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ABSTRACT
To bring the great power of modern DNNs into mobile comput-
ing and distributed systems, current practices primarily employ
one of the two learning paradigms: cloud-based learning or on-
device learning. Despite their distinct advantages, neither of these
two paradigms could effectively deal with highly dynamic edge
environments reflected in quick data distribution shifts and on-
device resource fluctuations. In this work, we propose Nebula, an
edge-cloud collaborative learning framework to enable rapid model
adaptation for changing edge environments. To achieve this, we
first propose a new block-level model decomposition scheme to de-
compose the large cloud model into multiple combinable modules.
With this design, we can agilely derive personalized sub-models
with compact sizes for edge devices, and quickly aggregate the up-
dated sub-models to integrate new knowledge learned on the edge
into the cloud model. We further propose an end-to-end learning
framework that incorporates the modular model design into an
efficient model adaptation pipeline, including an offline on-cloud
model prototyping and training stage, and an online edge-cloud
collaborative adaptation stage. Extensive experiments demonstrate
that Nebula improves model performance (e.g., 18.89% accuracy
increase) and resource efficiency (e.g., 7.12× communication cost
reduction) in adapting models to dynamic edge environments.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→Machine learning.
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1 INTRODUCTION
To support ubiquitous mobile intelligence applications powered
by deep neural networks (DNNs), current practices primarily em-
ploy one of the two learning paradigms: cloud-based learning or
on-device learning. The former leverages abundant computational
resources on the cloud to provide high-performance services with
large models, while the latter executes small models close to users,
enabling fast-response and low-cost model services. Although hav-
ing their own advantages, problems arise when faced with highly
dynamic edge environments [11, 36] reflected in two aspects. First,
the application context in edge environments could frequently
change, leading to shifting local data distributions and varying per-
formance requirements. For example, the target objects and their
appearances in video analysis tasks change with scenes, angles,
and lighting conditions [5, 22]. Second, on-device resources for
model execution could vary dramatically across devices and times,
which necessitates flexible accuracy-latency tradeoffs [39]. These
dynamics require the learning system to quickly adapt model sizes
and abilities to maintain satisfying performance.

Unfortunately, neither the cloud-based learning paradigm nor
the on-device learning paradigm alone could effectively deal with
highly dynamic edge environments, and inevitably suffer from
model performance drops. For cloud-based learning, edge devices
could request the cloud for help when encountering new environ-
ments. However, the cloud model is trained using historical (proxy)
data prior to deployment, which can not provide up-to-date mod-
els, resulting in large (e.g., 11%) accuracy drops demonstrated in
our experiments (Section 2). Besides, this paradigm would induce
prohibitive computation and communication costs to serve huge
amount of edge devices. For on-device learning, edge devices could
update their models locally using newly collected data to adapt
to the new environments. Nevertheless, they still suffer from se-
vere accuracy drops (more than 10%) due to the sparse and biased
training data on edge devices. Furthermore, the on-device resource
competition among model training and inference processes [5, 32]
could lead to 5.06× prolonged model response latency.
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To tackle the drawbacks of cloud-based or edge-based learning
paradigm, in this work, we propose Nebula, an edge-cloud collab-
orative learning framework to support rapidly adapting models
for dynamic edge environments. Within Nebula, the cloud main-
tains a powerful large model that is responsible for aggregating and
storing new knowledge learned from edge devices in dynamic envi-
ronments. Edge devices can directly retrieve sub-models from the
cloud to execute and also collect new knowledge from encountering
new edge environments. The key to edge-cloud collaborative learn-
ing relies on two critical steps: (i) the first is to efficiently derive
sub-models with the necessary abilities for the current environ-
ments from the large cloud model for resource-limited edge devices.
(ii) The second is to integrate new knowledge learned on edge de-
vices back into the cloud model to deal with the new environments.
Based on this idea, Nebula is able to provide high-performance and
fast-adaptation learning for dynamic edge environments.

Two challenges arise in this cloud-and-edge collaborative learn-
ing framework for dynamic edge environments. (i) The first chal-
lenge comes from that edge devices have limited hardware resources
and time-varying non-IID data distributions [11]. Due to the limi-
tation of resources, edge devices could not afford to train a large
once-for-all model for various edge environments. The varying
non-IID data distribution reflects that the local task of an edge
device at a certain time slot (e.g., recognizing a subset of target
objects) is a sub-task of the global task (e.g., recognizing all po-
tential target objects), which calls for dynamic and personalized
sub-models instead of a static and general model. Therefore, we
need to derive the sub-models with compact sizes (for limited on-
device resources) and specialized abilities (to deal with target local
tasks) on demand, which are non-trivial to achieve simultaneously
and in a real-time manner. (ii) The second challenge comes from
that the edge models are heterogeneous in both model structures
and parameters, introducing difficulties in integrating knowledge
from edge models to the cloud. Simply averaging overlapped param-
eters could lead to negative knowledge transfer due to parameter
conflicts [29, 31], as the edge models are trained on diverse local
tasks independently. A possible solution is knowledge distillation
(KD) [14, 16, 27]. However, this imposes extra storage and compu-
tation burden on edge devices, and is time-consuming due to its
re-training process, which prohibits the rapid response to dynamic
edge environments. Besides, the high change frequency of edge
environments increases the efficiency requirements of adaptation,
further exacerbating these two challenges.

