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ABSTRACT
As a bid optimization algorithm in the first-price auction (FPA),
bid shading is used in online advertising to avoid overpaying for
advertisers. However, we find the bid shading approach would in-
cur serious local optima. This effect prevents the advertisers from
maximizing long-term surplus. In this work, we identify the reasons
behind this local optima - it comes from the lack of winning price
information, which results in the conflict between short-term sur-
plus and the winning rate prediction model training, and is further
propagated through the over-exploitation of the model. To rectify
this problem, we propose a cost-effective active learning strategy,
namely CeBE, for bid exploration. Specifically, we comprehensively
consider the uncertainty and density of samples to calculate ex-
ploration utility, and use a 2 + 𝜖-approximation greedy algorithm
to control exploration costs. Instead of selecting bid prices that
maximize the expected surplus for all bid requests, we employ the
bid exploration strategy to determine the bid prices. By trading off
a portion of surplus, we can train the model using higher-quality
data to enhance its performance, enabling the system to achieve a
long-term surplus. Our method is straightforward and applicable
to real-world industrial environment: it is effective across various
categories of winning rate prediction models. We conducted empir-
ical studies to validate the efficacy of our approach. In comparison
to the traditional bid shading system, CeBE can yield an average
surplus improvement of 8.16% across various models and datasets.
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1 INTRODUCTION
Online display advertising has become one of the most influential
strategies to promote products, wherein auto-bidding achieves great
success in optimizing the ad performance. To achieve higher utility,
advertisers usually design bid optimization algorithms [37] to help
them provide appropriate bids for each ad request. However, since
2019, led by Google, many ad exchanges have transmitted from
second-price auctions (SPAs) to first-price auctions (FPAs) [2]. Bid
optimization algorithms designed for SPAs are not suitable for
FPAs due to the problem of overpaying. To address this dilemma,
bid shading [5, 13, 40] has been proposed, with the purpose of
avoiding overpayment and further increasing advertisers’ surplus.
Bid shading first trains a winning rate prediction model usually
within two categories: predefined distribution model (PDM) and
non-predefined distribution model (NPDM). Based on the winning
rate prediction, the bid prices are determined to maximize expected
surplus. With the auction outcomes, advertisers acquire win/loss
labels for this round of bid requests and then use them to update
the winning rate prediction model for the subsequent round.

Despite the satisfactory performance, we argue that traditional
bid shading paradigm can lead the winning rate prediction model to
become trapped in local optima. In the context of FPA, the collected
data lacks information about winning prices. Therefore, we can
only update the prediction model using win/loss labels at specific
bid prices, which results in the model’s performance being signif-
icantly influenced by the distribution of bid prices. Through our
experiments, we demonstrated that models trained with uniformly
distributed bid prices outperform those trained with biasedly dis-
tributed bid prices by 13.3%. In general, to achieve awell-performing
model, it is imperative that the bid prices in the training data should
be representative, enabling them to reflect the real distribution of
winning prices. However, the bid prices in the training data of bid
shading aim to maximize the expected surplus and are thus biased
and not representative, easily leading the prediction model into lo-
cal optima. We conduct an empirical study of deploying bid shading
on iPinYou [22] and our private dataset. We conducted experiments
using PDM and NPDM, which will be described in detail in Section

788

https://orcid.org/0009-0000-8413-621X
https://orcid.org/0000-0002-5094-5331
https://orcid.org/0009-0003-2748-8747
https://orcid.org/0009-0007-4586-7950
https://doi.org/10.1145/3616855.3635839
https://doi.org/10.1145/3616855.3635839
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3616855.3635839&domain=pdf&date_stamp=2024-03-04


WSDM ’24, March 4–8, 2024, Merida, Mexico Zixiao wang, Zhenzhe Zheng, Yanrong Kang and Jiani Huang

Figure 1: Surplus ratio of models trained with different bid
prices. Bid shading (BS) means that the bid prices in the
training data are generated by a well-maintained bid shading
system. Random means that the bid prices are uniformly
distributed within a certain range. Log-likelihood means
that the prediction model is able to access winning prices
and update using maximum log-likelihood.

5. The results are presented in Figure 1. The surplus ratio is the
ratio between the actual obtained surplus and the optimal surplus.
It is evident that the models trained with bid shading-generated
data perform worse than those trained with randomly generated
bidding data. In other words, the training data generated by bid
shading is less informative than the randomly generated bidding
data, while the winning prices obtained within the Log-likelihood
setting can be considered as the attainable bidding data with the
highest informativeness. This significant result reveals the ubiqui-
tous local optima in the current bid shading, and will hinder the
prediction model from gaining a comprehensive understanding of
the winning price distribution. Moreover, it will impact advertisers’
bidding algorithms, substantially reducing their utilities.

In view of this phenomenon, we first identify the cause of the
local optima - the over-exploitation of the winning rate prediction
model. Selecting bid prices that maximize the expected short-term
surplus relying on the winning rate prediction model can be con-
sidered as a certain kind of exploitation. And over-exploitation lead
to an inadequate grasp of the distribution of winning prices due to
the absence of unbiased winning price information, subsequently
affecting long-term surplus. This discrepancy is indeed the root
cause of the local optima.

