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Abstract—Cooperative communication is a new fashion to
alleviate the low channel utilization and signal fading prob-
lems in today’s wireless network. The success of cooperative
communication heavily depends on the efficient assignment of
relay resource. Auction theory has been applied successfully
to allocate limited resources in wireless network for decades.
However, most of the existing auction mechanisms restricted
buyers to use simple bidding language, which greatly lowers
the social welfare and relay assignment efficiency. In this paper,
we model the relay assignment as a combinatorial auction
with flexible bidding language and propose SAIL, which is
a Strategy-proof and Approximately effIcient combinatoriaL
auction for relay assignment in cooperative communication.
We show analytically that SAIL is strategy-proof and achieves
approximate efficient social welfare. Furthermore, we present
evaluation results to show that SAIL achieves a good system
performance in terms of social welfare, buyer satisfaction and
relay utilization.

Keywords-Cooperative Communication; Combinatorial Auc-
tion; Relay Selection;

I. INTRODUCTION

The wireless networks today are facing the challenges
of low channel utilization and signal fading, as more and
more wireless devices are added into networks to support
different kinds of tasks around the world. A main idea
proposed to alleviate this dilemma is using relay nodes
for cooperative communication [1, 2]. Under cooperative
communication, a source-destination pair can improve its
channel capacity and achieve spatial diversity with the help
of relay nodes. There are two primary modes in cooperative
communication: Amplify-and-Forward (AF) and Decode-
and-Forward (DF)[2], which are categorized by the relay’s
operation on the received signal before forwarding it to
destination nodes.

Cooperative communication, which exploits the nature of
broadcast and takes the advantage of antennas on wireless
devices, has been rarely deployed in practice, even in some
scenarios where network capacity continually grows such as
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Figure 1. Auction for relay assignment in cooperative communication.
Relay nodes are leased out for relay service. Source nodes bid for these
relays to assist in transmitting data traffic to destination nodes. The
auctioneer determines the winners and the prices.

cellular networks [3, 4] and cognitive radio networks [1].
Due to the extra energy overhead, few wireless devices
are willing to serve as relay nodes for cooperative com-
munication. To overcome this obstacle, many works have
been done to stimulate devices to participate in cooperative
communication [3, 5–7]. Meanwhile, other studies focus on
improving the performance of cooperative networks under
limited relays [8, 9]. Our work aims at further maximiz-
ing the social welfare (Please refer to the definition in
Section III-B) by introducing diverse bidding language to
combinatorial relay auction in cooperative communication.

For decades, auction theory [8, 10] has been regarded
as a useful tool to efficiently allocate limited resources to
achieve certain objectives, such as social welfare, revenue.
As shown in Figure 1, source nodes select relays to assist in
transmitting their traffic to destination nodes. Source nodes
are buyers in the auction, who pay for relay service. Relay
nodes, which are regarded as goods in the auction, deserve
compensatory monetary for consumptions of extra resources.
Some incentive mechanisms for relay assignment have been
developed in cooperative communication systems [11, 12].
However, these existing auction-based mechanisms restricted
buyers to bid with a simple format e.g., single-relay bid
in [3, 7] and single-bundle bid in [6]. In this paper, we
model the relay trade market as a Combinatorial Auction
with diverse bidding language, in which buyers can bid for

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/.59

380

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/.59

380

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/.59

380

2013 International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/ICPADS.2013.60

380



not only multiple relays but also multiple relay bundles.
Designing a practical combinatorial auction for relay

assignment in cooperative networks has the following chal-
lenges:

• Strategy-Proofness: Most auction mechanisms pursue
strategy-proofness by nature. Because auction partici-
pants are normally rational and their selfish strategic
behaviors always lead the auction to a unpredictable
outcome. A strategy-proof auction mechanism guaran-
tees that the dominant strategy of each participant is
to behave truthfully. Thus, the auctioneer can avoid
the market manipulation and achieve certain auction
objective based on the truthful information revealed
from the participants.