The core idea of Nebula to tackle the above challenges is a new
modular model decomposition design, based on which we can effi-
ciently derive personalized sub-models for edge devices, and effec-
tively aggregate the updated sub-models to integrate new-learned
knowledge back into the cloud. Specifically, Nebula decomposes
the large cloud model into multiple well-separated but combin-
able modules. In its essence, Nebula decomposes the global task
(represented by the global data distribution) to multiple sub-tasks
(represented by the local data distributions on edge devices), each
of which can be solved by a sub-model built by combining a proper
subset of the modules. This design allows us to flexibly derive and
aggregate personalized sub-models with diverse model sizes and
specialized abilities, while avoiding time-consuming model archi-
tecture searches or KD processes.

Based on the above idea, we further propose an end-to-end learn-
ing framework that incorporates the modular model design into an
agile model adaptation pipeline for dynamic edge environments.
This learning framework comprises an offline on-cloud model train-
ing stage and an online edge-cloud collaborative adaptation stage.
In the offline stage, we modularize the cloud model and design a uni-
fied module selector to learn model/task decomposition strategies
and to associate specific sub-tasks to modules. In the online stage,
Nebula efficiently derives personalized sub-models from the cloud
model regarding edge devices’ local tasks1 and available resources.
During serving on edge devices, the sub-models are periodically
updated using fresh data, and are further aggregated into the cloud
model in a module-wise manner with minimal parameter conflicts.

We summarize the contributions in this work as follows:
• We propose a novel modular model design to decompose the
large cloud model into multiple well-separated but combinable
modules, based onwhich we can flexibly derive personalized edge
models and further aggregate their parameter updates, facilitating
efficiently knowledge transfer between the edge and the cloud.

• We design Nebula, an edge-cloud collaborative learning frame-
work, for agile model adaptation to dynamic edge environments.
From cloud to edge, we efficiently derive personalized edge mod-
els regarding local data distributions and available on-device
resources. From edge to cloud, we aggregate updated edge mod-
els to form a new cloud model with enhanced model ability.

• We implemented Nebula on a simulation platform and a real-
world testbed with 20 heterogeneous edge devices, and evaluated
Nebula over three representative applications: mobile sensing,
image classification, and speech recognition. The evaluation re-
sults demonstrate the superiority of Nebula in adapting to the
dynamic edge environments, achieving up to 18.89% accuracy
improvement and 7.12 × communication cost reduction.

2 MOTIVATION AND CHALLENGES
2.1 Motivation and Related Work
Edge environments are highly complex and frequently changing, re-
flected in two aspects: (i) outer environment dynamic: the changes
of application context (e.g., varying lighting conditions of a cam-
era or varying usage patterns of edge devices over time), leading
to shifting data distributions and varying model performance re-
quirements. (ii) inner runtime dynamic: there might have multiple
applications co-running on an edge device competing for available
resources, which leads to resource fluctuation and unstable local
processing time and communication latency. Ignoring these kinds
of dynamics will lead to the degradation of system performance.

We conduct experiments to further illustrate the impact of dy-
namic edge environments. For outer environment dynamic, Fig-
ure 1(a) shows on-device model accuracy with different adaptation
approaches. We shifted data distributions on devices in each time
slot by replacing a part of the local data with new data. We observe
that: (i) the static models, both the large cloud model and small edge
models, cannot well-adapt to dynamic environments, e.g., the edge
model accuracy decreases by around 11% as data distribution shifts.

1In this work, we interchangeably use the term local task/local data distribution and
edge model/sub-model.
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Figure 1: Impact of dynamic edge environments in terms
of model accuracy and inference latency using CIFAR100
dataset and VGG16 model on NVIDIA Jetson Nano devices.

(ii) the updated edge models could have better accuracy, but updat-
ing the edge model with the data from an individual device does
not have satisfactory performance: around 10% lower than the ideal
situation where the edge model is strengthened by new data across
devices. For inner runtime environment dynamic, Figure 1(b) shows
the model inference latency under different numbers of processes
co-running on the device. The competition for on-device resources
could significantly increase model processing time, increasing up
to 5.06× inference latency with 3 background processes.

To overcome the drawbacks of static models, previous works [4,
11, 12, 23, 39] enabled on-device model adaptation, e.g., dynami-
cally selecting sub-models from a large model, which nests multiple
DNNs within a single large DNN [11] or searching suitable sub-
models with neural architecture search (NAS) [6] from an offline
supernet [39], to achieve flexible accuracy-latency tradeoffs in fac-
ing new edge environments. Although effective in resisting resource
fluctuations, they do not leverage newly collected data on edge de-
vices. Thus, the weak edge models still suffer from performance
degradation in dynamic edge environments.

Noticing the above issues, existing works have also explored
collaborative learning between edge and cloud, which can be cate-
gorized into logits sharing-based methods [7, 14, 20, 27] and param-
eter sharing-based methods [2, 9, 17, 18, 21, 26, 28]. The methods in
the first category share model output logits, and transfer knowl-
edge between models using the KD technique [16]. For approaches
in the second category, the cloud maintains a large model, from
which various edge models can be extracted by strategies such as
ordered-dropout [18] or rolling sub-model extraction [2]. While
these methods offer flexibility in defining various edge models,
they are not lightweight enough due to the time-consuming KD
and pruning process. Thus, these methods are still hard to deal with
frequently changing edge environments.

Based on the above discussion, we are motivated to propose an
edge-cloud collaborative learning framework to agilely support
model adaptation on resource-constrained edge devices in dynamic
edge environments. The powerful cloud model can help edge mod-
els adapt to the new environment efficiently with negligible model
re-training overhead by reusing the sub-models for the same envi-
ronment learned by other edge devices. The front-end edge models
can capture features of new environments, and transfer this knowl-
edge back to form an updated cloud model for future use.

