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Abstract

Bike sharing systems have been widely deployed around the
world in recent years. A core problem in such systems is to
reposition the bikes so that the distribution of bike supply is
reshaped to better match the dynamic bike demand. When
the bike-sharing company or platform is able to predict the
revenue of each reposition task based on historic data, an ad-
ditional constraint is to cap the payment for each task below
its predicted revenue. In this paper, we propose an incentive
mechanism called FEITE to incentivize users to park bicycles
at locations desired by the platform toward rebalancing sup-
ply and demand. FEITE possesses four important economic
and computational properties such as truthfulness and bud-
get feasibility. Furthermore, we prove that when the paymen-
t budget is tight, the overall revenue will still exceed or e-
qual the budget. Otherwise, FEITE achieves 2-approximation
as compared to the optimal (revenue-maximizing) solution,
which is close to the lower bound of at least

√
2 that we also

prove. Using an industrial dataset obtained from a large bike-
sharing company, our experiments show that FEITE is effec-
tive in rebalancing bike supply and demand and generating
high revenue as a result, which outperforms several bench-
mark mechanisms.

Introduction
Bike sharing is a new transportation mode with many ben-
efits in offering convenience and flexibility as well as low-
ering economic cost. By 2015, more than 7000 bike shar-
ing systems have been deployed around the world (Laporte,
Meunier, and Calvo 2015). However, the flexibility of bike
sharing systems, in particular the “anywhere-parking” con-
venience, brings forth a serious issue of imbalance between
the distribution of bike supply and demand. This leads to
many users being unable to find a bicycle nearby when they
need it, and ultimately affects company revenue adversely.
Hence there is an urgent need to rebalance the supply and
demand by repositioning the bicycles, which we refer to as
a bike rebalancing problem.

There are two approaches to solving this problem. One
is to relocate bicycles by the staff of the bike-sharing com-
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pany or platform, for example using trucks. This involves
route planning and typically uses linear programming tech-
niques, as has been extensively studied with static mod-
els (Maggioni et al. 2019; Schuijbroek, Hampshire, and
Van Hoeve 2017) and dynamic models (Kek et al. 2009;
Angeloudis, Hu, and Bell 2014). However, this approach is
costly and not eco-friendly in terms of carbon footprint.

Another approach is to design incentive mechanisms to
motivate users to reposition bicycles at platform-desired lo-
cations for rebalancing supply and demand. This falls un-
der the research area of crowdsourcing (Fricker and Gast
2016) which takes advantage of the power of crowd to com-
plete tasks that are otherwise difficult (Luo et al. 2016). With
this idea, Ghosh and Varakantham (2017) proposed a solu-
tion that generates repositioning tasks together with the use
of bike trailers, and pays users using the Vickrey-Clarke-
Groves (VCG) mechanism. Singla et al. (2015) introduced a
crowdsourcing method that offers users monetary incentive
for parking their bikes at recommended locations.

However, most of existing mechanisms for this problem
have not considered the predicted revenue (or value) of a
repositioning task. Such predicted values are made avail-
able in recent years, due to the prosperity of deep learn-
ing technique which can well predict the bike demand
in such systems (Yang et al. 2016; Li and Zheng 2019;
Zhang et al. 2016). With this predictive power, the expect-
ed revenue or value of a repositioning task can be easily
obtained. Therefore, the platform would assign a task to a
user only if the payment to the user does not exceed the
predicted revenue. This constraint is akin to the “reserve
price” in forward auctions which are used to promote rev-
enue. In our problem, it is used to better control the pay-
ments and thereby promote the profit of the platform. This
constraint is generally overlooked in prior work on bike
sharing or bipartite matching (Angelopoulos et al. 2018; ?;
Vaze 2017), making them no longer applicable. For instance
with classic budget feasible mechanisms such as (Singer
2010), the payment to a winning user is determined by the
bids of other users and/or the budget. But in our case, this
payment is invalid if it is above the value of the task assigned
to the winning user.