• Bid Diversity: There may exist multiple candidate relay
bundles for source nodes to choose in cooperative
communication. Any one of the the candidate relay
bundles can satisfy their quality of transmission. Bid
diversity allows buyers to submit multiple candidate
relay bundles. Consequently, buyers can have higher
opportunities to receive relay service. Meanwhile, the
performance of the relay auction, i.e., social welfare
and relay utilization, can be significantly improved.

• Social Welfare: Maximization of social welfare is a
basic and common goal of auctions. Social welfare is
generally defined as the sum of winners’ valuations in
auction. However, the maximization of social welfare
is always computationally intractable or incompatible
of other features such as strategy-proofness and bid
diversity in combinatorial auction.

In this paper, we model the relay assignment problem in
cooperative communication as a combinatorial auction, in
which the bidding language is powerful enough to express
the diverse relay requirements of buyers. Then, we jointly
consider the above challenges and propose SAIL, which is
a Strategy-proof and Approximately effIcient combinatoriaL
auction mechanism for cooperative communication. SAIL
allows buyers to submit multiple relay bundles. It greedily
determines the winners, achieving an approximate social
welfare, and applies a novel payment scheme to guarantee
the strategy-proofness.

To our best knowledge, SAIL is the first framework
to address the combinatorial auction with diverse bidding
language for cooperative communication. The main contri-
butions of this paper are listed as follows.

• First, we model the relay assignment problem in coop-
erative communication as a combinatorial auction with
diverse bidding language and propose SAIL, which
is a strategy-proof auction mechanism. SAIL is more
powerful than the conventional combinatorial auction
with single-minded bidding language.

• Second, our theoretical analysis shows that SAIL guar-
antees strategy-proofness and achieves an approximate
social welfare. The approximate ratio of SAIL is

O(
√
L×m), where L is the maximum size of relay

bundle and m is the number of relay nodes.
• Third, we evaluate SAIL using network simulation and

the results show that SAIL achieves good performance
in terms of social welfare, buyer satisfaction and relay
utilization.

The remainder of the paper is organized as follows. In
Section II, we briefly review the related works. In Section III,
we introduce the system model considered in this paper.
We then propose a combinatorial auction mechanism and
analyze its economic property and approximate ratio in Sec-
tion IV. Next we show our simulation results in Section V,
and conclude our paper in Section VI.

II. RELATED WORKS

In this section, we briefly review existing works in relay
assignment problem in cooperative communication.

The primary work on cooperative communication was
done by Laneman et al. [2], which introduced the con-
cept of cooperative communication in wireless networks
and proposed two basic cooperative communication modes,
amplify-and-forward (AF) and decode-and-forward (DF).
Zhao et al. [13] studied the optimal power allocation and
relay selection problem, pointing out that it was possible to
select the best relay to achieve the full spatial diversity when
multiple relays are available in AF mode. Based on Zhao’s
work, [4, 9] further explored the relay assignment problem
with different assumptions and circumstances. Another work
done by H. Yao et al. [14] applies cooperative communica-
tion to cognitive ratio network and deals with the cheating
problem.

Game theory has been widely used in resource man-
agement in cooperative communication to avoid the selfish
behaviors of wireless devices. Some works have been done
in encouraging wireless users to participate in cooperative
communication. Huang et al. in [8] were pioneers that
researched the resource allocation in cooperative commu-
nication with auction theory. Besides, Yang et al. have
done a series of works [3, 5, 6] in this direction. In [3],
they designed a truthful, individually rational, and budget-
balanced double auction for cooperative communication with
limited degradation on social welfare. In [6], they designed
a truthful auction mechanism to maximize the revenue based
on the distribution functions of bidders’ private valuations
in previous auctions.

However, none of the above studies ever considered the
flexible bidding format. The diverse bidding language can
greatly improve the system performance.