2.2 Design Challenges
The design challenges mainly stem from the inherent characteristics
of edge devices, i.e., heterogeneity in data distributions and limi-
tations in system resources. We first analyze these characteristics,

Jetson Nano (4GB)

Raspberry Pi (2GB) 49×
16×

Figure 2: Heterogeneous on-device resources, and intensive
resource requirements for on-device model training.

and then present design challenges within personalized edge model
derivation and heterogeneous edge model aggregation, respectively.

Edge devices have strong heterogeneity and large limitations in
both systematic and statistical aspects, raising the need for compact
and personalized local models. For the systematic aspect, diverse
on-device resources (e.g., computation power, memory capacity,
and network bandwidth) cause various model performance. In Fig-
ure 2(a) and (b), we showcase the RAM capacity and the inference
latency of MobileNetV3 [19] in popular mobile phones using the
statistics from AI Benchmark [1]. As shown in Figure 2(c), model
training can cost more than ten times of peak memory and execu-
tion time than model inference, which hinders edge devices to train
a full large model [10, 35]. For the statistical aspect, the local task of
a device is essentially a sub-task of the global task. For example, in
an object recognition task, the global task is to recognize all objects,
while the local task only needs to recognize a small subset of ob-
jects in the surrounding environment [26, 40]. The sub-tasks across
devices could be quite different, depending on their application
contexts, and reflected in the non-IID data distributions as well.

Challenge 1: Consider the above characteristics, deriving com-
pact and personalized edge models from the large cloud model is
non-trivial. It not only needs to derive lightweight edge models
with proper structures, but also needs to derive the models with
specialized abilities to deal with the targeted sub-tasks. The param-
eters of DNNs are tightly coupled with dense connections [15, 35],
making it hard to divide them to form compact yet specialized sub-
models. In addition, the frequently changing environments further
exacerbate this challenge in that the optimal sub-models for edge
devices are changing as well, raising high requirements for low
computational complexity of the edge model derivation. Although
model compression techniques such as model pruning [13] and
distillation [16], are able to scale down a large cloud model, ex-
haustively pruning or distilling personalized models for the huge
amount of edge devices is prohibitively time-consuming.

Challenge 2: The personalized edge models are heterogeneous
in both model structures and parameters, making it difficult to ag-
gregate them effectively. We analyze the difficulty in two folds. First,
the commonly used method for transferring knowledge between
the heterogeneous cloud and edge models is KD [8, 16, 20, 27], but
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Figure 3: Overview of Nebula framework.

it is impractical since it may introduce time-consuming model re-
training processes and additional computation and storage burdens
on edge devices (e.g., calculating model logits on a shared dataset).
Second, even with the same model structure, parameter conflicts
during model aggregation can not be ignored, because the models
trained on edge devices with non-IID data distributions could lead
to large discrepancies in parameters or gradients. Simply averag-
ing (overlapping) parameters could result in conflicts, which could
significantly degrade model performance [29, 31].

It is important to note that these two challenges should not
be considered separately, since the way sub-models are derived
from the large cloud model determines the sub-model structures
and parameters, further affecting the way they are aggregated.
Therefore, the two processes should be jointly designed and the
method should be lightweight for fast model adaptation against
frequently changing edge environments.

3 NEBULA OVERVIEW
In Figure 3, we illustrate the overall design of Nebula with an offline
and an online stage: on-cloud model prototyping and training and
edge-cloud collaborative adaptation, respectively.

In the offline stage, we decompose the large cloud model to mul-
tiple combinable modules, design a module selector to organize the
modules, and train them jointly with proxy data on the cloud to
prepare for the subsequent online adaptation stage. Specifically, in
Block-level Model Modularization component (Section 4.1), Nebula
takes over an initial large cloud model, identifies the basic blocks
within its structure, and then decomposes the cloud model into
several module layers, each containing a set of substitute mod-
ules. In Module Selector Construction component (Section 4.2),
we construct a unified module selector to organize the modules
by intentionally forwarding input samples to proper modules for
processing, which indeed encodes the mapping from sub-tasks to
corresponding modules. This ability is learned in Module Ability-
Enhancing Training (Section 4.3), which decomposes the global
task and assign sub-tasks to modules. As such, various sub-models
with distinct structures and specialized abilities for various edge
devices can be derived from the large cloud model.

In the online stage, Nebula periodically derives and aggregates
personalized sub-models to keep adapting to new environments.
For Personalized Sub-model Derivation (Section 5.1), a local profiler

first characterizes each device’s local data distribution and available
resources. Under resource constraints of each device, we select the
most important modules with respect to its targeted local task to
form a personalized sub-model. During model execution on the
edge, devices can adjust local modules to flexibly scale their local
model sizes for resource fluctuations, and update their local sub-
models with newly collected data to adapt to data distribution shifts.
The cloud conducts a Module-wise Sub-model Aggregation (Section
5.2) periodically to form an updated cloudmodel that integrates new
knowledge learned by edge devices, further providing up-to-date
sub-models in return.

