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Abstract—The society’s insatiable appetites for personal data
are driving the emergency of data markets, allowing data con-
sumers to launch customized queries over the datasets collected
by a data broker from data owners. In this paper, we study
how the data broker can maximize her cumulative revenue by
posting reasonable prices for sequential queries. We thus propose
a contextual dynamic pricing mechanism with the reserve price
constraint, which features the properties of ellipsoid for efficient
online optimization, and can support linear and non-linear
market value models with uncertainty. In particular, under low
uncertainty, our pricing mechanism provides a worst-case regret
logarithmic in the number of queries. We further extend to other
similar application scenarios, including hospitality service and
online advertising, and extensively evaluate all three application
instances over MovieLens 20M dataset, Airbnb listings in U.S.
major cities, and Avazu mobile ad click dataset, respectively.
The analysis and evaluation results reveal that our proposed
pricing mechanism incurs low practical regret, online latency,
and memory overhead, and also demonstrate that the existence
of reserve price can mitigate the cold-start problem in a posted
price mechanism, and thus can reduce the cumulative regret.

Index Terms—personal data market, revenue maximization,
contextual dynamic pricing, reserve price

I. INTRODUCTION

With the proliferation of Internet of Things (IoTs), tremen-
dous volumes of data are collected to monitor human behaviors
in daily life. However, for the sake of security, privacy, or busi-
ness competition, most of data owners are reluctant to share
their data, resulting in a large number of data islands. The
data isolation status locks the value of personal data against
potential data consumers, such as commercial companies,
financial institutions, medical practitioners, and researchers. To
facilitate personal data circulation, more and more data brokers
have emerged to build bridges between the data owners and
the data consumers. Typical data brokers in industry include
Factual, DataSift, Datacoup, CitizenMe, and CoverUS. On
one hand, a data broker needs to adequately compensate the
privacy leakages of data owners during the usage of their
data, and thus incentivize them to contribute private data. On
the other hand, the data broker should properly charge the
online data consumers for their sequential queries over the
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collected datasets, since the behaviors of both underpricing
and overpricing can incur the loss of revenue at the data
broker. Such a data circulation ecosystem is conventionally
called “data market” in the literature [1].

In this paper, we study how to trade personal data for
revenue maximization from the data broker’s standpoint in
online data markets. We summarize three major design chal-
lenges as follows. The first and the thorniest challenge is that
the objective function for optimization is quite complicated.
The principal goal of a data broker in data markets is to
maximize her cumulative revenue, which is defined as the
difference between the prices of queries charged from the
data consumers and the privacy compensations allocated to
the data owners. Let’s examine one round of data trading as
follows. Given a query, the privacy leakages together with the
total privacy compensation, regarded as the reserve price of
the query, are virtually fixed. Thus, for revenue maximization,
an ideal way for the data broker is to post a price, which
takes the larger value of the query’s reserve price and market
value. However, the reality is that the data broker does not
know the exact market value, and can only estimate it from
the context of the current query and the historical transaction
records. Of course, loose estimations will lead to different
levels of regret: if the reserve price is higher than the market
value, the query definitely cannot be sold, and the regret is
zero; if the reserve price is no more than the market value,
a slight underestimation of the market value incurs a low
regret, whereas a slight overestimation causes the query not
to be sold, generating a high regret. Therefore, the initial
goal of revenue maximization can be equivalently converted to
regret minimization. Considering even the single-round regret
function is piecewise and highly asymmetric, it is nontrivial for
the data broker to perform optimization for multiple rounds.

