Ri ≤ ri,j in order to maintain ranked first for item j
(Line 8). The critical ROI in Line 9 is our key design to guar-
antee truthfulness, which computes the largest ROI a bidder
could report to win enough items in Ai and spend out her bud-
get. Intuitively, critical ROI simulates the best-response ROI
of the bidder given her budget constraint, which does not in-
volve and thus keeps independent of her true ROI constraint.
We naturally utilize this critical ROI, which transforms the
budget to the same dimension of ROI, as the threshold ROI
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function and design the remaining parts based on the truthful
conditions in Section 3. Line 10-11 are designed to guarantee
the value of remaining items in Ai would exactly equal to the
budget of the bidder times the computed critical ROI (The-
orem 3.6). Line 12-13 are designed to guarantee the types
with ROI larger than the corresponding critical ROI would be
allocated based on their reported ROI (Theorem 3.7) and get
all items with ri,j ≥ Ri. Line 14 determines the payment for
each bidder based on Theorem 3.4. Due to its low time com-
plexity, Algorithm 1 has good implementation scalability.

Theorem 4.1. If the pre-determined functions fi,j(R) are
non-increasing with R, then the auction mechanism corre-
sponding to Algorithm 1 is truthful.

Our proof is conducted through figuring out and verifying
the corresponding g(B) and threshold ROI function of Algo-
rithm 1. We can design personalized fi,j(R) for bidders and
items according to the auction objective and prior knowledge
before the advertising campaign, such as the type distribution
of bidders and the information of incoming items.

5 Experiments
In this section, we conduct experiments with synthetic data to
validate the performance of our proposed auctions.

5.1 Experimental Setup
There are two sets of experiments with i.i.d. and non-i.i.d.
bidders, respectively. We vary the number of bidders and
items to simulate the changes in demand and supply. The
presented results are averaged by 50 runs. We choose distri-
bution parameters based on the common fluctuations in ad-
vertising markets, and normalize the lower bound of vi,j .
Symmetric bidders Bidders are symmetric with vi,j ∼
U [1, 4], Bi ∼ U [40, 80] and Ri ∼ U [1, 3], where U [a, b]
is the uniform distribution within the range [a, b].3
Mixed bidders There are low and high distributions for
vi,j , Bi and Ri as bidders’ possible types. Specifically,
vi,j ∼ U [1, 2] or vi,j ∼ U [2, 3], Bi ∼ U [20, 40] or Bi ∼
U [80, 100], and Ri ∼ U [1, 2] or Ri ∼ U [2, 3]. Combinations
of these categories result in 8 groups of bidders.
Baseline Auctions Since no existing mechanism guarantees
the IC properties of both budget and ROI, we consider com-
mon repeated auction formats: first-price and second-price
auctions. Due to their non-truthfulness (see full version of
this paper), we involve misreporting for these auctions.
• Repeated first-price and second-price auctions: The auc-
tioneer holds first-price (second-price) auctions for every sin-
gle item, where bidder i bids vi,j/Ri for item j. The auction-
eer allocates the item to the highest ranking bidder who has
remaining budget to afford, and charge the first-price (second-
price) payment. We simulate bidders’ misreporting behaviors
by the classical best-response dynamics with the true profile
as starting points. In repeated first-price (second-price) auc-
tions, the bidders have no incentive to misreport their budget.
We calculate the best response ROI as the smallest ROI that
achieves the highest utility in historical auctions.

3We have tested several other parameters under uniform distri-
bution, and the trends of results are the same.

• Non-truthful Optimal Baseline: The optimal offline revenue
could be computed through linear programming, where we
set each bidder i’s payment to item j as exactly vi,j×ai,j/Ri,
and her total payment is constrained to not exceed Bi.
Evaluation Metrics We consider revenue and liquid welfare
as the optimization goal. Since the payment formula (Eq.2)
in Theorem 3.4 aligns with the definition of liquid welfare
in equation (Eq.1) when no bidder receives negative infinite
utility, the metrics of revenue and liquid welfare would be the
same for truthful auctions, and we will thus only report rev-
enue in our results. Besides, as advertisers may have fluctu-
ating auction performances across time slots, fairness should
also be considered in order to preserve bidders’ willingness
to attend the auctions. Using liquid welfare to substitute
the traditional valuation function [Bezáková and Dani, 2005;
Chakrabarty et al., 2009], fairness is defined as

fairness = min
i∈[n]

min

(
vi(t

′)

Ri
, Bi

)
.

Rank Score Function We adopt rank scores in the form
fi,j(R) = αi,j × e−βR, where αi,j is drawn from a recti-
fied normal distribution N(µi, σ

2
i ), and β, µi, σi are pre-set

parameters. In f(R), β is used to adjust the impact of ROI
on equivalent bids, and α maintains the rank scores of vari-
ous bidders in a comparable range. Since items may be dis-
carded when some bidders win excessive items (Line 13 in
Algorithm 1), in order to avoid loss in welfare and revenue,
we should give other bidders non-trivial winning opportuni-
ties when the supply is sufficient, which is provided by the
randomness in α ∼ N(µi, σ

2
i ). For each automated bidding

environment, we set rank score function parameters to be the
same for bidders following the same distribution, and choose
the parameters with better revenue in this environment.