In this paper, we propose a truthFul and budgEt feasIble



incentive mechanism with predicted Task rEvenue (FEIT-
E) as the solution to the bike rebalancing problem, which
we model as a reverse auction. In this auction, users bid for
repositioning tasks and the platform determines task allo-
cation and user payments. While we show that commonly
used auctions and pricing mechanisms do not apply to our
case, we specifically show that FEITE solves the problem
and satisfies a number of desired economic and computa-
tional properties. We also prove two important theoretical
guarantees backed by our mechanism. The performance of
FEITE is then evaluated via simulations using a real indus-
trial dataset obtained from a large bike-sharing company.

Our main contributions are summarized as follows:
• We model the bike rebalancing problem under a crowd-

sourcing framework using an reverse auction model. Im-
portantly, we incorporate a bipartite graph into the auction
- with a payment constraint - to determine the allocation
rule and the payment rule for the auction mechanism. This
also implies that a bridge is set up between bike demand
prediction and incentive mechanism design.

• We propose a mechanism FEITE which satisfies desired
properties including incentive compatibility, budget feasi-
bility, individual rationality, and computational efficiency.
Notably, as is novel, we achieve this by combining Myer-
son’s Lemma and a greedy weighted maximum matching
technique.

• We prove two important theoretical guarantees: When the
budget is tight, our mechanism ensures that the platform
revenue is no less than its budget, under a practical large-
market assumption. When the budget is sufficient, FEITE
achieves a 2-approximation ratio as compared to the op-
timal solution which maximizes revenue; in addition, we
show that the lower bound of the approximation ratio is√
2 which is rather close to our ratio. Putting in practice

perspectives, we provide a guideline of how to use this
result to set company budget in real dynamic systems.

• We evaluate the effectiveness of our mechanism via exten-
sive experiments using a real dataset from a large bike-
sharing company. The results show that our mechanis-
m outperforms other benchmark mechanisms in terms of
revenue and profit.

Model
Consider a dynamic bike sharing system in which there
is a batch of n users N = {1, 2, . . . , n} who have hired
their bicycles and have not parked them (at the end of
the hire) yet. There is also a set of m discrete locations1

L = {1, 2, . . . ,m} as bicycle parking lots, where each loca-
tion can accommodate multiple bicycles but is conceptually
considered a point on a map. We assume that the destina-
tions of each user is known to the platform when she hires a
bicycle, since it can be either reported by users as is a prac-
tice adopted by some companies (e.g., Hellobike in China),

1We do not consider continuous locations because, nowadays,
many countries such as Singapore and China have stipulated mu-
nicipal regulations that shared bikes must be parked at designated
locations rather than arbitrarily.

or predicted using historic information (Liu et al. 2018). The
platform aims to incentivize the users to park their bicycles
at system-desired locations for rebalancing the supply and
demand of bicycles. Each user has a maximum relocation
range h, out of which they would not accept a repositioning
task; in other words, h is the maximum “extra mile” they are
willing to relocate.

Similar to the concept of first come first served flow in
(Waserhole, Jost, and Brauner 2013), we assume that a bi-
cycle that is parked earlier will have a higher probability to
be hired than a bicycle parked later. As such, each bicycle
has a different probability of being hired even at the same
location. Accordingly, we define a repositioning task tlx as
“park at location l as the x-th bicycle”, which is associat-
ed with an expected revenue rlx. As mentioned above, rlx
can be derived from the prediction of bike demand at this
location (Yang et al. 2016; Li and Zheng 2019).

To address the task assignment problem, we construct a
bipartite graph G = {N,T,E}, where the left nodes are the
set of users N , and the right nodes are the set of tasks T .
Since there are maximum n possible tasks at each location,
there are totally m × n tasks in T . The set E is the edges
connecting users and tasks and there is an edge between i
and tlx if location l is within the maximum relocation range
of user i. For notation simplicity, henceforth we use j to
denote a task tlx when there is no ambiguity.

Each user i has a relocation cost ci which is a private val-
ue only known to user i. She bids for a task with a claimed
cost bi which is not necessarily equal to ci. Each task j has
an expected revenue (or “value” as we use interchangeably)
rj for the platform. We aim to design an incentive mecha-
nism that consists of an allocation rule and a payment rule,
where the allocation rule specifies which task is allocated to
which user, i.e., the matched pairs (i, j), and the payment
rule specifies a payment pi for each matched user i. The u-
tility of a user is defined as pi − ci. In addition, the platform
has a budget B for the rebalancing process, and the over-
all payment should not exceed the budget. As are desired,
we want to design a mechanism that satisfies the following
properties:

• Incentive Compatibility: a user can only maximize her u-
tility by bidding truthfully, i.e., bi = ci. This property is
also known as truthfulness or strategy-proofness.