Yet, another challenge lies in how to model the market
values of the customized queries from the data consumers.
To minimize the regret in pricing online queries, the piv-
otal step for the data broker is to gain a good knowledge
of their market values. However, markets for personal data
significantly differ from conventional markets in that each
data consumer as a buyer, rather than the data broker as a
seller, can determine the product, namely a query. In general,
each query involves a concrete data analysis method and a
tolerable level of noise added to the true answer, which are
both customized by a data consumer [2]. Hence, the queries
from different data consumers are highly differentiated, and
are uncontrollable by the data broker. This striking property
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Fig. 1. A general system model of online personal data markets. (The smile indicates that the posted price is accepted and a deal is made.)

further implies that most of the dynamic pricing mechanisms,
which target identical products or a manageable number of
distinct products, cannot apply here. Besides, existing works
on data pricing, which either considered a single query [3] or
investigated the determinacy relation among multiple queries
[2], [4]–[10], but ignored whether the data consumers accept
or reject the marked prices, and thus omitted modeling the
market values of queries, are parallel to this work.

The ultimate challenge comes from the novel online pricing
with reserve price setting. For the market value estimation
of a query, the data broker can only exploit the current and
historical queries. Thus, the pricing of sequential queries can
be viewed as an online learning process. In addition to the
usual tension between exploitation and exploration, our pricing
problem also needs to incorporate three atypical aspects.
First, the feedback after trading one query is very limited.
In particular, the data broker can only observe whether the
posted price for the query is higher than its market value or
not, but cannot obtain the exact market value, which makes
standard online learning algorithms inapplicable. Second, the
reserve price essentially imposes a lower bound on the posted
price beyond the market value estimation, while the ordering
between the reserve price and the market value is unknown.
Besides, the impact of such a lower bound on the whole
learning process has not been studied. Last but not least, the
online mode requires our design of the posted price mechanism
to be quite efficient. In other words, the data broker needs to
choose each posted price and further update her knowledge
about the market value model with low latency.

Jointly considering the above three challenges, we propose a
contextual dynamic pricing mechanism with the reserve price
constraint for the data broker to maximize her revenue in
online personal data markets. For problem formulation, we
first adopt contextual/hedonic pricing to model the market
values of different queries, which are a certain linear or non-
linear function of their features plus some uncertainty. Besides,
we choose the state of the privacy compensations under a
query as its feature vector. In fact, such a feature representation
inherits the key principle of cost-plus pricing. For posted
price mechanism design, we start with the fundamental linear
model, and covert the market value estimation problem to
dynamically exploiting and exploring the market values of
different features, i.e., the weight vector in the linear model.
Specifically, depending on whether a sale occurs or not in
each round, the data broker can introduce a linear inequality
to update her knowledge set about the weight vector. Thus,

the raw knowledge set is kept in the shape of polytope, which
makes the real-time task of predicting the range of a query’s
market value computationally infeasible. To handle this prob-
lem, we replaces the raw knowledge set with its smallest
enclosing ellipsoid, namely Löwner-John ellipsoid. Under the
ellipsoid-shaped knowledge set, it only requires a few matrix-
vector and vector-vector multiplications to obtain a lower
bound and an upper bound on each query’s market value. By
further incorporating the total privacy compensation, namely
the reserve price, as an additional lower bound, we define a
conservative posted price and an exploratory posted price for
a query. These two kinds of posted prices give different biases
to the immediate rewards (exploitation) and the future rewards
(exploration). Besides, the choice of which price in a certain
round hinges on the size measure of the latest knowledge set.
We further investigate how to tolerate uncertainty, and mainly
introduce a “buffer” in posting the price and updating the
knowledge set. We finally extend to several non-linear models
commonly used in interpreting market values, including log-
linear, log-log, logistic, and kernelized models.

We outline our key contributions in this paper as follows.
• To the best of our knowledge, we are the first to study

trading personal data for revenue maximization, from the data
broker’s point of view in online data markets. Additionally,
we formulate this problem into a contextual dynamic pricing
problem with the reserve price constraint.
• Our proposed pricing mechanism features the properties of

ellipsoid to exploit and explore the market values of sequential
queries effectively and efficiently. It facilitates both linear
and non-linear market value models, and is robust to some
uncertainty. In particular, the worst-case regret under low
uncertainty is O(max(n2 log(T/n), n3 log(T/n)/T )), where
n is the dimension of feature vector and T is the total number
of rounds. Besides, the time and space complexities are O(n2).
Furthermore, our market framework can also support trading
other similar products, which share customization, existence
of reserve price, and timeliness with online queries.
• We extensively evaluate three application instances over