III. SYSTEM MODEL

In this section, we consider the network model and auction
model for cooperative communication. We also review some
of solution concepts from game theory used in this paper.
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Figure 2. Multi-relay Cooperative Communication

A. Network Model

We consider a static wireless network consisting of n
source nodes, denoted by S = {s1, s2, · · · , sn}, and m het-
erogeneous relay nodes, denoted by R = {r1, r2, · · · , rm}.
Source nodes have their own destination nodes. Each source
node si ∈ S bids for some relay nodes, denoted as a relay
bundle Ci ⊆ R, to assist their data transmission. In Figure 2,
we consider the multi-relay cooperative communication. We
adopt the network models in [6, 11], and divide the trans-
mission into two phases: listening phase and transmission
phase. In the listening phase, the source node s transmits
data to the destination node d directly. Meanwhile, due to
the broadcast nature of wireless transmission, the nearby
relay nodes can overhear the signal transmitted by the source
node. After receiving the data, the relay node(s), selected
by the source node, forward the data to the destination
using two different cooperative communication modes (i.e.,
Amplify-and-Forward (AF) and Decode-and-Forward (DF))
in the cooperative phase. Note that our auction mechanism
is independent of the cooperative model adopted by relay
nodes. In addition, how to select the optimal relay set Ci for
each source node Si is out of the scope of this paper. Readers
can refer papers [15, 16] for more information. We also
assume that there are enough orthogonal channels available
to mitigate the interference.

B. Auction Model

We consider a static scenario, where a set of hetero-
geneous relay nodes are leased out for providing relay
service, and source nodes, called “buyers”, desire some
of relay nodes for cooperative communication. In realistic
cooperative communication, relay nodes may be equipped
with different transmitting power and energy constraints, so
we regard the relay nodes as heterogeneous resource. Buyers
select some candidate subsets of relay nodes, each of which
can satisfy their requirements of transmission. Therefore,
the buyers are willing to pay for the relay service if any
one of their requested bundles is allocated, i.e., buyers have

uniform valuations over all their candidate relay bundles.
The valuation is derived from the gain of quality of service
(QoS) that a source node can achieve under the help of
allocated relay nodes.

We model the relay assignment in cooperative commu-
nication as a sealed-bid combinatorial auction with diverse
bidding language. In the sealed-bid combinatorial auction,
buyers simultaneously submit their requests and bids to a
trustworthy third-party auctioneer, such that no buyer can
know the other participants’ information. The auctioneer
makes decision on relay allocation and the payment to
winners based on the collected requests and bids.

The requests of the buyer si ∈ S are denoted as a vector
�Ci = (C1

i , C
2
i , · · · , CK

i ), where Cj
i is the subset of relay

nodes R and K is the maximum number of bundles that the
buyer can submit. Due to the limited wireless transmission
range, source nodes can only access to a subset of the relay
nodes around herself. We assume that the maximum size
of relay bundle is L. A buyer, who can submit K relay
bundles, is also called as a K-minded buyer. If K = 1, the
buyer is single-minded, which has been discussed in [6]. We
denote the bids of buyers by vector �b = (b1, b2, · · · , bn). Bid
bi means the maximum amount of money that the buyer
si is willing to pay if she wins any one of her requested
relay bundles. The bidding language in our model is a relay
request vector �Ci associated with an uniform bid bi.1 Buyers
can express their diverse relay demand using this powerful
bidding language. The valuations of buyers are denoted by
vector �v = (v1, v2, · · · , vn). Here valuation vi is the private
information of the buyer si, and is also known as type in
mechanism design. Note that the valuations of buyers may
not be necessarily equal to their submitted bids since buyers
can improve their utilities by cheating on their valuations.
Each buyer also has a clearing price which is determined and
charged by the auctioneer. The loser is free of any charge.
We denote the vector of clearing price of all buyers by �p =
(p1, p2, · · · , pn). The utility of the buyer si, denoted by ui, is
defined as the difference between her valuation and clearing
price, i.e.,

ui � vi − pi. (1)