Aware of the cause of the local optima, we introduce bid ex-
ploration into the bid shading system as a solution. We employ a
strategy to select a subset of bid requests along with their bid prices
that are beneficial for the prediction model training. However, bid
exploration faces two major challenges. First, the bid exploration
must be “cost-effective”. In online advertising, the advertisers would
incur actual payment for each bid exploration. This implies that we
must select the most valuable exploration samples while adhering
to a constrained budget. However, due to the absence of winning
price information, we lack the knowledge of the benefits and costs
associated with each potential bid request. Designing a suitable ap-
proach to estimate the exploration utility of each bid request while
also curtailing exploration costs poses a challenging problem. Sec-
ond, in contrast to exploration algorithms in other domains (such
as bandit [17] and reinforcement learning [31]), bid exploration

demands not only the selection of which bid request to explore but
also the determination of the exploration bid price to win this bid
request. This dual decision-making process significantly amplifies
the complexity of identifying the optimal choice for bid exploration.

In this paper, we propose solutions for the challenges above. First,
we design a cost-effective active learning strategy for bid explo-
ration, allowing the bid optimization algorithm to autonomously
select bid requests to explore, and thus improving the performance
of the winning rate prediction model. Our approach take into ac-
count the uncertainty and density with respective to the winning
price distribution, which can reflect the exploration utility of each
sample. Also, we provide a method for estimating the cost of each
exploration, and formulate the problem as a stochastic knapsack
problem. Therefore, we can attain the highest exploration utility
within the budget constrains. Second, concerning an exploitation
bid request, we bid to maximize the expected surplus. Conversely,
If we explore this bid request, we offer an alternative bid price.
Through a comparative analysis of these two approaches, we de-
termine the exploration utility for each bid price on that request.
The same idea applies to exploration costs. We can thus solve the
challenge of selecting exploration bid prices through this approach.

The main contributions of this paper are as follows:

• To the best of our knowledge, we are the first to identify
and address the local optima commonly encountered in the
current bid shading system.

• We propose a cost-effective active learning for bid explo-
ration, namely CeBE. By trading off a portion of short-term
surplus, we enable the bid optimization algorithms to achieve
a large long-term surplus.

• We conduct extensive experiments by various models on
both public and private datasets to demonstrate the superior
performance of CeBE.

2 RELATEDWORKS
In this section, we will review the most related works from the
following three perspectives.

Bid Landscape Forecasting. Bid landscape forecasting refers
to modeling the winning price or market price distribution for ad
auctions, which is the most critical problem in bidding optimization.
The cumulative distribution function of the winning price distribu-
tion is the winning rate given each specific bid price. Most prior bid
landscape forecasting methods focused on SPA scenario. Some re-
searchers presented predefinedwinning price distribution functions
[7, 20, 37] and subsequently fitted the parameters of the functions.
Common probability distributions such as Log-normal [7], Gauss
[33], and Gamma [39] are used to model the distribution of winning
prices. Furthermore, alternative non-predefined distribution meth-
ods based on deep learning, such as ADM [21], DLF [24] and Link
Structures [32], have been explored. In these works, researchers
have access to either complete or partially censored winning price
information. Nevertheless, FPAs are becoming increasingly popular.
The FPA framework poses greater challenges for bid landscape fore-
casting due to the complete information censorship about winning
prices. In this paper, we introduce modifications to the winning
rate prediction models to tailor them to the complete information
censorship about winning prices.
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Bid Shading. In the context of FPAs, bid shading is a common
trick in auction theory. Zulehner and Christine [41] found robust
evidences of shading in Austrian livestock auctions, Crespi et al.
[6] reported shading in a Texas cattle market, and Hortaçsu et al.
[13] found the practice in auctions for US Treasury notes. In online
advertising, bid shading is a bid optimization algorithm helping the
advertisers from overpaying. There are two general approaches for
bid shading, depending on whether the winning price is provided
or censored. The former build a machine learning algorithm to
predict the optimal bid shading factor [10]. The latter approach
tries to estimate the distribution of winning price, and then find
the optimal bid price with maximum surplus. The distributon of
winning price is predefined like Gauss [15] and Sigmoid [23]. And
Zhou et al. [38] considered modeling under both scenarios: with
and without winning price information.

Active Learning. Active learning is a subfield of machine learn-
ing. The key hypothesis is that, if the learning algorithm is allowed
to choose the data from which it learns to be “curious”, it will per-
form better with less training cost [26]. The most commonly used
active learning strategy involves selecting the samples with the
highest uncertainty, including uncertainty sampling [18, 19, 27],
query-by-committee [27, 29], expected model change [28] and vari-
ance reduction [36]. In addition to uncertainty sampling, some
active learning approaches considered the density and diversity of
samples due to the redundancy of instances and susceptibility to
outliers [16, 25, 27]. The cost of active learning is also important,
some cost-sensitive approaches have been proposed, such as VOI
[14], ROI [12] and so on. With the advancement of deep learning
techniques, there have emerged methods that use deep neural net-
works in data sample selection [1, 11, 34]. These approaches still
revolve around measuring the uncertainty and representatives of
samples as their core principles. Some researchers have also con-
nected graph theory with active learning [8, 35], utilizing graph
algorithms to model the relationships between unlabeled samples.
Caramalau et al. has proposed an active learning method based on
Graph Convolutional Network (GCN) [3].