• Individual Rationality for both users and platform: the
payment to each winning (i.e., matched) user should be
no less than her cost, i.e., pi ≥ ci; the payment for each
matched task should also be no more than its value, i.e.,
pi ≤ rj , which is similar to the term reserve price in the
theory of mechanism design.

• Budget Feasibility: the overall payment should be no more
than the budget, i.e.,

∑
(i,j)∈M pi ≤ B.

• Computational Efficiency: the mechanism should termi-
nate in polynomial time.

Our objective is to maximize the platform revenue R =∑
(i,j)∈M rj , where M = {(i, j)} is denoted as the set of

matched user-task pairs. Thus, the problem of revenue max-



imization from task allocation can be formulated as

max R =
∑

(i,j)∈M

rj (1)

s.t. pi ≤rj , ∀(i, j) ∈M
pi ≥bi, ∀(i, j) ∈M∑

(i,j)∈M

pi ≤ B

where the first two constraints indicate the individual ratio-
nality for platform and users, and the third one indicates the
budget feasibility.

We also evaluate platform profit which is defined as

Pr =
∑

(i,j)∈M

rj −
∑

(i,j)∈M

pi

and will be compared with revenue in our experiments.

Infeasibility of Existing Mechanisms
In this section, we show that some widely used mechanisms
are not feasible for the bike rebalancing problem.

VCG mechnism. This is a classical mechnism that is
strategy-proof and maximizes social welfare. However, it
does not guarantee budget feasibility as required in our case.
Proof by counter-example: see Figure 1 (a), where the plat-
form has budget 1 and there are two users {a, b} both with
a small cost ε; the two tasks {1, 2} both have value 1 and
there are two edges {(a, 1), (b, 2)}. The VCG mechanism
will output matching M = {(a, 1), (b, 2)} and the paymen-
t for each user is 1. Thus, the overall payment exceeds the
budget and hence the mechanism is not budget feasible.

(a) B = 1 (b) B � 5

(c) B � 6

Figure 1: Counter examples for existing mechanisms.

Singer’s mechanism. Proposed in (Singer 2010), this is
another well-known mechanism yet is budget feasible. It
greedily allocates user-task pairs with the highest ratio of
rj/bi, but does not consider the individual rationality of
the platform (i.e., pi ≤ rj). If we adapt the mechanism
by adding the constraint into the payment rule, it will no

longer guarantee incentive compatibility. To illustrate this,
see Figure 1 (b), the platform has sufficient budget, and
there are two users {a, b} with costs ca = 2, cb = 1, t-
wo tasks {1, 2} with values r1 = 2, r2 = 3, and three
edges {(a, 1), (a, 2), (b, 2)}. The adapted mechanism out-
puts match M = {(a, 1), (b, 2)}, and pa = 2. However,
if user a misreports her cost to be a small number ε, she will
be allocated task 2 and her payment becomes 3, making her
better off.

Optimal matching. The third method is to choose a sub-
graph with

∑
rj ≤ B and then use the optimal (i.e., max-

imum) matching (that maximizes platform revenue) to al-
locate tasks, where the payments to winners are set to the
values of their matched tasks. Not only does this mecha-
nism has zero profit for the platform, but more important-
ly, it is also not truthful. To see this, consider Figure 1
(c), where the budget is sufficient, and there are two user-
s {a, b} with costs ca = 1, cb = 1, three tasks {1, 2, 3}
with values r1 = 1, r2 = 3, r3 = 2, and four edges
{(a, 1), (a, 2), (b, 2), (b, 3)}. The optimal matching will out-
put match M = {(a, 2), (b, 3)} since it achieves maximized
revenue and the payments are pa = 3 and pb = 2. Howev-
er, if user b untruthfully bids a cost of 3 instead of 1, then
she will be assigned task 2 instead of 3 because task value
must be no less than the cost. Therefore, she will receive a
higher payment than bidding truthfully. Therefore, incentive
compatibility is violated.