three real-world datasets. The analysis and evaluation results
reveal that our pricing mechanism incurs low practical regret,
online latency, and memory overhead, under both linear and
non-linear market value models and over both sparse and dense
feature vectors. In particular, (1) for the pricing of noisy linear
query under the linear model, when n = 100 and the number
of rounds t is 105, the regret ratio of our pricing mechanism
with reserve price (resp., with reserve price and uncertainty) is
7.77% (resp., 9.87%), reducing 57.19% (resp., 45.64%) of the
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regret ratio than a risk-averse baseline, where the reserve price
is posted in each round; (2) for the pricing of accommodation
rental under the log-linear model, when n = 55, t = 74, 111,
and the ratio between the natural logarithms of market value
and reserve price is set to 0.6, the regret ratio of our pricing
mechanism is 3.83%, reducing 77.46% of the regret ratio
compared with the risk-averse baseline; (3) for the pricing
of impression under the logistic model, when n = 1024 and
t = 105, the regret ratios of our pure pricing mechanism are
8.04% and 0.89% in the spare and dense cases, respectively.
Furthermore, the online latencies of three applications per
round are in the magnitude of millisecond, and the memory
overheads are less than 160MB.
• We instructively demonstrate that the reserve price can

mitigate the cold-start problem in a posted price mechanism,
and thus can reduce the cumulative regret. Specifically, for
the pricing of noisy linear query, when n = 20 and t = 104,
our pricing mechanism with reserve price (resp., with reserve
price and uncertainty) reduces 13.16% (resp., 10.92%) of the
cumulative regret than without reserve price; for the pricing
of accommodation rental, as the reserve price is approaching
the market value, its impact on mitigating cold start is more
evident. These findings may be of independent interest.

II. TECHNICAL OVERVIEW

In this section, we introduce system model and problem
formulation, and also sketch the fundamental design.

A. System Model

As shown in Fig. 1, we consider a general system model for
online personal data markets. There are three kinds of entities:
data owners, a data broker, and data consumers.

The data broker first collects massive personal data from
data owners. Then, the data consumers comes to the data
market in an online fashion. In round t ∈ [T ], a data consumer
arrives, and makes her customized query Qt over the collected
dataset. Specifically, Qt comprises a concrete data analysis
method and a tolerable level of noise added to the true
answer [2]. Here, the noise perturbation can not only allow the
data consumer to control the accuracy of a returned answer,
but also preserve the privacies of data owners.

Depending on the query Qt and the underlying dataset,
the data broker quantifies the privacy leakage of each data
owner, and needs to compensate her if a deal occurs. The data
broker then offers a price pt to the data consumer. If pt is no
more than the market value vt of Qt, this posted price will
be accepted. The data broker charges the data consumer pt,
returns the noisy answer, and compensates the data owners as
planned. Otherwise, this deal is aborted, and the data consumer
goes away. We note that to guarantee non-negative utility at
the data broker no matter whether a deal occurs in round t or
not, the posted price pt should be no less than the total privacy
compensation qt, where qt functions as the reserve price, and
can be pre-computed when given Qt.

B. Problem Formulation

We now formulate the regret minimization problem for
pricing sequential queries in online personal data markets.

We first model the market values of queries. We use an ele-
mentary assumption from contextual pricing in computational
economics [11]–[13] and hedonic pricing in marketing [14],
[15], which states that the market value of a product is a
deterministic function of its features. Here, the product is a
query, and the function can be linear or non-linear. Besides,
to make the pricing model more robust, we allow for some
uncertainty in the market value of each query. In particular,
for a query Qt, we let xt ∈ R

n denote its n-dimensional
feature vector, let f : Rn �→ R denote the mapping from the
feature vector xt to the deterministic part in its market value,
and let δt ∈ R denote the random variable in its market value,
which is independent of xt. In a nutshell, vt = f(xt) + δt.