Traditional active learning method is to query annotations for
unlabeled samples. However, in the context of this work, whether
we query annotations or not, ideally, all bid requests will receive
win/loss labels after the auction. What we aim to do is provide more
valuable annotations for these bid requests. Furthermore, the active
learning strategy should be lightweight enough to deploy on the
industrial online advertising system.

3 PRELIMINARIES
In this section, we first provide the details of the online advertising
system with bid shading, and then introduce the basic notations
and formulate the bid shading task.

Suppose we have a online advertising system to handle with bid
requests under FPA scenario. When a user visits a web page with
an ad opportunity, the developer initiates an ad request and sends it
to the supply side platform (SSP). The SSP then send available user
and page information to multiple demand-side platforms (DSPs)
for auction. Then the DSP selects a candidate ad with the highest
ad value for this ad opportunity. And the winning rate prediction
model will predict the winning rate of this bid request at different
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Figure 2: The structure of bid shading system

bid prices. Based on the winning rate prediction, the DSP calculates
the expected surplus of this bid request at different bid prices and
find the optimal bid price. The ad together with the bid is sent to the
developer, where the bid is compared with the bids from the other
DSPs to determine the winning ad and the final payment. After the
auction, the winner’s ad is displayed and the win/loss labels are
also returned to DSPs. After processing all the bid requests for this
round, the bid shading system updates the winning rate prediction
model using the newly collected samples.

We use 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁 } to denote the bid requests we will
handle in round 𝑡 . And 𝑥𝑖 represents the features of the bid re-
quest, including user features, context features, and so on. The
dimension of 𝑥𝑖 is 𝑞. We also have the bid prices before shading
𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑁 } based on click-through rate (CTR) or conversion
rate (CVR), which represents howmuch the advertiser expect to cap-
ture from the ad requested 𝑥𝑖 and can be considered as the bid price
before shading. Then at each bid request 𝑥𝑖 , we can place a new bid
price 𝑏𝑖 after shading. For illustration, we assume that the bid price
𝑏𝑖 is discrete, and we have 𝑏𝑖 ∈ {𝑏1, 𝑏2, ..., 𝑏𝐾 }. In the bid shading
system, we have a winning rate prediction model 𝑀𝑡 for the bid
requests in round 𝑡 . The model is used to predict the winning rate of
the bid requests at different bid prices, and the output of the winning
rate prediction model is a vector 𝑀𝑡 (𝑥𝑖 ) = (𝑝1

𝑖
, 𝑝2
𝑖
, ..., 𝑝𝐾

𝑖
) repre-

sents the winning rate at different bid prices, where𝑀𝑘
𝑡 (𝑥𝑖 ) = 𝑝𝑘𝑖

is the winning rate of 𝑥𝑖 at bid price 𝑏𝑘 . Then the expected surplus
[23] of the bid request 𝑥𝑖 at the bid price 𝑏𝑘 is defined as:

𝐸 (𝑠𝑢𝑟𝑝𝑙𝑢𝑠 (𝑥𝑖 , 𝑏𝑘 )) = (𝑣𝑖 − 𝑏𝑘 )𝑀𝑘
𝑡 (𝑥𝑖 ) . (1)

For the bid shading system, the bid prices 𝑏∗
𝑖
of 𝑥𝑖 maximize the

expected surplus [23]:

𝑏∗𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏𝑘𝐸 (𝑠𝑢𝑟𝑝𝑙𝑢𝑠 (𝑥𝑖 , 𝑏
𝑘 )),∀𝑏𝑘 ∈ {𝑏1, 𝑏2, ..., 𝑏𝐾 }. (2)

In this paper, bidding by maximizing the expected surplus is consid-
ered as an exploitation of the winning rate prediction model. The
ad together with the bid price is sent to the developers, where it is
compared with bids from other advertisers. After the auction, we
will get the win/loss label 𝑦∗

𝑖
for each ad request 𝑥𝑖 at the bid price

𝑏∗
𝑖
. Suppose 𝑧𝑖 is the winning price and we have

𝑦∗𝑖 =

{
1, 𝑏∗

𝑖
> 𝑧𝑖 ,

0, 𝑏∗
𝑖
≤ 𝑧𝑖 .

(3)
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Table 1: Notations and Description

Notation Description
𝑀𝑡 the winning rate prediction model for 𝑡-th round
𝑋 ad requests received in one round
𝑉 bid prices before shading
𝑁 the size of 𝑋
𝑞 the dimension of 𝑥𝑖 ∈ 𝑋
𝑏𝑘 the discrete bid price
𝑏𝑖 the bid price for bid request 𝑥𝑖
𝑧𝑖 the winning price of bid request 𝑥𝑖
𝑦𝑖 the win/loss label for bid request 𝑥𝑖 at 𝑏𝑖

𝑀𝑘
𝑡 (𝑥𝑖 ) the prediction winning rates of 𝑥𝑖 at 𝑏𝑘 by𝑀𝑡

The true surplus we obtain from bid request 𝑥𝑖 at bid price 𝑏∗
𝑖
is

𝑠𝑢𝑟𝑝𝑙𝑢𝑠 (𝑥𝑖 , 𝑏∗𝑖 ) = (𝑣𝑖 − 𝑏∗𝑖 )𝑦
∗
𝑖 . (4)

A training dataset consisting of many (𝑥𝑖 , 𝑏∗𝑖 , 𝑦
∗
𝑖
) samples is used to

update the winning rate prediction model𝑀𝑡 and obtain the next
round’s model𝑀𝑡+1.