In fact, we will prove in Theorem 4 that there is no opti-
mal mechanism that can satisfy the four properties simulta-
neously. Therefore, inspired by (Zhang, Wu, and Bei 2018),
we propose an approximate mechanism (i.e., FEITE) in this
paper.

Mechanism Design of FEITE
In this section, we present our proposed mechanism FEITE
for the bike rebalancing problem. We first introduce a notion
called right-perfect matching in a bipartite graph.

Definition 1 A right-perfect matching in a bipartite graph
G is a matching with size |T |, where T is the set of right
nodes in graph G.

In other words, we say a bipartite graph has a right-perfect
matching if all tasks in the graph on the right can be matched
to a user on the left. It is easy to see that a right-perfect
matching is also a maximum matching of a bipartite graph.

The key idea of FEITE is to maintain a subgraph G′ that
always has a right-perfect matching. FEITE sorts all the
tasks and users together in decreasing order of their values
(costs), and then iterates over this sorted list. The mecha-
nism tries to include more tasks with high values in G′ and
delete more users with high costs from it until the budget is
exhausted or all elements are processed.

The complete pseudo-code of the mechanism FEITE is p-
resented in Algorithm 1. In the mechanism, we maintain a
variable of the remaining budget B′ which is initially set as
B. Once a user i is matched with payment pi, we update
B′ as B′ − pi. In addition, we update a decreasing global
price P during the algorithm process. Intuitively, for each



Algorithm 1: FEITE: a truthful and budget feasible in-
centive mechanism with predicted task revenue

Input: Bipartite graph G = (N,T,E), budget B, cost
ci, value rj , ∀i ∈ N, ∀j ∈ T .

Output: Task allocation M = {(i, j)} and payment pi
for each winning user i.

1 Let F = N ∪ T . For an element e ∈ F , if e is a user i,
the value ve is defined as her bid bi; if e is a task j, the
value ve is defined as the expected revenue rj .

2 Delete all edges (i, j) with bi > rj in G.
3 M ← ∅, B′ ← B, T ′ ← ∅, N ′ ← ∅, E′ ← ∅,
G′ = (N ′, T ′, E′);

4 Sort elements in F in decreasing order of ve, breaking
ties randomly, but if the tie is between a task and a user,
let the task go first.

5 for each element e in the above order do
6 if e is a task j then
7 Let Ej be the set of incident edges of j in G

that connect to unmatched users.
8 if G′ ∪ Ej has a right-perfect matching and
9 (|T ′|+ 1) · rj ≤ B′ then

10 G′ ← G′ ∪ Ej .
11 P ← rj .
12 else
13 Skip to next element.

14 if e is a user i in G′ then
15 if G′\i has a right-perfect matching then
16 G′ ← G′\i.
17 P ← bi.

18 for Each user i ∈ G′ do
19 if G′\i doesn’t have a right-perfect matching

then
20 for Each edge (i, j) of i in G′ do
21 if G′\i ∪ (i, j) has a right-perfect

matching then
22 M ←M ∪ (i, j), pi ← P .
23 B′ ← B′ − pi.
24 G′ ← G′\{i, j}.
25 Skip to next user.
26 else
27 Skip to next edge.

element in the iteration of the sorted list, if it is a task j, the
task and its affiliated edges (the connected user should be
unmatched) will be added to G′ if two conditions are satis-
fied after adding them: 1) G′ still has a right-perfect match-
ing and 2) the upper bound of the payment for all tasks in
G′ (i.e., (|T ′| + 1) · rj) is below the remaining budget. If
task j is added to G′, we update the global price P as rj .
If the element is a user i, then if G′ can maintain a right-
perfect matching after discarding i (i.e., i is not critical for
the right-perfect matching of G′), we then remove her from
G′, in this case, we also update the global price P as bi.

Figure 2: A walk-through example for our mechanism FEIT-
E. Let the budget be B = 14. Tasks 1 and 2 are first consid-
ered, and they are added to G′ with their affiliated edges
since the budget is enough for them. So G′ has three users
a, b and c and none of them is critical for the right-perfect
matching of G′. In addition, the global price P ← 6, and
the remaining budget B′ is still 14. Then, user a is removed
from G′ while updating the price P ← 5. Next, users b and
c become critical for the right-perfect matching of G′ now,
and assume they are matched with task 1 and 2, respective-
ly. The payment to each of b and c is P = 5, and hence we
update B′ ← 4. After that, task 3 will be added to G′ with
edge (d, 3), we have P ← 3, and obviously d is critical and
she will be allocated task 3 with payment 3. The remaining
budget is also updated as B′ ← 1. Finally, task 4 is consid-
ered but not added to G′ because of the budget constraint,
and tasks 5 and 6 are skipped because they have no edges.
Therefore, the output matching is {(b, 1), (c, 2), (d, 3)}, and
the revenue is 16 while the profit is 3.