The utility of loser is zero. We denote the utility vector by
�u = (u1, u2, · · · , un). We assume that buyers are rational
and selfish, thus their goals are to maximize their own
utilities. In contrast to the buyers’ goals, the objective of
the auctioneer is to maximize social welfare. We list its
definition below.
Definition 1 (Social Welfare): The social welfare in a co-

operative communication relay auction is the sum of winning
buyers’ valuations on their allocated bundles of relay nodes,

1Our model is the known single value model in [17], which falls into
the family of single parameter domains defined in paper [18]. We leave
the unknown single value model [19] and multi-parameter domains to our
future works.
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i.e.,

SW �
∑
i∈Sw

vi, (2)

where Sw is the set of winners.
We assume in this paper that buyers do not collude with

each other and do not cheat on their requested relay bundles,
while leaving these problems to our future works.

C. Solution Concepts

We review some important solution concepts from game
theory. First, we recall the definition of Dominant Strategy.
Definition 2 (Dominant Strategy [20][21]): Strategy si

is player i’s dominant strategy, if for any strategy s′i �= si
and any other player’s strategy profile s−i:

ui(si, s−i) ≥ ui(s
′
i, s−i).

Intuitively, a dominant strategy for a player is the one
that maximizes the player’s utility regardless of what strate-
gies the other players chose. We recall the Strategy-proof
Mechanism definition in the following.
Definition 3 (Strategy-Proof Mechanism [22]): A mech-

anism is strategy-proof if it satisfies Incentive-Compatibility
(IC) and Individual-Rationality (IR).

Incentive-compatibility means truthfully revealing privacy
information is the dominant strategy for each player, and
individual-rationality requires that the player’s utility can not
be less than the utility she can get when staying out of the
mechanism.

IV. A COMBINATORIAL AUCTION FOR COOPERATIVE

COMMUNICATION

In this section, we discuss the detailed design of com-
binatorial auction for relay assignment in cooperative com-
munication. We first present the relay assignment problem
in the form of binary program, which is proved to be NP-
hard. To overcome the high time complexity, we design a
computationally efficient combinatorial auction mechanism,
namely SAIL, which achieves both strategy-proofness and
approximate social welfare. Finally, we analyze the eco-
nomic property and approximate ratio of SAIL.

A. Formalization of Relay Assignment

Based on the cooperative communication system model,
we formulate the relay assignment procedure as a classic
combinatorial optimization problem. The inputs of the prob-
lem are the relay requests and bids submitted by buyers,
while the outcomes are the set of winning buyers and their
assigned relay bundles.

Given the matrix of requests C =
(
�C1, �C2, · · · , �Cn

)
and

the bids vector �b, the auctioneer makes decision on relay
assignment with the objective of maximizing social welfare.
The framework of relay node assignment can be described
and clarified by a binary program. The variables in the
program are x(si, C

j
i ) ∈ {0, 1}, 1 ≤ j ≤ K, 1 ≤ i ≤ n.

We denote x(si, C
j
i ) = 1 if the buyer si wins the relay

bundle Cj
i , otherwise, x(si, C

j
i ) = 0. Here we use bi, instead

of vi, to calculate the social welfare. This is because the
strategy-proofness (discussed in Section IV-C) guarantees
that bi = vi is the dominate strategy for each buyer. We
write the binary program as follows:
Objective:

Maximize
n∑

i=1

⎛
⎝ K∑

j=1

x(si, C
j
i )

⎞
⎠× bi

Subject to:∑
∀Cj

i
,rt∈Cj

i

x(si, C
j
i ) ≤ 1, ∀rt ∈ R (3)

K∑
j=1

x(si, C
j
i ) ≤ 1, ∀si ∈ S (4)

x(si, C
j
i ) ∈ {0, 1}, ∀si ∈ S, 1 ≤ j ≤ K. (5)

Here constraint (3) indicates the quantity limitation of
relay nodes i.e.a relay node can only be assigned to one
buyer. Constraint (4) depicts the condition that only one
request can be granted to one buyer.