4 DESIGN
In this section, we introduce our proposed CeBE (Cost-effective
active learning for Bid Exploration). Firstly, we introduce the for-
mulation of the problem we need to address and the challenges
faced during the design process. Secondly, we provide a detailed
description of our proposed approach.

4.1 Formulation
In CeBE, we introduce an explorationmodule based on cost-effective
active learning to help the bid shading system escape from local
optima. The exploration module is a biased sampler that selects bid
requests from 𝑋 to construct the exploration set 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝐿}
and the remaining is the exploitation set 𝑋 ∗. The exploitation bid
prices 𝐵∗ for the exploitation set 𝑋 ∗ maximize the expected surplus.
The exploration module then generate the exploration bid prices
𝐵̂ = {𝑏1, 𝑏2, ..., 𝑏𝐿} for each exploration bid request 𝑥𝑙 in exploration
set𝑋 . The bid prices of bid requests in exploration set𝑋 can take on
any arbitrary value which can improve the training effectiveness
of the model at most within proper cost limits. After obtaining the
win/loss labels, we will update our winning rate prediction model
by both sets. By introducing an exploration module, we can utilize
exploration data that is more effective in enhancing the model’s
performance for training. Although exploration may lead to a short-
term reduction in gains, after multiple rounds of exploration, the
model’s win-rate predictions distribution will be closer to the true
distribution, resulting in long-term benefits.

Assume 𝑥𝑙 ∈ 𝑋 , and 𝑏𝑙 ∈ 𝐵̂ is the bid price of it. We define two
functions named𝑢 and 𝑐 to illustrate the optimization objective and
constraints of Cost-Effective Active Learning. The utility of request
𝑥𝑙 is𝑢 (𝑥𝑙 , 𝑏𝑙 ), which means the benefits 𝑥𝑙 will bring to the bid shad-
ing system in the long term. And we assume𝑢 (𝑋, 𝐵̂) = ∑𝐿

𝑙
𝑢 (𝑥𝑙 , 𝑏𝑙 ).

The exploration cost of request 𝑥𝑙 is 𝑐 (𝑥𝑙 , 𝑏𝑙 ), which means the loss
incurred by the bidding system when placing the bid price 𝑏𝑙 on the
request 𝑥𝑙 . And we also assume 𝑐 (𝑋, 𝐵̂) = ∑𝐿

𝑙
𝑐 (𝑥𝑙 , 𝑏𝑙 ) So, finding

the optimal exploration set 𝑋 in round 𝑡 can be formulated as an
optimization problem:

𝑚𝑎𝑥 𝑢 (𝑋, 𝐵̂),

𝑠 .𝑡 . 𝑏𝑙 ∈ {𝑏1, 𝑏2, ..., 𝑏𝐾 }, ∀𝑏𝑙 ∈ 𝐵̂
𝐸 (𝑐 (𝑋, 𝐵̂)) ≤ 𝐻, ∀𝑋 ⊆ 𝑋

where 𝐻 is the cost budget for round 𝑡 .
We encountered several challenges during the design process.

Firstly, to ensure cost-effectiveness in our exploration strategy,
it’s essential to accurately estimate the exploratory utility of each
bidding request for every bid price. As the exploration samples
eventually become part of the model’s training data, exploration
can influence the model’s predictive outcomes on other bid requests.
This increases the complexity of predicting the exploration utility
of each sample. To address this challenge, we consider not only
the model’s uncertainty at different bid prices for each bid request
but also the similarities between different bid requests. If a bid
request exhibits a high level of similarity with other bid requests,
we consider such bid requests to have a high density. Exploring
on bid requests that occur frequently naturally holds higher utility.
Secondly, controlling exploration costs is also an important aspect
of maintaining cost-effectiveness. In bid exploration, there is a
significant disparity in the costs associated with choosing different
exploration bid prices for various bid requests. If we do not control
the exploration cost, the utility of the bid shading system may
decrease due to over-exploration. However, without winning price
information, we can not know the realized exploration cost. To
address this challenge, we propose a method for calculating the
expected exploration cost and demonstrate how to control cost
consumption based on stochastic knapsack problem.

4.2 Bid Exploration Utility Estimation
In Section 2, we described the method for finding the optimal explo-
ration set 𝑋 . The key idea of this method lies in the estimation of
utility and cost corresponding to each sample. Ideally, to calculate
the utility of exploring a bid request, we would need to retrain
the model based on the exploration sample and then compute the
surplus improvement on the incoming bid requests using the new
model. However, this method requires constant model retraining,
which incurs high time and computational costs. What’s more,
without knowing the winning price, it is difficult to estimate the
surplus improvement we have gained through exploration. So, we
use other frameworks for measuring exploration utility of every
requests. In the remaining part of this Section, we describe query
strategy formulation of 𝜙 (·) that is used for active learning.