Once the subgraph G′ is changed (either a task is added or a
user is removed), we check if there are critical users for the
right-perfect matching of G′, if so, for a critical user i, we
allocate task j in G′ to i if G′\i ∪ (i, j) has a right-perfect
matching. The payment is set as the global price P at this
step, and then we update the remaining budget B′.

A walk-through example of FEITE is given in Figure 2.

Analysis of FEITE
Lemma 1 The mechanism FEITE satisfies incentive com-
patibility.

Proof Since each user has only one private value (i.e., cost),
this is a single-parameter problem and hence we can use the
Myerson’s lemma:

Lemma 2 ((Myerson 1981)) In single parameter auctions,
for a normalized mechanism M = (f, p), where f is the
allocation rule and p is the payment rule, M is incentive
compatible iff it satisfies:

1. Monotone allocation rule: ∀i ∈ N , if b′i ≤ bi, then i ∈
f(bi, b−i) implies i ∈ f(b′i, b−i) for every c−i;

2. Threshold payment rule: payment to each winning bidder
is inf {bi : i /∈ f(bi, b−i)}.

First, we prove the monotone allocation rule, i.e., once user
i is matched by bidding bi, she must be matched by bidding



b′i < bi. Let e be the element that updates the global price
P as pi. When bidding bi, we use G1

i to denote the graph G′
after e is processed (i.e., the step that P is updated as pi),
and G2

i has same definition while in the case of bidding b′i.
It’s obvious that the algorithm process before P is updated
as pi is not affected by the bid of i. Therefore, we haveG1

i =
G2
i , and user i is also critical for the right-perfect matching

of G2
i , hence the monotone allocation rule is satisfied.

Next, we prove the threshold payment rule, that is, if us-
er i bids any cost larger than the payment pi, she will not
be matched, otherwise, she will be matched with a task. If
b′i < pi, it can be observed that the value of all tasks in
G2
i is higher than b′i, thus the edges of i will not be deleted

because b′i > rj . Therefore, similar to the proof of the mono-
tone allocation rule, we have that G1

i = G2
i , and user i is

still critical, so she will be matched. If b′i > pi, user i will be
considered before the element e. However, we can observe
that, in the steps before element e is processed, user i is ei-
ther not added to G′ or is not critical for the right-perfect
matching of G′, otherwise she will be matched before ele-
ment e. As a result, we have that user i will be discarded if
b′i > pi, and the threshold payment rule is satisfied.
Lemma 3 The mechanism FEITE is budget feasible.
Proof We can observe that once a task j with value rj is
added to G′, the payment to any user in G′ is no more than
rj , since the global price P is non-increasing. Let j′ be the
last task added to G′, B′j′ the remaining budget before j′ is
added, and |Tj′ | the number of tasks in G′ before adding j′.
We have that∑

(i,j)∈M

pi ≤ B −B′j′ + rj′ · (|Tj′ |+ 1) ≤ B

which concludes the proof.
We omit the proofs of the following two lemmas due to

space constraint, please refer to our full paper 2.
Lemma 4 The mechanism FEITE is individually rational
for both users and platform.
Lemma 5 The mechanism FEITE satisfies computational
efficiency.
Theorem 1 Our proposed mechanism FEITE is an incen-
tive compatible, budget feasible, individually rational, and
computational efficient mechanism.

Theoretical Guarantee of Revenue
To show the theoretical guarantee of FEITE on revenue, we
first introduce the large market assumption.
Assumption 1 (Large Market Assumption) We assume
ci � B and rj � B for each user i and each task j.
Intuitively, it’s assumed that each individual user or task
is negligible compared with the budget. This assumption is
widely adopted in previous work (Vaze 2017; Anari, Goel,
and Nikzad 2014) and it is practical in real world as the rev-
enue of a single ride is indeed very small.