5.2 Experimental Results
Symmetric bidders The revenue of our truthful auction (re-
ferred as DSIC) and the baseline auctions with different num-
ber of bidders is reported in Figure 3a, and revenue when
number of items changes is reported in Figure 3b. Our
truthful auction achieves better revenue than first-price and
second-price auctions, and generally achieves more than 90%
revenue of the near optimal baseline. Remarkably, first-price
auctions displays evident decrease in revenue when the items
are excessive, which also leads to decreases in fairness (Fig-
ure 3c). This is because the bidders exceedingly increase their
reported ROI when facing some unsold items with low prices,
leading all their payment to decrease proportionally.

In Figure 3c, we report the fairness results under different
number of items a fixed number of 40 bidders as in Figure 3b.
As designed in the rank score function, our auction does not
allocate excessive items to a certain bidder to avoid waste of
items, and thus achieves better fairness then the optimal base-
line when the number of items is in the range of 600 to 1200.
When items are in shortage (200/400 items in Figure 3c), our
truthful auction harms the fairness to some extent due to the
pursuit of revenue. We can control the tradeoff between fair-
ness and revenue with different rank score functions through
the parameter β. Figure 3d reports a set of revenue and fair-
ness performances with different β in the same setting as 400
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Figure 3: Revenue and fairness in different experiment setting for symmetric bidders: (a) Revenue for different number of i.i.d bidders with
200 items; (b) Revenue for different number of items with 40 i.i.d bidders; (c) Fairness for different number of items with 40 i.i.d bidders; (d)
Fairness of our DSIC auction with 40 i.i.d bidders and 400 items using different parameter β in rank score functions;
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Figure 4: Revenue with 40 mixed bidders in Setting 1: 200 items;
Setting 2: 1000 items; Setting 3: 1600 items; with three different
groups of rank score functions for our DSIC auction

items in Figure 3c. To achieve higher revenue, it is inevitable
to have discriminating allocation among different bidders and
harms the fairness when items are not abundant.
Mixed bidders Instead of presenting similar trends, we
demonstrate the importance of choosing appropriate rank
score functions in non-i.i.d. settings. We choose three groups
of rank score functions respectively with good performance in
three typical settings: 40 mixed bidders with 200/1000/1600
items, and test their performances in the other two settings.
The results are presented in Figure 4, where DSIC-n repre-
sents the truthful auction with rank score functions perform-
ing well in the Setting n. The DSIC-n mechanism only per-
form well in Setting n, and the reason should come from the
distinct allocation approaches needed to achieve high revenue
for different number of items. For example, to achieve high
revenue when items are in shortage (Setting 1), DSIC-1 auc-
tion allocates most items to the bidders with high value and
low ROI, leading to allocating excessive items to these bid-
ders and neglecting other bidders in Setting 2 and 3.

6 Related Work
Due to the unique features compared to traditional ad auc-
tions, auction design and game theoretical analysis for auto-
mated bidding come into researchers’ view in recent years.
Our work could be classified as considering the incentive of
bidders when setting automated bidding parameters. Under
this topic, [Li et al., 2020] provided distributed bidding algo-

rithms for IC issues assuming public values and private ROI.
[Balseiro et al., 2021] studied the optimal mechanism design
for bidders with ROI constraint under different information
structure. [Balseiro et al., 2022] considered the mechanism
design with private ROI constraint and public budget, and
derived the optimal auction for all the two-bidder cases and
some specific multi-bidder cases.

Another closely relevant line of work is mechanism de-
sign for financially-constrained quasi-linear bidders. Since
[Laffont and Robert, 1996], intensive research has been con-
ducted for bidders with budget constraint [Borgs et al., 2005;
Bhattacharya et al., 2010; Dobzinski et al., 2008; Pai and
Vohra, 2014]. [Szymanski and Lee, 2006] analysed the im-
pact of ROI constraints on bidding and revenue of several
common auction forms, and [Golrezaei et al., 2021] firstly
considered auction design for bidders with ROI constraints.
Distinct from the above work4, we consider both budget
and ROI as private constraints for value-maximizing bidders,
which fits the real automated bidding and reveals the complex
value grouping phenomenon for the first time.

7 Conclusion
In this work, we have considered truthful auto-bidding auc-
tion design for bidders with private budget and ROI con-
straints across multiple impressions, while the values of im-
pressions are public to the auctioneer. We have characterized
the truthfulness conditions in this new auto-bidding auction
model, which involves irregular grouping constraints on bid-
ders’ cumulative utilities. We have proposed a series of sim-
ple truthful auction mechanisms with flexible rank score func-
tions as a solution to this automated bidding auction design
problem. The experimental results validate the performances
and flexibility of the proposed auction mechanisms.
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