Entropy Utility. Firstly, according to uncertainty sampling [18,
19, 27] in active learning, the higher the uncertainty of a model’s
prediction for a particular bid in a request, the greater the infor-
mation we can obtain by exploring that request. entropy [30] is a
common uncertainty-based measure for informativeness in active
learning. Suppose we are estimating the entropy utility of request
𝑥𝑖 .𝑀𝑡 (𝑥𝑖 ) will predict the winning rates at different bid prices. For
𝑥𝑖 , the prediction of winning rate 𝑝𝑘

𝑖
at the bid price 𝑏𝑘 can be

considered as a binary classification problem. So the query strategy
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formulation based on entropy of 𝑥𝑖 at 𝑏𝑘 is:

𝜙𝐸 (𝑥𝑖 , 𝑏𝑘 ) = −(𝑝𝑘𝑖 𝑙𝑜𝑔(𝑝
𝑘
𝑖 ) + (1 − 𝑝𝑘𝑖 )𝑙𝑜𝑔(1 − 𝑝

𝑘
𝑖 )) . (5)

However, in traditional active learning, we request annotations
for unlabeled data. While in this paper, the bid requests in the
exploitation set 𝑋 ∗ will have annotations (the win/loss label 𝑦∗

𝑖
)

after the auction. We aim to request more valuable annotations for
exploration on bid requests at different bid prices. So the differ-
ence between the annotations obtained through exploitation and
the ones acquired through exploration is the utility brought by
exploration. So we have:

𝜙𝐸𝑈 (𝑥𝑖 , 𝑏𝑘 ) = 𝜙𝐸 (𝑥𝑖 , 𝑏𝑘 ) − 𝜙𝐸 (𝑥𝑖 , 𝑏∗𝑖 ). (6)

For every bid request 𝑥𝑖 , we will calculate a vector of length 𝐾
which represents its entropy utility at different bid prices. At 𝑡-th
round, we receive the bid request set𝑋 . Based on the above method,
we can calculate the entropy utility of the current model 𝑀𝑡 for
each bid price on each bid request. It can be represented in the form
of an 𝑁 × 𝐾 matrix named 𝐸.

𝐸 𝑏1 · · · 𝑏𝑘 · · · 𝑏𝐾

𝑥1 𝐸11 · · · 𝐸1𝑗 · · · 𝐸1𝐽
.
.
.

.

.

.
. . .

.

.

.

𝑥𝑖 𝐸𝑖1 𝐸𝑖𝑘 𝐸𝑖𝐾
.
.
.

.

.

.
. . .

.

.

.

𝑥𝑁 𝐸𝑁 1 · · · 𝐸𝑁𝑘 · · · 𝐸𝑁𝐾

where 𝐸𝑖𝑘 = 𝜙𝐸𝑈 (𝑥𝑖 , 𝑏𝑘 ).
Exploration Utility. In the above section, we proposed the

method for calculating the entropy utility, which represents the
the uncertainty gain brought by exploration on each bid price for
each bid request. However, it has been suggested that common
uncertainty sampling are prone to querying outliers [25], which
have a low occurrence frequency within the bid requests. In this
study, we take into account density together with uncertainty. In
CeBE, density measure can be understood as follows: If we explore
on a certain sample that frequently appears in bid requests, the
exploration utility of this sample will be higher than the outliers.
Knowing the winning price distribution of a bid request that fre-
quently appears is naturally more valuable than the one that rarely
occurs. To address this challenge, we introduce a density measure
based on the similarity between samples to the above-mentioned
entropy utility.

We calculate the similarities between each pair bid requests and
use them to model the exploration utility of each request at each
bid price. The bid requests𝑋 ∈ R(𝑁×𝑞) encode user and ad features
and are initialised with the features extracted from the winning rate
prediction model. After we apply 𝑙2 normalization to the features,
we can calculate the similarities between each pair of 𝑋 by cosine
similarity i.e. (𝑥𝑖𝑥𝑇𝑗 , {𝑖, 𝑗 ∈ 𝑁 }). And we assume that if the cosine
similarity is greater than the threshold 𝜆, these two bid requests are
almost the same. If a sample does not have any other sample with
cosine similarity greater than 𝜆, then this sample is considered as
an outlier. So we build a matrix 𝑆𝑐𝑜𝑠 ∈ R(𝑁×𝑁 ) to represent the

correlation between each pair of ad requests.