Next, we prove the theoretical guarantee under tight bud-
get.

2https://arxiv.org/abs/1911.07706

Theorem 2 Under the large market assumption, we have∑
(i,j)∈M rj ≥ B if the budget is tight.

Proof Let j1 be the first task that is discarded because of
budget constraint, j0 the last task added toG′ before j1, and
|Tj0| (|Tj1|) the number of tasks inG′ before considering j0
(j1). Assume that the set of tasks allocated between consid-
ering j0 and j1 isAT , and the total payment for them is PA.
We have rj0 · (|Tj0|+1) ≤ B′j0 and rj1 · (|Tj1|+1) > B′j1.
Since the payments to users in AT are all between rj0 and
rj1, we can get that

|Tj1| · rj1 ≤ |Tj1| · rj0
= (|Tj0|+ 1) · rj0 − |AT | · rj0
≤ (|Tj0|+ 1) · rj0 − PA
≤ B′j0 − PA
= B′j1

Combining the above inequations, we have

B′j1 − rj1 · |Tj1| < rj1,

and further we obtain∑
(i,j)∈M

rj ≥ B −B′j1 + rj1 · |Tj1|

≥ B − rj1
' B

where the first inequation is because of the individual ratio-
nality of both platform and users and the last approximate
equation is due to the large market assumption.

Before we prove the theoretical guarantee under sufficien-
t budget, we first demonstrate that a greedy algorithm as
shown in Algorithm 2 has an approximation ratio of 2, i.e.,
it can achieve at least half of the optimal revenue under suf-
ficient budget.

Algorithm 2: A Greedy Mechanism
1 for each task j in decreasing order of rj do
2 for each edge (i, j) of task j do
3 if user i is not matched then
4 Match i with j.
5 Skip to next task.

Lemma 6 Algorithm 2 is a 2-approximation algorithm if
the budget is sufficient.

The proof is provided in our full paper due to space limi-
tation.

Next, we prove the following lemma by showing that the
allocation of our mechanism coincides with a particular run
of the greedy algorithm.

Theorem 3 The mechanism FEITE is a 2-approximation
mechanism if the budget is sufficient.



Proof Since the budget is sufficient, we know that no task is
discarded due to the budget limitation. We denote the match-
ing in our mechanism as M . It’s assumed that this matching
is produced as following: For each task j in decreasing or-
der of rj , if j ∈M , we allocate task j to its matched user in
M , otherwise the task is skipped. Now we prove that, in the
greedy algorithm, this process can also happen.

It’s obvious that for task j ∈ M , we can assign task j to
its matched user in M in the greedy algorithm, thus we only
need to prove that for each task j 6∈ M , when we consider
it in the greedy algorithm, there is no unassigned user that
has an edge to j.

Next, for contradiction, assume that we can find such an
unmatched user i that has an edge to j 6∈ M when pro-
cessing j in the greedy algorithm. Then in our mechanism,
when considering j, there will be a right-perfect matching
for graph G′ ∪ {j}, i.e., M ∪ (i, j). Thus, the task will be
added to G′. Note that in our mechanism, any task added
to G′ will end up being matched. This contradicts with our
assumption and hence the lemma is proved.

To understand how “good” the approximation ratio of 2
is, next we prove that the lower bound is at least

√
2.

Theorem 4 There is no mechanism that satisfies incentive
compatibility and individual rationality can achieve better
than

√
2-approximation when the budget is sufficient.

Proof We prove the lemma with a concrete counter exam-
ple. Assume there exists a mechanism F that can achieve an
approximation ratio better than

√
2. Consider case 1 where

there are two users {a, b}, three tasks {1, 2, 3} and 4 edges
{(a, 1), (a, 2), (b, 2), (b, 3)}. In addition, we have that ca =

ε, cb =
√
2 + 1, r1 = 1+ ε, r2 =

√
2 + 1+ ε, r3 =

√
2 + 1,

where ε is a small positive number. We can observe that the
optimal matching should be {(a, 2), (b, 3)} which achieves
revenue of 2

√
2 + 2 + ε, we now prove that any mechanism

that satisfies the above properties can achieve total revenue
of at most 2 +

√
2 + 2ε.