4 ON-CLOUD MODEL PROTOTYPING AND
TRAINING

4.1 Block-level Model Modularization
Instead of directly pre-defining a fixed set of sub-models for edge
devices to choose from [9, 11], we decompose a large cloud model
to multiple reusable modules, which can be selectively combined
to form various sub-models. We identify the principle of model
modularization in two folds: (i) the modules should form a large
design space that is able to derive various personalized sub-models
at a fine granularity; (ii) each sub-model should be responsible
for a sub-task, e.g., the local task on an edge device. With this
principle, we propose block-level modularization that identifies basic
building blocks within a large model as module layers, and further
decomposes each module layer into fine-grained modules.
Identify blocks in a large cloud model. We identify basic build-
ing blocks as the smallest repeated layer patterns within a large
cloud model. Each block contains several consecutive network lay-
ers. For example, a VGG model contains repeated layer sequences
such as [Conv, BN, ReLU, Pooling, Dropout], which are identified
as VGG blocks, and a ResNet block has a similar layer structure
but is enhanced with residual connections. The rationale behind
this block definition is that each block is considered to perform a
certain function in the learning task, such as feature extraction or
classification. Thus, it is reasonable to consider the sub-model con-
structed from the connection of these semantic blocks as a whole
to undertake a certain sub-task.

As shown in Figure 4, we formally define the blocks within a
large model as functions 𝑓 (𝑙 ) (𝑥 (𝑙 ) ;𝜔 (𝑙 ) ), 𝑙 ∈ {1, 2, . . . , 𝐿}, where
𝑥 (𝑙 ) is the input vector to the 𝑙th block parameterized by 𝜔 (𝑙 ) . The
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Figure 4: Illustration of modularizing large models.

output of the 𝑙th block is fed into the (𝑙 + 1)th block until reaches
the final output. As such, a large cloud model 𝐹 can be represented
as the composite of the blocks:

𝐹 (𝑥 ;𝜔) = 𝑓 (𝐿) ◦ 𝑓 (𝐿−1) ◦ · · · ◦ 𝑓 (1) (𝑥 ;𝜔 (1) ) .
Generate substitute modules for blocks. To construct a suffi-
ciently large design space, we further generate 𝑁 (𝑙 ) substitutable
modules {𝑓 (𝑙 )1 , 𝑓

(𝑙 )
2 , . . . , 𝑓

(𝑙 )
𝑁 (𝑙 ) } for each block 𝑓 (𝑙 ) (𝑥 (𝑙 ) ;𝜔 (𝑙 ) ), where

a subset of modules can work cooperatively to implement the func-
tion of the original block (we also call module layer thereafter).
By doing this, we can have more choices to construct a block and
then a sub-model, enabling to generate various sub-models. Specif-
ically, within a module layer 𝑓 (𝑙 ) (𝑥 (𝑙 ) ;𝜔 (𝑙 ) ), each module 𝑖 is an
independent function 𝑓 (𝑙 )

𝑖
(𝑥 (𝑙 ) ;𝜔 (𝑙 )

𝑖
). The modules take the same

input 𝑥 (𝑙 ) , but generate distinct outputs. For a given input 𝑥 (𝑙 ) , we
introduce a module selector g(𝑙 ) (𝑥 (𝑙 ) ;𝜃 (𝑙 ) ) to selectively activate
a subset of the modules in this module layer, and generates the
output by combining the outputs of the activated modules. The
final output of a module layer is:

𝑓 (𝑙 ) (𝑥 (𝑙 ) ;𝜔 (𝑙 ) ) = 𝐶𝑜𝑚𝑖∈𝐴{𝑓 (𝑙 )𝑖
(𝑥 (𝑙 ) ;𝜔 (𝑙 )

𝑖
); g(𝑙 ) (𝑥 (𝑙 ) ;𝜃 (𝑙 ) )},

where 𝐴 is the set of activated modules.
Design network structures for modules. A module can have
arbitrary neural network structures as long as its input and out-
put dimensions are matched with the original block. Without loss
of generality, we consider two specific types of modules: shrunk
modules and residual modules. A shrunk module 𝑓 (𝑙 )

𝑖
adopts the

same layer sequence with the original block 𝑓 (𝑙 ) , but shrinking its
size by reducing hidden units (channels or neurons) of its inside
network layers. A residual module provides a residual connection
to allow inputs to bypass the current module layer, as not all inputs
need layer-by-layer processing for all layers [15, 25, 37].

As such, Nebula can provide a large design space for deriving
sub-models. For example, we can modularize ResNet18 to have 4
module layers, each containing 16 modules. In this way, we can
obtain at most (216)4 ≈ 2 × 1019 distinct sub-models.

4.2 Module Selector Construction
Module selectorwithin amodule layer.Amodule selector g(𝑙 ) is
responsible for routing inputs 𝑥 (𝑙 ) to different subsets of modules
in the module layer 𝑙 : {𝑓 (𝑙 )

𝑖
|𝑖 = 1, 2, · · · , 𝑁 (𝑙 ) }, which can also

be interpreted as a mapping from sub-tasks to activated modules.

Given an input 𝑥 (𝑙 ) , The output of the module selector g(𝑙 ) is a
probability distribution over the modules, which can be regarded
as the importance weight of each module with respect to 𝑥 (𝑙 ) .
To reduce on-device computation overhead, we employ a top-𝑘
strategy to activate only 𝑘 out of 𝑁 (𝑙 ) available modules for each
input 𝑥 (𝑙 ) . To combine the outputs of the activated modules, we
take their weighted summation as the final output of the current
module layer, which can be rewritten as:

𝑓 (𝑥 ;𝜔) =
∑︁
𝑖∈𝐴

[g(𝑥 ;𝜃 )]𝑖 · 𝑓𝑖 (𝑥 ;𝜔𝑖 ), 𝐴 = Top-k(g(𝑥 ;𝜃 )) .