𝑆𝑐𝑜𝑠𝑖 𝑗 =

{
𝑥𝑖𝑥

𝑇
𝑗
, if 𝑥𝑖𝑥𝑇𝑗 > 𝜆 and 𝑖 ≠ 𝑗,

0, otherwise.
(7)

Furthermore, we normalize the matrix by multiplying with its de-
gree 𝐷 (the number of related samples). Then, we add the identity
matrix 𝐼 to the matrix so that the most similar is with the bid re-
quest itself. At last, we get the matrix 𝑆 ∈ R𝑁×𝑁 to represent the
correlation between each pair of bid requests, including the bid
request and itself. This can be formulated under:

𝑆 = 𝐷−1𝑆𝑐𝑜𝑠 + 𝐼 . (8)

We can consider the matrix 𝑆 as a graph, where each bid request
represents a node in the graph, and each edge represents the corre-
lation between the two connected nodes. Indeed, this is a special
graph, where there is an edge between a node and itself. The initial
entropy utility of the node 𝑥𝑖 at bid price 𝑏𝑘 is 𝜙𝐸𝑈 (𝑥𝑖 , 𝑏𝑘 ) and the
weight of each edge is 𝑆𝑖 𝑗 , {𝑖, 𝑗 ∈ 𝑁 }. We update the entropy utility
of 𝑥𝑖 at bid price 𝑏𝑘 based on its connected neighbors. The update
method for the entropy utility of 𝑥𝑖 in each iteration is as follows:

𝜙1 (𝑥𝑖 , 𝑏𝑘 ) =
𝑁∑︁
𝑗=1

𝑆𝑖 𝑗𝜙
0 (𝑥 𝑗 , 𝑏𝑘 ), (9)

where𝜙0 (𝑥 𝑗 , 𝑏𝑘 ) = 𝜙𝐸𝑈 (𝑥 𝑗 , 𝑏𝑘 ). After 𝛽 iterations, we get𝜙𝛽 (𝑥𝑖 , 𝑏𝑘 )
to represent the exploration utility of each bid price in ad request
𝑥𝑖 . The parameter 𝛽 controls the density importance in exploration
utility estimation for ad requests. 𝜙0 (𝑥𝑖 , 𝑏𝑘 ) measures the "base"
informativeness by 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 strategy above. Also, we can
use an 𝑁 × 𝐾 matrix 𝑈 to represent the exploration value of every
ad requests at every bid prices. We can easily get𝑈 through several
matrix multiplications:

𝑈 = 𝑆𝛽𝐸, (10)
where𝑈𝑖𝑘 = 𝜙𝛽 (𝑥𝑖 , 𝑏𝑘 ).

We proposed an active learning strategy that takes into account
the uncertainty and density of each ad request on each bid price
. The final result is represented by matrix 𝑈 , where 𝑈𝑖𝑘 indicate
the exploration utility of the ad request 𝑥𝑖 on the bid price 𝑏𝑘 . Now,
we have finished the definition of 𝑢 function in Section 3.1, where
𝑢 (𝑥𝑙 , 𝑏𝑙 ) = 𝜙𝛽 (𝑥𝑙 , 𝑏𝑙 ). Based on 𝑈 and our exploration objectives,
we can construct the exploration set 𝑋 . It’s worth noting that in
RTB scenarios, under each ad request, we can only choose one
bid for exploration. Indeed, we won’t have the opportunity to bid
multiple times on a single ad request.

4.3 Bid Exploration Costs Control
In CeBE, different exploration bid prices will result in varying cost
consumption. Let’s consider an example where the exploration
value on bid request 𝑥𝑙 with bid price 𝑏𝑙 is the highest. However, at
this moment, the exploration cost might be unacceptable. In this
section, we propose a method to estimate the exploration cost and
use a 2 + 𝜖-approximation greedy algorithm to solve this stochastic
knapsack problem.

Cost Estimation. Suppose we have an exploration bid request
𝑥𝑙 with true value 𝑣𝑙 , and our exploration bid price is 𝑏𝑙 . If we do
not explore this bid request, we will place bid price 𝑏∗

𝑙
at the bid
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request 𝑥𝑙 . However, if we explore this bid request 𝑥𝑙 and generate
an exploration bid price 𝑏𝑙 , the surplus we can obtain changes. And
the difference between the two represents the true cost brought by
exploration. So we have:

𝑐 (𝑥𝑙 , 𝑏𝑙 ) = 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 (𝑥𝑙 , 𝑏∗𝑙 ) − 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 (𝑥𝑙 , 𝑏𝑙 ), (11)

However, because we do not know the true winning price of bid
request 𝑥𝑙 and the win/loss label 𝑦𝑙 before auction, we are not able
to calculate the true cost. Instead, we use the expected cost

𝐸 (𝑐 (𝑥𝑙 , 𝑏𝑙 )) = 𝐸 (𝑠𝑢𝑟𝑝𝑙𝑢𝑠 (𝑥𝑙 , 𝑏∗𝑙 )) − 𝐸 (𝑠𝑢𝑟𝑝𝑙𝑢𝑠 (𝑥𝑙 , 𝑏𝑙 )) + 𝛼, (12)

where 𝛼 is the initial cost corresponding to the exploitation case
because we hope that the expected cost is a non-zero positive value
in any scenario. It is worth noting that the expected cost is a distri-
bution, and its true values vary depending on the win/loss labels
after the auction. And we only know the expectation of cost be-
fore the auction. We then calculate the cost-effectiveness of each
bid request 𝑥𝑖 at each bid price 𝑏𝑘 and find the bid price 𝑏𝑖 that
maximizes the cost-effectiveness

𝑏𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏𝑘
𝑢 (𝑥𝑖 , 𝑏𝑘 )
𝐸 (𝑐 (𝑥𝑖 , 𝑏𝑘 ))

. (13)

If we explore the ad request 𝑥𝑖 , the exploration bid price will be 𝑏𝑖
and we use 𝑟𝑖 to denote the cost-effectiveness of this exploration.
𝑐𝑖 = 𝐸 (𝑐 (𝑥𝑖 , 𝑏𝑖 )) is used to denote the expectation cost of exploring
𝑥𝑖 and 𝑢𝑖 = 𝑢 (𝑥𝑖 , 𝑏𝑖 ) is used to denote the exploration utility we
will obtain by exploring 𝑥𝑖 .