We next identify the features of a query for measuring
its market value. One naive way is to directly encode the
contents of the query, including the data analysis method
and the noise level. However, the query alone, especially
the data analysis method, is hard to embody its economic
value. Thus, we turn to utilizing the underlying valuations
from massive data owners about the query, namely the privacy
compensations, as the feature vector. We give some comments
on such a feature representation: (1) The market value of a
query depending on the privacy compensations inherits the
core principle of cost-plus pricing [16], [17], and has been
widely used in personal data pricing [2], [9], [10]. In particular,
cost-plus pricing states that the market value of a product
is determined by adding a specific amount of markup to its
cost. Here, the cost is the total privacy compensation, the
determinacy is reflected in the feature representation, and the
markup is realized by setting the reserve price constraint.
(2) The privacy compensations are observable by the data
broker, and can help her to discriminate the economic values
of distinct queries. For example, the privacy compensations
are higher, which implies that the privacy leakages to the
data owners are larger, the knowledge discovered by the data
consumer is richer, and thus the market value of the query
to the data consumer should be higher. (3) Considering the
large scale of data owners, the dimension of feature vector
can be prohibitively high. Under such circumstance, we can
apply some celebrated dimensionality reduction techniques,
e.g., Principal Components Analysis (PCA). Yet, we can also
apply aggregation/clustering to the privacy compensations, and
regard the aggregate results as the feature vector, where its
dimension n controls the granularity of aggregation. For exam-
ple, we can sort the privacy compensations, and evenly divide
them into n partitions. We sum the privacy compensations
falling into a certain partition, and thus obtain a feature. In
this aggregation pattern, one extreme case is n = 1, where
the only feature is the total privacy compensation. Another
extreme case is n equal to the number of data owners, where
every feature corresponds to a data owner’s individual privacy
compensation.

We finally define the cumulative regret of the data broker
due to her limited knowledge of market values. We consider
a game between the data broker and an adversary. During
this game, the adversary chooses the sequence of queries
Q1, Q2, . . . , QT , selects the mapping f , but cannot control
the uncertainty δt in each round t, i.e., she can determine the

1980

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 21,2022 at 09:06:05 UTC from IEEE Xplore.  Restrictions apply. 



part f(xt) in the market value vt. In contrast, the data broker
can only passively receive each query Qt, and then post a price
pt. If the posted price is no more than the market value, i.e.,
pt ≤ vt, a deal occurs, and the data broker earns a revenue of
pt. Otherwise, the deal is aborted, and the data broker gains
no revenue. We define the regret in round t as the difference
between the adversary’s revenue and the data broker’s revenue
for trading the query Qt, i.e.,

Rt =

{
0 if qt > vt,

max
p∗
t

p∗t Pr
δt
(p∗t ≤ vt)− pt1 {pt ≤ vt} otherwise.

Here, in the first branch, if the reserve price and thus the posted
price are higher than the market value, there is no regret.
This is because under such circumstance, no matter whether
the adversary knows the market value in advance or the data
broker does not, there is definitely no deal/revenue. Besides,
p∗t is the adversary’s optimal posted price to maximize her
expected revenue in round t, where the expectation is taken
over δt. When δt is omitted, the adversary will just post the
market value, if the reserve price is no more than the market
value, i.e., qt ≤ p∗t = vt, and Rt will change to:

Rt =

{
0 if qt > vt,

vt − pt1 {pt ≤ vt} otherwise.
(1)

At last, considering the queries can be chosen adversarially,
e.g., by other competitive data brokers or malicious data
consumers, our design goal is to minimize the total worst-case
regret accumulated over T rounds.

C. Fundamental Design Under Linear Market Value Model
Due to space limitations, we sketch our proposed pricing

mechanism under the linear market value model with σ-
subGaussian uncertainty in Algorithm 1. Interested readers
can refer to our full article in [18] for design principles,
design details, analyses of complexities and worst-case regret,
extensions to non-linear market value models, application
scenarios, evaluation results, and related work.
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