We can find the optimal social welfare in small scale
auction by solving the binary program. Unfortunately, it
becomes computationally intractable when the number of
buyers and the number of relays are large. We can prove
that the binary program is NP-hard by reducing it to the
exact cover problem. The well-known VCG mechanism
becomes useless when the optimal social welfare can not
be achieved. In next section, we design a computationally
efficient allocation algorithm, which achieves approximate
social welfare. Combined with a novel payment scheme, we
propose a strategy-proof combinatorial auction mechanism.

B. Design of SAIL

In general settings, it has been proved that there is
no combinatorial auction that can simultaneously achieves
strategy-proofness and approximate efficiency in polynomial
time [23][24]. Our setting, actually, is a special case, in
which each buyer has an uniform valuation over all her
requests. This practical assumption in cooperative commu-
nication gives birth to the strategy-proof and approximate
efficient auction mechanism with polynomial time complex-
ity.

SAIL is consisted of two main components: relay assign-
ment and payment scheme. For convenience to introduce the
rationale of SAIL, we define bid diameter di as the largest
size of requested bundle of the buyer si.

di � max
1≤j≤K

(|Cj
i |). (6)

In relay assignment algorithm, we first sort buyers in non-
increasing order with the value of expression bi/

√
di. The

sorted list is denoted by G. To break the tie, we follow the
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Algorithm 1: Relay Node Assignment Algorithm for
SAIL
Input: The source nodes set S, the relay nodes set R,

The relay node requests matrix C and the bid
vector �b.

Output: The set of winners Sw, the set of relay
bundles allocated to the corresponding
winners A.

Sw ← ∅;A← ∅;1

foreach si ∈ S do2

di = max
1≤j≤K

(|Cj
i |);3

end4

Sort the buyers in non-increasing order of bi√
di

:5

G : b1√
d1
≥ b2√

d2
≥ · · · ≥ bn√

dn
;

foreach si ∈ S do6

Sort requested relay bundles of the buyer si in7

non-decreasing order of bundle size
∣∣∣Cj

i

∣∣∣:∣∣C1
i

∣∣ ≤ ∣∣C2
i

∣∣ ≤ · · · ≤ ∣∣CK
i

∣∣;
for j = 1, 2, · · · ,K do8

if Cj
i ∩A = ∅ then9

Sw ← Sw ∪ si;10

A← A ∪ Cj
i ;11

break;12

end13

end14

end15

return (Sw, A);16

lexicographic order of buyer ID, which is bid independent.
Then we greedily check the buyers following the order in
G. A buyer is selected as a winner if she has a relay bundle
that does not conflict with any relay nodes that have been
allocated to the previous winners. If multiple bundles are
available for one buyer, we select the one with the smallest
size. Intuitively, the smaller bundle leads to less conflict with
the buyers behind her in list G.

The pseudo-code of relay node assignment process is
shown in Algorithm 1. The sorting step in line 5 is the
most time consumption part, thus the time complexity of
Algorithm 1 is O(n log(n)), where n is the number of
buyers.

Now we consider the payment scheme of SAIL. Specifi-
cally, the clearing prices of losers are zero and the payments
of the winners are determined by their critical prices, which
are defined as follow.
Definition 4 (Critical Price): The critical price of the

buyer si is the minimal value that she must bid for winning
the auction, i.e., if the buyer si bids higher than her critical
price, she will win the auction, if she bids lower than that,
she will lose the auction.