Stochastic Knapsack Problem. The optimization problem in
Section 3.1 can be formulated as a Stochastic Knapsack Problem [4].
Suppose the budget for round 𝑡 is𝐻 . We try to fill the "knapsack" of
"volume" 𝐻 with bid requests valued 𝑢𝑖 with "size" 𝑐𝑖 . Unlike 0 − 1
knapsack problem, in this scenario, the "size" of each "item" is a
distribution, and its actual "size" is determined onlywhen it is placed
into the "knapsack". Generally, we should use an adaptive policies to
address the stochastic knapsack problem. This means adjusting the
strategy in real-time based on current profits, remaining knapsack
capacity, and other relevant information. However, this method
is complex and computationally intensive. So, we use a greedy
algorithm to solve this problem.

Because the bidding system will receive a large amount of ad re-
quests at each round, the requests’ exploration costs have a notable
characteristic, that is the exploration costs are much smaller than
the budget 𝐻 . Suppose we have

𝑐𝑖

𝐻
≤ 𝜖,∀𝑖 ∈ 𝑁 . (14)

In this situation, the difference between the results obtained from
the greedy algorithm and the optimal adaptive strategy is small.

Firstly, we use 𝑟𝑖 to denote the cost-effectiveness of the explo-
ration on𝑥𝑖 .We sort the ad requests based on their cost-effectiveness
𝑟𝑖 and then select ad requests from largest to smallest. Then we add
the selected ad request to the exploration set 𝑋 and its bid price
which maximize the cost-effectiveness to the exploration bid prices
𝐵̂. Through this exploration, we expanded the corresponding cost
and update the budget 𝐻 . We will continue sequentially selecting
samples to add to the exploration set until the budget is exhausted.
It has been prove that this greedy algorithm is a 2+𝜖-approximation
algorithm [9].

Algorithm 1 Find the optimal exploration set
Input: bid requests 𝑋 , bid prices befor shading 𝑉 , budget 𝐻 ;
Output: the exploration set 𝑋 and exploration bid prices 𝐵̂;
1: 𝑠𝑢𝑟𝑝𝑙𝑢𝑠𝑖𝑘 = (𝑉𝑖 − 𝑏𝑘 )𝑀𝑘

𝑡 (𝑥𝑖 );
2: the largest value of each row is 𝑠𝑢𝑟𝑝𝑙𝑢𝑠∗

𝑖
;

3: 𝐶𝑖𝑘 = 𝑠𝑢𝑟𝑝𝑙𝑢𝑠∗
𝑖
− 𝑠𝑢𝑟𝑝𝑙𝑢𝑠𝑖𝑘 ;

4: 𝐸𝑖𝑘 = 𝜙𝐸𝑈 (𝑥𝑖 , 𝑏𝑘 );
5: 𝑋 = 𝐿2_𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑋 );
6: 𝑆𝑐𝑜𝑠 = 𝑋𝑋𝑇 − 𝐼 , values lower than 𝜆 replaced by 0;
7: 𝑆 = 𝐷−1 (𝑆𝑐𝑜𝑠 ) + 𝐼 ;
8: 𝑈 = 𝑆𝛽𝐸;
9: while 𝐻 > 0 do
10: select unchosen 𝑥 at 𝑏 with largest value in 𝑈

𝐶
;

11: 𝑋 ∪ {𝑥} and 𝐵̂ = 𝐵̂ ∪ {𝑏};
12: update budget 𝐻 ;
13: end while
14: return 𝑋 and 𝐵̂.

Table 2: Statistics of datasets

dataset Total# Opt win rate(%) Opt surplus
iPinYou (pretrain) 6913657 98.52 1332426293
iPinYou (Evaluate) 5323430 98.33 997500830
Private (pretrain) 4057166 \ \
Private (Evaluate) 5409519 \ \

5 EVALUATION
In this section, we conduct experiments to evaluate the performance
of our proposed CeBE.

5.1 Experiment Setup
The datasets, models and implementation details are described in
the appendix 1.

Baselines.Aswe are the first to introduce an explorationmodule
in the bid shading system, we lack relevant baselines for comparison.
Therefore, we contrast our approach with traditional active learning
methods. We compare our methods with the following baselines:

• BS: The bid shading system without any exploration module.
Any exploration strategy should achieve better results than
this baseline; otherwise, the exploration strategy would not
be acceptable.

• Random: We randomly select a portion of bid requests for
exploration and place random bid prices on these bid re-
quests.