Unified module selector for all module layers. The above mod-
ule selection is a sequential decision-making process: module se-
lector g(𝑙 ) takes 𝑥 (𝑙−1) as the input, which depends on the output
of the previous module layers. To speed up this process, we model
the module selection for all layers as a one-shot decision-making
process by combining all g(𝑙 ) to form a unified module selector.
We further employ an additional embedding network to extract
features ℎ from the input 𝑥 for g(𝑙 ) . Thus, the output of the unified
module selector g(𝑥 ;𝜃 ) is:

g(𝑥 ;𝜃 ) = {g(𝑙 ) (ℎ;𝜃 (𝑙 ) ) | ℎ = 𝑒𝑚𝑏𝑒𝑑 (𝑥 ;𝜃 ), 𝑙 ∈ {1, · · · , 𝐿}}.

As such, the unified module selector can determine the activated
modules for all module layers at once, and is decoupled from the
execution of the modules, enabling to work independently to help
edge devices identify important modules locally regarding their
local data distributions (Section 5.1).

4.3 End-to-end Model Training
In this sub-section, we propose an end-to-end algorithm to pre-
train the modularized model and its unified module selector. During
this process, the module selector learns to decompose the global
task into multiple sub-tasks, and maps the sub-tasks to properly
activated modules. The modules are trained under the coordination
of the module selector to deal with the assigned sub-tasks.
Vanilla end-to-end training. To train such a model, besides the
original training loss that aligns model outputs to target labels,
we also add a module load-balancing loss term to ensure every
module is sufficiently trained. This load-balancing technique can
route similar data samples to the same activated modules. Thus, a
sub-model formed by a subset of activated modules can be trained
to handle a specific sub-task. Take the classification task as an
example, the overall loss function is:

L(�̂�,𝒚; ĝ) = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (�̂�,𝒚) + 𝜆 · 𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (ĝ),

where ĝ is the output of the unified module selector and 𝜆 is the
weight of the load-balancing loss term. Besides, we employ a noisy
top-𝑘 technique [33] to enable end-to-end training with the non-
differentiable top-𝑘 operator.

Although a sub-task decomposition and mapping strategy can
be learned automatically by the above end-to-end training, it could
be sub-optimal when deriving sub-models for edge devices. This
is because the sub-model needed by a given device might be a
combination of a large number of modules, which breaks the mem-
ory limitation of edge devices. Therefore, we further propose an
module-ability enhancing algorithm to learn a favorable sub-task
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Figure 5: Module ability-enhancing training algorithm.

decomposition and mapping strategy such that each device’s local
task can be covered by as few modules as possible.
Module ability-enhancing training. Figure 5 illustrates the effect
of this algorithm, which follows three steps:

(1) Define application-specific sub-tasks. We first define the inter-
ested sub-tasks with respective to the target application, which is
a subset of data samples, having certain common properties, such
as the same data distribution, the same class, etc. The sub-tasks
can be defined according to the underlying reasons behind non-IID
data distributions across edge devices. For instance, for label skew
where each device only holds a small subset of all the potential
classes, we can define a sub-task as the classes that usually appear
together on a device. In Figure 5, we have three sub-tasks and the
corresponding sub-task mapping matrix 𝑯𝑇×𝑁 . Each entry ℎ𝑡𝑛 is
the load of module 𝑛 in sub-task 𝑡 , and can also be interpreted as
the probability of mapping sub-task 𝑡 to module 𝑛.

(2) Identify modules’ targeted sub-tasks. With the current 𝑯𝑇×𝑁
obtained from the end-to-end training, we aim to identify the sub-
tasks that a given module 𝑛 is best at, and let the module focus on
these sub-tasks, leaving the other sub-tasks to the other modules.
Based on this intuition, we formulate this task identification process
as a constrained linear programming problem:

max
M𝑡𝑛∈ {0,1}

H ⊙ M

s.t.
𝑇∑︁
𝑡=1

M𝑡𝑛 ≤ 𝜅1,∀𝑛 ∈ {1, 2, . . . , 𝑁 },

𝑁∑︁
𝑛=1

M𝑡𝑛 ≤ 𝜅2,∀𝑡 ∈ {1, 2, . . . ,𝑇 },

(1)

where M is a mask matrix, denoting the sub-tasks assignment to
modules. The first constraint aims to prevent the overload of a
given module, that is the load should be less than 𝜅1. The second
constraint limits the maximum number of modules that can be ac-
tivated by a sub-task. For objective, we maximize the element-wise
product to preserve the information of the original matrix, which
reflects the strategy learned by the end-to-end training. Preserving
this knowledge is conducive to reducing fine-tuning overhead and
enhancing convergence speed, since it embeds the global task’s
internal structure learned in the end-to-end training stage.

(3) Fine-tuning for enhancing modules’ abilities. Based on the
obtained target mapping matrix P = H ⊙ M, the goal of the fine-
tuning process is two folds: one is to train each module using more
data from the sub-tasks it focuses on to further enhance its ability
on that sub-tasks, and the other is to let the module selector update
at the guideline of the new sub-task mapping strategy. To this end,

the samples from each sub-task are attached by an additional label
g𝑙𝑎𝑏𝑒𝑙 denoting the recommended modules to activate. The loss
function of the fine-tuned training becomes:

L(�̂�,𝒚; ĝ, g𝑙𝑎𝑏𝑒𝑙 ) = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (�̂�,𝒚) + 𝜆 · 𝐾𝐿(ĝ, g𝑙𝑎𝑏𝑒𝑙 ) .