First we consider case 2 where the only difference with
case 1 is that cb =

√
2 + 1 + ε

2 and hence the edge (b, 3)
has to be deleted. In case 2, mechanism F can only output
the matching {(a, 1), (b, 2)}, otherwise, the approximation
can be at least r1+r2r2

>
√
2. Moreover, due to individual

rationality, pb ≥
√
2 + 1 + ε

2 .
Then we consider case 1, in the output matching of F , if

user b is matched with task 3, the payment is at most 1+
√
2

and the utility of user b is at most 0. If user b misreports
cost of

√
2 + 1 + ε

2 , it becomes case 2, and as stated above,
the utility of user b can be at least ε

2 . Thus, for incentive
compatibility, mechanism F has to allocate task 2 to user
b and pay at least

√
2 + 1 + ε

2 . Hence the output matching
of F can achieve revenue of at most 2 +

√
2 + 2ε, and the

approximation ratio limit is
√
2 when ε→ 0.

Practical Implication: We now show how those results
can be used when setting budget in a real dynamic system.
The platform can set sufficient budget in the first time and
obtain a revenue Rsuf , then based on Theorem 3, we know

the optimal revenue is at most 2·Rsuf . After that, the platfor-
m is able to set a tight budget B = β ·Rsuf , and Theorem 2
guarantees that it achieves at least β/2 of the revenue of op-
timal solution. This way, the platform can control the budget
while there are not a lot of revenue loss.

Evaluation
We conduct simulation using a real-world dataset obtained
from a large bike-sharing company in China called Mobike.
The bike riding data cover 8×8 regions of Beijing with each
region being 0.6km × 0.6km, and are dated from May 10th
to 14th, 2017. With the same distribution of destinations in
this dataset, we build a simulator which can randomly gener-
ate users’ destinations. In the experiments, we set the num-
ber of users n = 200, and test different location numbers m.
The cost of each user ci is drawn from uniform distribution
over [0, c] where c = 5. The value of a task is calculated
as the difference between the Kullback-Leibler (KL) diver-
gences (Kullback and Leibler 1951) before and after fulfill-
ing the task, similarly to previous work (Pan et al. 2019;
Lv et al. 2019). Because of the space limitation, we refer the
authors to (Lv et al. 2019) for concrete calculation of the task
value. The acceptable range h is set as 300m and 600m, re-
spectively. We also test the budget of 50 and 500 where 500
is sufficient while 50 is not. In addition, we conduct each
experiment 10 times and take the average.

We compare FEITE with the following mechanisms:

• APP-OPT: As the budgeted matching problem is an NP-
hard problem (it can be reduced to the knapsack prob-
lem), we cannot give an optimal allocation as benchmark.
However, if the budget is tight and the large market as-
sumption holds simultaneously, the following strategy is
approximately an optimal mechanism: consider edges in
decreasing order of rj/bi, match user i and task j if they
are not ever matched before, and pay user i exactly her
bid. The process stops until the budget is exhausted or
there are no more edges. This mechanism achieves the
maximum revenue under the above two assumptions but
it’s not truthful.

• Greedy: The greedy mechanism considers users in in-
creasing order of their bids and allocates the task with
the highest value as long as it is higher than the bid of
the user. Once a user is matched, the price for all winning
users is updated as the bid of her next user (whose bid is
higher). The mechanism stops once a user cannot find a
feasible task or the overall payment is above the budget,
and pays all the winning users the bid of this unmatched
user. If all users can be matched, we don’t match the last
one, and set her bid as the price for all other users. This
greedy mechanism is incentive compatible but cannot pro-
vide any theoretical guarantee.

• Surge: Surge pricing is widely used in practice and it’s
an effective way to promote the revenue of platform (Gu-
da and Subramanian 2019). We adopt a simple version of
surge pricing here. Consider users in increasing order of
their bids and allocate the task with the highest value to
them once αrj is higher than the bid of the user, where



(a) Revenue for B = 50 (b) Profit for B = 50

(c) Revenue for B = 500 (d) Profit for B = 500

Figure 3: Revenue and profit comparison when h = 300m.

α ∈ (0, 1) is a surge factor and rj is the value of the task.
The user is paid αrj . The algorithm also terminates until
the budget is exhausted or there are no feasible users. In
the experiments, we set α = 0.8. It can be easily shown
that the Surge mechanism is not truthful.