The critical price of the winning buyer si can be found

in the following steps. We first remove the buyer si from
the auction. Then, we run Algorithm 1 with the input(
S−i, R,C−i, �b−i

)
, in which

(
C−i, �b−i

)
represents the

request matrix and bid vector excluding the bidding infor-
mation of the buyer si. After executing the Algorithm 1, we
can obtain the critical buyer of si, denoted as cb(i). The
critical buyer cb(i) is the first buyer in the ordered list G

such that if we allocate the relay nodes to cb(i), buyer si
will lose the auction. Finally, the critical price of buyer si
can be calculated as:

pi �
bcb(i)√
dcb(i)

×
√
di. (7)

Note that the critical buyer of si may not exist, which
happens when si does not conflict with any other buyers.
We set pi = 0 in this case. From the discussion above, we
can observe that the critical price is independent of buyers’
bids. Charging winners the critical prices guarantees the
strategy-proofness property, which will be analyzed in the
next section.

C. Analysis of SAIL

We first prove the strategy-proofness of SAIL.
Theorem 1: SAIL is a strategy-proof combinatorial auc-

tion mechanism for relay assignment in cooperative commu-
nication.

Proof: We prove that SAIL satisfies both Incentive-
Compatibility and Individual-Rationality. We first show that
truthfully revealing the private valuation on relay resource
is the dominant strategy for each buyer. We distinguish the
following two scenarios:

• If the buyer si wins when bidding truthfully, i.e., bi =
vi, then obviously she can not improve her utility any
more because her critical price is independent of her
bid.

• If the buyer si loses when bidding truthfully, her
position in the ordered list G must be behind her critical
buyer cb(i), thus we have

bcb(i)√
dcb(i)

≥ vi√
di
. Obviously,

buyer si still cannot win the auction by decreasing her
bid. Therefore, we consider the case, in which buyer
si wins the auction by increasing her bid to b′i, i.e.,
b′i ≥ vi. The utility of buyer si when she cheats on bid
is

u′i = vi − p′i

= vi −
bcb(i)√
dcb(i)

×
√
di

=
√
di

(
vi√
di
− bcb(i)√

dcb(i)

)

≤ 0.

The utility becomes negative when buyer si deviates
her bid from the truthful valuation.
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In the above two cases, buyers can not increase their
utilities by changing their bids, which satisfies the incentive
compatibility property.

Now we consider the utility of the winner si.

ui = vi − pi

=
√
di

(
vi√
di
− bcb(i)√

dcb(i)

)
.

Since si is a winner, she must be placed in front of her
critical buyer cb(i) in the list G, thus we have ui ≥ 0.
For the loser, her utility is zero. Therefore, SAIL satisfies
individual rationality.

Since SAIL satisfies both IC and IR, according to defi-
nition 2, our claim holds.

Before we analyze the approximate ratio for SAIL, we in-
troduce the concept of Maximum Eccentricity Ratio, denoted
as eS , for set of buyers S.
Definition 5 (Maximum Eccentricity Ratio): The maxim-

um eccentricity ratio for set of buyers S is the maximum
ratio of the maximum size of requested relay bundles to the
minimum size of requested relay bundles over all buyers,
i.e.,

eS � max
1≤i≤n

⎛
⎜⎝ max

1≤j≤K

(∣∣∣Cj
i

∣∣∣)
min

1≤j≤K

(∣∣∣Cj
i

∣∣∣)
⎞
⎟⎠ . (8)

In the worst case, the maximum eccentricity ratio is the
maximum size of relay bundle L, i.e., eS ≤ L.

Now we present the approximate ratio of SAIL. Let
S∗w denote the set of winners in optimal allocation. Let
A∗ denote the set of relay node bundles allocated to the
corresponding winners in S∗w. The set of winners and
corresponding set of relay bundles derived by Algorithm 1
is denoted as (Sw, A). For each si ∈ Sw, we also define S∗i
as the set of winners in S∗w that satisfies:

1) For any sj ∈ S∗i , sj either appears behind of si in the
ordered list G or sj is just si itself,

2) For any sj ∈ S∗i , her winning relay bundle A∗j conflicts
with the assigned relay bundle of si, i.e., A∗j ∩Ai �= ∅.