Following the above process, we could obtain an enhanced mod-
ularized cloud model and a unified module selector with a favorable
sub-task decomposition and mapping strategy.

5 EDGE-CLOUD COLLABORATIVE
ADAPTATION

Built upon the modularized cloud model, in the online stage, we
introduce importance-based sub-model derivation to extract person-
alized sub-models for edge devices andmodule-wise weighted model
aggregation to aggregate the updated heterogeneous edge models.

5.1 Personalized Sub-model Derivation
To fit personalized sub-models for heterogeneous edge devices
within the huge search space, Nebula jointly takes local tasks and
available on-device system resources into account, achieving flexi-
ble tradeoffs between model performance and resource overhead.
The objective of fitting sub-models for a given device is to minimize
the loss over its local dataset under the resource constraints. We
first define an importance metric for modules using the outputs of
the unified module selector, and estimate the candidate sub-models’
resource overhead with the local resource constraints captured by
a local resource profiler. Finally, a set of modules can be chosen to
form a sub-model that achieves desired performance-cost tradeoff.

To identify important modules for edge devices, we define a
module’s importance score for a given device as the average sample
scores of its local data: 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝜔𝑖 |𝐷𝑘 ) = 1

|𝐷𝑘 |
∑ |𝐷𝑘 |

𝑗=1 g(𝑥 𝑗 ;𝜃 )𝑖 ,
where 𝐷𝑘 is the local dataset of device 𝑘 . This importance score
embeds the personalized information of the local data distribution,
and thus can be used for selecting modules for edge devices.

To capture resource constraints, we first employ a local resource
profiler to capture available resources of edge devices in dynamic
runtime environments, including memory capacity, computational
power and network bandwidth. These measurements will serve
as the resource constraints in deriving sub-models. We next esti-
mate the resource costs of the candidate sub-models on a given
device. Since the structure of the modules is determined in the
modularization stage, we are able to calculate their resource costs
in advance on the cloud. A sub-model’s resource costs are to add
up the resource costs of all its containing modules.

After obtaining the importance of modules and the resource
profile, we formulate the personalized sub-model derivation process
as a constrained optimization problem:

max
𝑑𝑖 ∈{0,1}

|𝐶 |∑︁
𝑖=1

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝜔𝑖 |𝐷𝑘 ) · 𝑑𝑖

s.t.
|𝐶 |∑︁
𝑖=1

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗 (𝜔𝑖 ) · 𝑑𝑖 ≤ 𝐿𝑗 , 𝑗 ∈ {𝐶𝑜𝑚𝑚.,𝐶𝑜𝑚𝑝.,𝑀𝑒𝑚.},

(2)

where 𝐶 denotes the indices of candidate modules. To solve this
multi-dimensional knapsack problem, we first select the most im-
portant module in each module layer to avoid the situation where
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Figure 6: Our edge-cloud collaborative learning testbed.

no module is selected for a certain module layer. Then, the residual
problem, still a multi-dimension knapsack problem, can be solved
efficiently using optimization tools such as SciPy and OR-Tools. As
such, we can obtain a subset ofmodulesS𝑘 = {𝜔 (𝑙1 )

𝑖1
, 𝜔

(𝑙2 )
𝑖2

, · · · , 𝜔 (𝑙𝑛 )
𝑖𝑛

}
that forms a personalized sub-model for the edge device.

In Nebula, edge devices can also adjust sub-models locally for
desired performance-cost tradeoffs. Each device can occupy a set
of feasible sub-models, which can be dynamically adjusted to adapt
to the runtime resources fluctuation or data distribution shifts.

5.2 Module-wise Sub-model Aggregation
To aggregate the heterogeneous edge models, we propose a module-
wise weighted average aggregation method. The rationale is that
the sub-models are built from the same basic building blocks, i.e.,
the modules, we can aggregate them in a module-wise manner.
Specifically, we could update the parameters of module 𝑖 by calcu-
lating the weighted average over the parameters of module 𝑖 from
all sub-models within U𝑖 , which is the set of sub-models that con-
tains module 𝑖 . Considering that each module 𝑖 could be updated a
different number of times by different sub-models, we exploit the
(normalized) importance value of module 𝑖 with respective to the
sub-models as the averaging weights to balance the contribution
of each sub-model. That is, the parameters 𝜔𝑖 of module 𝑖 are up-
dated as 𝜔 ′

𝑖
=
∑ |U𝑖 |
𝑘=1 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝜔𝑖 |𝐷𝑘 ) · 𝜔 ′

𝑖𝑘
. This module-wise

aggregation reduces the parameter conflicts, because each module
is trained by the data samples from a specific sub-task without
interference from the different sub-tasks on other edge devices.

6 EVALUATION
6.1 Experimental Methodology
Implementation.We have implemented Nebula on a simulation
platform and a real-world testbed based on PyTorch. Our simulation
platform is a Linux server equipped with a 10-core 2.4GHz Intel
Xeon Silver 4210R CPU, and two NVIDIA 3090 GPUs. The real-
world testbed is shown in Figure 6, which comprises 10 NVIDIA
Jetson Nanos and 10 Raspberry Pi 4Bs as edge devices, and a Lenovo
laptop as the cloud server. The Nano devices have stronger system
performance with on-device GPUs than the Pi devices with CPU
only. All devices are equipped with WiFi module, and can connect
with the cloud server through a wireless local area network.
Tasks, Datasets and Models. We evaluate Nebula on three repre-
sentative AI applications with four datasets and models:

• Mobile Sensing. Human activity recognition is important for
smart devices to understand user behaviors.We useHAR dataset [3]
with a 3-layer MLP to recognize 6 kinds of human activities.