Results
The experiment results for different acceptable extra dis-
tance h = 300m and h = 600m are given in Figure 3 and
Figure 4, respectively. In Figure 3, we show the revenue and
profit of platform under different parking location number
m and different budget B. In general, as m increases, rev-
enue and profit both increase, because of more right nodes in
the bipartite graph. When the budget is tight (B = 50), we
make the following specific observations. The revenue and
profit of our mechanism are constantly higher than Surge
and Greedy. When m is less than 30, as the bipartite graph
is small, the budget is enough and our mechanism achieves
nearly the same revenue as APP-OPT. When m is larger
than 30, the budget will be exhausted and the revenue (and
hence profit) of Surge mechanism stops increasing because
it always has a constant ratio between payment and revenue.
However, FEITE can output a better matching when the bi-
partite graph is larger and it shows much better performance
over Surge and Greedy on both revenue and profit. When the
budget is sufficient, our mechanism is not as good as APP-
OPT but outperforms the others. As APP-OPT pays users
exactly their costs, the mechanism is budget-saving but not
practical in application because users will bid higher costs.

In Figure 4, h is larger so more edges appear in the bipar-
tite graph. In this case, the performance of APP-OPT, FEIT-

(a) Revenue for B = 50 (b) Profit for B = 50

(c) Revenue for B = 500 (d) Profit for B = 500

Figure 4: Revenue and profit comparison when h = 600m.

E and Surge are similar to Figure 3, but Greedy shows both
much better revenue and profit. This is due to the fragili-
ty of Greedy mechanism as a single user can determine the
termination of the mechanism. Thus, when B = 300m, the
mechanism stops quickly because of the lack of edges, and
when B = 600m, the termination is delayed. To show this,
we test another 100 rounds of m = 60 for both Greedy and
FEITE, and the maximum revenue of Greedy is 161.3, the
minimum revenue is 19.7, and the variance is 648.1, while
the data for FEITE is 127.2, 98.8 and 32.2 respectively. The
profit shows similar results. Therefore, although Greedy can
sometimes be slightly better than our mechanism, it is frag-
ile and has much larger fluctuation.

In summary, our mechanism FEITE performs well on
both revenue and profit, on top of its several desirable theo-
retical properties.

Conclusion and Future Work
In this paper, we have proposed an incentive mechanism to
solve the bike rebalancing problem with predicted task value
for bike sharing systems. It has desired theoretical proper-
ties as it satisfies incentive compatibility, budget feasibility,
individual rationality and computational efficiency. In par-
ticular, we gave two theoretical guarantees under different
budget constraints, and we showed how it can be applied in
real dynamic systems. Its practical performance was eval-
uated using simulations based on real-world data, and the
results demonstrate its superiority in terms of both revenue
and profit. In our future work, we will explore tighter low-
er bounds and upper bounds for the problem. In addition,
we plan to extend our algorithm into a real-time decision-



making mechanism while maintaining the theoretical prop-
erties, and conduct pilot studies in actual cities.
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M.; and Krause, A. 2015. Incentivizing users for balancing
bike sharing systems. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence. AAAI Press.
Vaze, R. 2017. Online knapsack problem and budgeted
truthful bipartite matching. In Proceedings of the IEEE IN-
FOCOM 2017-IEEE Conference on Computer Communica-
tions, 1–9. IEEE.
Waserhole, A.; Jost, V.; and Brauner, N. 2013. Vehicle shar-
ing system optimization: Scenario-based approach. 2013b.
URL http://hal.archives-ouvertes.fr/hal-00727040.
Yang, Z.; Hu, J.; Shu, Y.; Cheng, P.; Chen, J.; and Mosci-
broda, T. 2016. Mobility modeling and prediction in bike-
sharing systems. In Proceedings of the 14th Annual Inter-
national Conference on Mobile Systems, Applications, and
Services, 165–178. ACM.
Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; and Yi, X. 2016. Dnn-
based prediction model for spatio-temporal data. In Pro-
ceedings of the 24th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems,
92. ACM.
Zhang, C.; Wu, F.; and Bei, X. 2018. An efficient auction
with variable reserve prices for ridesourcing. In Proceedings
of the Pacific Rim International Conference on Artificial In-
telligence, 361–374. Springer.