The approximate ratio of SAIL is implied by the following
lemma.
Lemma 1: For each si ∈ Sw, the sum of valuations from

buyers in S∗i can be bounded in∑
sj∈S∗

i

vj ≤
√
eS ×m× vi.

Proof: Let si be any winner in Sw. For each sj ∈ S∗i ,
we have bj√

dj

≤ bi√
di

. Since for any buyer, we have bi = vi

guaranteed by the strategy-proofness property in Theorem 1.
We can translate the former inequality to vj ≤ vi√

di

√
dj .

Summing over all sj ∈ S∗i , we get∑
sj∈S∗

i

vj ≤ vi√
di

∑
sj∈S∗

i

√
dj . (9)

Applying the Cauchy-Schwarz inequality on
∑

sj∈S∗

i

√
dj , we

can bound ∑
sj∈S∗

i

√
dj ≤

√
|S∗i |

√ ∑
sj∈S∗

i

dj . (10)

Since (S∗w, A
∗) is a feasible allocation, for any two winners

si, sj ∈ S∗w, si �= sj , it holds A∗i ∩ A∗j = ∅. And for any
sj ∈ S∗i , A∗j intersects with Ai at least one relay node. We
can get that

|S∗i | ≤ di. (11)

On the other hand, we have dj ≤ eS
∣∣A∗j ∣∣ for all sj ∈ S∗i

according to the definition of eS . We can get
∑

sj∈S∗

i

dj ≤
eS

∑
sj∈S∗

i

∣∣A∗j ∣∣ ≤ eS ×m. Therefore, we can obtain:∑
sj∈S∗

i

dj ≤ eS ×m. (12)

Applying (11) and (12), we further relax the inequality (10)
to ∑

sj∈S∗

i

√
dj ≤

√
di
√
eS ×m. (13)

Integrating (9) and (13), we finally get for each si ∈ Sw,∑
sj∈S∗

i

vj ≤
√
eS ×m× vi. (14)

Now we give out the following theorem.
Theorem 2: The approximate ratio of SAIL is O(m),

where m is the number of relay nodes.
Proof: From the lemma 1, we have

∑
sj∈S∗

i

vj ≤
√
eS ×m× vi for every si ∈ Sw. Since S∗w ⊆

⋃
si∈Sw

S∗i , in

which S∗i follows the definition in the lemma 1, we finally
get ∑

si∈S∗

w

vi ≤
∑

si∈Sw

∑
sj∈S∗

i

vj ≤
√
eS ×m

∑
si∈Sw

vi. (15)

Since the upper bound of eS is L, the approximate ratio
is O

(√
L×m

)
.

In single-relay cooperative communication, buyers can
request at most one relay, i.e. the maximum eccentricity ratio
eS is equal to 1, and the approximate ratio is promoted to
a better one O(

√
m). The approximate ratio is analysed in

the worst-case scenarios. The evaluation results, presented in
the next section, indicate that SAIL approaches the optimal
social welfare in average case.

V. EVALUATION RESULTS

In this section, we evaluate the performance of SAIL and
study the impact of diverse bidding language on system
performance.
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Figure 3. Performance of SAIL when there are 100 relay nodes.
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Figure 4. Performance of SAIL when there are 100 buyers.

A. Methodology

We implement SAIL and evaluate its performance using
network simulation. We also solve the binary program to
get an optimal relay assignment in small scale auction. The
optimal relay assignment is denoted by OPT.

We evaluate SAIL in two different network scenarios. In
the first case, the number of relays is fixed at 100 and the
number of buyers varies from 10 to 200 with increment
of 10. In the second case, we fix the number of buyers at
100 and vary the number of relays from 10 to 200 with
increment of 10. We evaluate the performance of SAIL and
OPT when buyers have different bidding languages. The
maximum number of bundles that buyers can submit is set to
1 and 3. The valuations of buyers are randomly distributed
over the interval (0, 1]. The size of relay bundle is a random
number uniformly distributed over [1, 10]. These parameters
in our simulation are similar to those used in [6]. All the
results are averaged over 50 runs.