• Image Classification. Image classification is a fundamental task
in computer vision. In this task, we use two datasets, CIFAR-10
and CIFAR-100 [24], with 10 and 100 categories, respectively,
and employ ResNet18 [15] and VGG16 [34] models.

• Speech Recognition. Speech recognition is a basic component of
human-computer interaction, where we use Google Speech [38]
and ResNet34 [15] to classify audio commands of 35 categories.

Data and System heterogeneity.We consider two common types
of non-IID data distributions, i.e., feature skew and label skew. For
HAR, we assign each device a certain user’s data. For the other
datasets, we let each device holds only𝑚 out of 𝑛 total classes of
data. In particular, we test two degrees of data heterogeneity for
each dataset (Data Partition 1 and 2) by choosing different values
of 𝑚. Besides, the data volumes across devices are unbalanced,
ranging from 50 to 150 samples. To simulate real-world hardware
heterogeneity on edge devices, we use the statistics from an open-
source AI benchmark [1] to sample on-device resource budgets.
Baselines.We compare Nebula with various baselines in the fol-
lowing paradigms for dynamic edge environments:
• No Adaptation: Edge devices use the pre-trained large cloud
model without any local adaptation on devices.

• On-device Adaptation: Each edge device adapts its model
locally without collaboration with the cloud. In this case, we
select Local adaptation (LA) and AdaptiveNet (AN) [39] as our
baselines. For LA approach, each device can update its models
using its new local data, while for AN approach, devices get
a multi-branch large model pre-trained on the cloud, and can
adapt the branch in use locally to flexibly tradeoff between
model accuracy and inference latency.

• Edge-cloudCollaborativeAdaptation: In this case, we choose
FedAvg (FA) [30] and HeteroFL (HFL) [9] as baselines. HeteroFL
is a resource-aware federated learning solution, which trains a
series of nested models with various sizes for edge devices with
different available resources.

Parameter settings. For edge-cloud collaborative training, 25 out
of 500 devices are randomly selected to participate in each commu-
nication round. Each selected device trains its model with 3 local
epochs. The learning rate is set as 0.001 and the batch size is 16. For
on-device adaptation, each edge device fine-tunes the local model
for 10 epochs using its local data. For model modularization, we
employ 1 module layer with 16 modules for MLP model, and 4 mod-
ule layers each with 16 modules for ResNet18. Since the parameters
of VGG16 and ResNet34 are mainly concentrated at the deep layers,
we only modularize the last three blocks with 32 modules each.

6.2 Overall System Performance
To demonstrate the adaptation ability of different approaches in
dynamic edge environments, we evaluate the system performance
(i.e., model accuracy and resource costs in terms of communication,
memory and latency) after one adaptation step. To simulate an
adaptation step, we use 30% of the training dataset as the proxy
dataset for model pre-training on the cloud, and the remaining 70%
is distributed to edge devices as newly collected data for adaptation.

7

788



Table 1: Model accuracy of Nebula and baselines after an adaptation step.

Task Dataset Model Data
Per Device

No
Adaptation

On-device
Adaptation

Edge-cloud
Collaborative Adaptation

NA LA AN FA HFL Nebula
Sensing HAR MLP 1 subject 93.96 96.07 97.42 97.35 98.31 98.63

Image
Classification

CIFAR10 ResNet18 2 classes 73.55 84.19 87.63 73.68 70.19 90.86
5 classes 73.55 73.56 81.17 76.12 77.32 85.76

CIFAR100 VGG16 10 classes 56.79 67.10 69.89 60.81 52.54 74.20
20 classes 56.79 58.03 67.53 61.66 55.23 75.68

Speech
Recognition

Google
Speech ResNet34 5 classes 62.72 60.52 69.33 70.48 71.73 80.87

10 classes 62.72 59.04 67.91 73.55 72.34 77.16
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Figure 7: Communication costs during model adaptation.

We summarize the model accuracy after adaptation in Table 1.
The results demonstrate that Nebula outperforms the baselines in
all the learning tasks and models. Specifically, Nebula has huge
superior performance over the No Adaptation approach, indicating
the necessity to conduct adaptation. Furthermore, Nebula improves
model accuracy by 9.06% and 11.07% on average compared to on-
device adaptation and the other edge-cloud collaborative adaptation
methods, respectively. These accuracy improvements are attributed
to the effective collaboration between edge devices and the cloud.
Compared with the on-device adaptation approaches, Nebula relies
on the large cloud model to flexibly and dynamically derive the
personalized sub-model for each device. For example, in the speech
recognition task, Nebula achieves 80.87% accuracy, while AN only
obtains 69.33%. Furthermore, compared with the other edge-cloud
collaborative adaptation approaches, Nebula effectively aggregates
the updated sub-models in a module-wise manner, where each
module is updated by similar data samples, thus alleviate the impact
of non-IID data distributions, which is the major reason to the
performance degradation in FA and HFL. For example, in CIFAR10
task with 𝑚 = 2, Nebula achieves 90.86% accuracy, significantly
outperforming FA (73.68%) and HFL (70.19%).