We consider the following three performance metrics:

• Social Welfare: Social welfare is the sum of winners’
valuations on their assigned bundles of relay nodes.
Social welfare is the maximum optimization objective
in our auction mechanism.

• Satisfaction Ratio: Satisfactory ratio is the percentage
of winners among all buyers.

• Relay Utilization Ratio: Relay utilization ratio is the
percentage of assigned relay nodes among all relays.

B. Performance of SAIL

Figure 3 shows the evaluation results when there are 100
relay nodes and the number of buyers varies from 10 to
200 with increment of 10. We see that SAIL approaches
OPT in all three metrics. SAIL achieves a near-optimum in
terms of social welfare and buyer satisfactory ratio while
there is a slightly larger difference in relay utilization ratio.
This is partly because the relay assignment algorithm in
SAIL always chooses the bundle with the smallest size
when multiple bundles are available for a buyer. This result
also indicates that SAIL will save more unnecessary relays
when achieving a certain social welfare. We observe the
impact of bidding language on system performance. The
evaluation results show that both SAIL and OPT achieve
a higher system performance when buyers can use diverse
bidding language. The reason is that multi-minded buyers
(i.e., K ≥ 2) have higher possibilities to obtain relay bundles
than single-mined buyers (i.e., K = 1). In other words, the
bidding diversity leads to more trades in an auction, which
can improve the performances of an auction. Consequently,
the diverse bidding language is an efficient strategy to
improve the system performance. Figure 3 also shows that
with the increasing number of buyers, the social welfare and
relay utilization ratio increase, while the satisfaction ratio
decreases. On one hand, the larger number of buyers leads
to more intense competition on limited relay nodes, thus the
satisfaction ratio decreases. On the other hand, SAIL can
allocate relay nodes more efficiently among more buyers,
hence the social welfare and relay utilization ratio increase.
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Figure 4 shows the evaluation results when there are 100
buyers and the number of relay nodes varies from 10 to 200
with increment of 10. Again, SAIL draws near OPT in all
three metrics whenever K = 1 or K = 3. We can also
observe in Figure 4 that when the number of relay nodes
increases, the social welfare and satisfaction ratio increase
and the relay utilization ratio decreases. Larger supply of
leasing relay nodes leads to more trades in the auction, thus
the social welfare and satisfaction ratio increase. Since the
number of buyer is fixed, the relay utilization ratio decreases
when the number of relay nodes increases.

To sum up, we can conclude that SAIL sacrifices lim-
ited system performance to guarantee strategy-proofness.
Furthermore, SAIL with diverse bidding language performs
better in all three metrics compared to SAIL with simple bid-
ding language, which indicates that diverse bidding language
is really an efficient tool to improve the system performance.

VI. CONCLUSIONS

In this paper, we have studied the relay assignment
problem in cooperative communication. We have jointly
considered the relay assignment and payment scheme. Since
achieving an optimal social welfare requires to solve a
NP-hard problem, we present SAIL, which is a strategy-
proof and approximately efficient combinatorial auction
mechanism with diverse bidding language. Powerful bid-
ding language allows buyers to express their diverse relay
requirements. Our analysis has shown that SAIL satisfies
strategy-proofness and achieves a good approximate social
welfare. Our simulation results verify our analysis and show
that diverse bidding language can significantly improve
the system performance in terms of social welfare, buyer
satisfaction ratio and relay utilization.

For future works, Designing an auction mechanism to
avoid cheating behaviour on relay bundles is an interesting
research direction. It is also interested to design a privacy
preserving auction, considering the privacy of relay nodes.
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