We next report the communication costs of the edge-cloud collab-
orative adaptation strategies in Figure 7. Nebula obtains significant
communication cost savings compared to FedAvg and HeteroFL,
with average reductions of 4.60× and 2.76×, respectively. This is
because Nebula only transmits the sub-model parameters between
edge devices and the cloud. The size of these sub-models is consid-
erably smaller (e.g., 3.14× smaller on the speech recognition task)
than that of the full large cloud model. Although HeteroFL also
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Figure 8: Memory footprint (GB) during model adaptation.
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Figure 9: Training latency (s) during model adaptation.

communicates only partial model parameters, its lack of consider-
ation for non-IID data distributions leads to slower convergence
(1.83× more communication rounds on average than FedAvg).

We now measure the memory footprint in Figure 8 and per-
batch training latency in Figure 9 on Jetson Nano and Raspberry
Pi. Benefiting from the compact sub-models employed by Nebula,
we can achieve a remarkable reduction in memory footprint and
training latency compared with methods using a full model (e.g.,
FedAvg), with a reduction up to 9.28× and 11.64×, respectively.
Besides, we observe that Nebula demonstrates an even stronger
reduction in memory and latency when the cloud model is larger.
This is because Nebula can scale down the large model into compact
sub-models tailored for edge devices with limited resources.

From the above experiment results, we can conclude that Nebula
has superior performance in improving model adaptation accuracy
and reducing resource costs for edge devices.

6.3 Continuous Adaptation Performance
We further breakdown and evaluate the model accuracy of Nebula
after multiple adaptation steps on two specific edge devices. In each
adaptation step, we randomly replace 50% of the local data with new
data to simulate data shifts caused by dynamic edge environments.
We also compare two variants of Nebula to provide insights behind
its superior performance: (i) Nebula w/o local adaptation: the edge
device queries the cloud for a new sub-model in each step without
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Figure 10: Model accuracy during multiple adaptation steps. The first two tasks (HAR and CIFAR10) were performed on
Raspberry Pi, and the other two (CIFAR100 and Speech) were performed on Jetson Nano.
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Figure 11: Adaptation accuracy and adaptation time.

updating the sub-model locally. (ii) Nebula w/o cloud: the edge
device queries the cloud once for a sub-model, and updates it locally
without relying on the cloud in the following adaptation steps.

The model accuracy in each step and the average adaptation
accuracy of 100 steps are illustrated in Figure 10 and Figure 11,
respectively. Nebula consistently outperforms the baselines, achiev-
ing an average improvement in model accuracy of 1.68%, 4.33%,
4.72%, and 6.81% compared with LA approach on the four tasks.
Again, the advantages of Nebula come from the effective collabo-
ration between edge and cloud, where the powerful cloud model
provides personalized sub-models for devices, and devices transfer
new knowledge back to the cloud in return for greater adaptability.

We report the average time cost for each adaptation step in Figure
11. Nebula outperforms LA on four tasks, reducing adaptation times
by 14.5%, 45.5%, 63.5%, and 75.3%, respectively, which demonstrates
the efficiency of Nebula in adapting to new environments. The
benefits arise from compact sub-models for local training, and fast
convergence enabled by the effective module-wise aggregation.

6.4 Sub-model Performance Evaluation
We use VGG16 model trained on CIFAR100 dataset as an example
to evaluate the performance of candidate sub-models generated by
Nebula. As shown in Figure 12, each point is a sub-model generated
by randomly selecting a set of modules from each module layer in
the modularized cloud model. We have three observations: (i) Our
modularized cloud model is able to generate diverse sub-models
with varying sizes (from 3M to 25M parameters) and capabilities. (ii)
Through our module ability-enhancing training, the performance of
the sub-models is improved compared to the sub-models of the same
size without such training (e.g., the accuracy improves by 11.5% on
average with 5M sub-model parameters). (iii) Our personalized sub-
model derivation method effectively identifies near-optimal sub-
models under model size constraints, which forms a Pareto optimal
curve. Besides, often small sub-models are enough to saturate the

on-device model performance, as local tasks are typically sub-tasks
of the global task.

6.5 Sensitivity Analysis
To evaluate the robustness of Nebula, we vary on-device resources,
module granularity, and the number of participating devices during
our experiments. The results are shown in Figure 13. We conclude
the key insights as follows: (i) As expected that larger sub-models
lead to higher accuracy, but even 20%-sized sub-model is able to
achieve satisfactory performance (only 3.65% lower accuracy than
50% sub-model on average). (ii) Modularizing the large model into
more and smaller modules slightly impacts accuracy, but can pro-
vide finer granularity when adjusting the size of sub-models, indicat-
ing a tradeoff between sub-model size and accuracy. (iii) Increasing
the number of participating devices contributes little to training
speed for FedAvg, whereas benefiting from the modular design
that reduces parameter conflicts, Nebula consistently enjoys the
training speedup from more devices contributing their knowledge.

7 CONCLUSION
In this paper, we propose Nebula, an edge-cloud collaborative learn-
ing framework for continuous dynamic environment adaptation.
Based on our modular large model decomposition and combination
design, edge devices can collaborate with the cloud by efficiently
deriving compact and personalized sub-models, and effectively
contribute new knowledge back to facilitate model adaptation. Ex-
tensive experiments demonstrate that Nebula not only improves
model performance and resource efficiency under dynamic edge
environments, but also provides more flexibility for edge devices
to do on-device adaptation by module scheduling and updating.
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Figure 12: Sub-model performance under different degrees of non-IID data distributions across edge devices.
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Figure 13: Sensitivity Analysis of Nebula.
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