• Entropy [18, 19, 27, 30]: We select the bid prices for which
the model predicts the highest entropy for exploration. That
is to say that the predicted winning rate of exploration bid
prices is 0.5.

• E/C [12]: We calculate the entropy and cost for each bid
request at each bid price, then sort them in descending order
and explore them in the order.

1https://drive.google.com/file/d/1VY8_1PbNj8nIOk30CnffUJdwN4CeR26i/view?usp=
drive_link
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Table 3: Overall performance comparison between our method and baselines, where the best performance is bold and the
second best is underlined.

Datasets iPinYou Private
Model Metrics %surplus %imps %V %exploration %surplus %imps %V %exploration

NPDM

BS 73.68 82.65 84.40 \ 64.21 23.53 90.23 \
Random 73.35 77.81 79.60 7.21 76.08 27.47 88.02 7.00
Entropy 73.71 78.32 80.16 5.97 75.24 20.48 79.69 3.84
E/C 74.93 78.17 80.02 22.93 69.96 28.77 91.69 31.04
LL 74.24 78.25 81.32 6.34 75.48 22.28 80.12 5.32

CeBE 76.11 78.15 81.35 25.47 76.25 26.11 91.28 24.46

PDM

BS 37.00 30.66 41.23 \ 39.12 11.08 40.15 \
Random 45.47 45.34 47.07 10.53 46.88 13.24 47.63 11.24
Entropy 39.06 38.79 40.31 8.05 47.61 10.87 39.43 9.51
E/C 45.19 41.77 43.36 29.31 44.98 13.10 47.85 31.60
LL 40.21 39.72 41.25 10.60 47.72 11.23 40.48 10.12

CeBE 46.24 43.20 44.90 29.89 48.03 12.66 46.21 30.40

• LL [34]: We use a model to predict the loss value of each
bid request at each bid price. And we select the sample with
high loss value for exploration.

CeBE is our proposed active learning strategy. We use different
exploration strategies mentioned above on NPDM and PDM to
select different samples for exploration, and compare them with the
CeBE. It is important to note that for fairness, we allocate the same
amount of budget and bidding range for each exploration method.

Evaluation Metrics. We calculate the %surplus (the ratio be-
tween the actual obtained surplus and the optimal surplus) to evalu-
ate the surplus gained by exploration. And %imps (the ratio between
the actual number of impressions and the optimal number of im-
pressions) and %V (the ratio between the actual obtained 𝑉 and
optimal obtained 𝑉 ) are also important metrics that bid shading
system focuses on. At last, %exploration means the proportion of
exploration samples to the total number of samples.

5.2 Experiment Results
Overall performance comparison. Table 3 shows the overall
performance of our method compared with other active learning
methods.We observe ourmethod consistently outperforms other ac-
tive learning method on both two datasets and models. Our method
achieves 8.16% on average improvement over the baseline BS in
%𝑠𝑢𝑟𝑝𝑙𝑢𝑠 . Obviously, this result validates that addressing local op-
tima in bid shading system is essential and indeed boosts surplus
gains. Other active learning method also achieve improvements
over the baseline BS, but they do not exhibit as significant ad-
vancements as our approach. Our approach demonstrates average
performance on metrics like %𝑖𝑚𝑝𝑠 and %𝑠𝑝𝑒𝑛𝑑 , but the gap be-
tween our results and the optimal results is not substantial. We
also calculate the proportion of exploration samples in the overall
dataset. Due to the lack of consideration for exploration costs in
the Random, Entropy and LL methods, the proportion of samples
explored by these two approaches is relatively low within a certain
budget constraint. Conversely, in the E/C and CeBE methods, the
proportion of exploration samples is more substantial.

Training data analysis. To investigate the reasons why the
aforementioned exploration methods are beneficial for model train-
ing, we conducted an analysis of the predicted winning rate dis-
tribution of training data under different methods. Figure 3 shows
the results. It is evident that the BS method without exploration ex-
hibits a winning rate distribution in its training data that is mostly
concentrated at the two extremes. These training data have low
uncertainty and limited informativeness. On the other hand, other
explorationmethods, particularly our proposed CeBEmethod, show
a training data distribution that is more focused on bid prices with
higher uncertainty compared to the BS method.

Cost-effectiveness analysis. We conducted an analysis of the
realized exploration costs and the increase in surplus for different
methods. Figure 4 shows the result. Firstly, looking at the disparity
between expected costs budget and realized costs, we observe that
in most cases, the realized costs are lower than the expected costs,
particularly with our proposed method. Moving on to the surplus
increase, our proposed method might not exhibit as substantial
surplus gains as other exploration methods. However, when factor-
ing in the costs associated with surplus improvement, our method
significantly outperforms others in terms of cost-effectiveness.

Density analysis. In contrast to E/C, our proposed method
takes into account the additional factor of inter-sample correlation.
Through this method, we aim to prevent the exploration of outliers.
If a sample has cosine similarity with all other samples below a
certain threshold 𝜆, we consider that sample to be an outlier. We
calculated the number of outliers in the training datasets of the E/C
and CeBE methods, and the results are illustrated in Figure 5. It
can be observed that our proposed method avoids exploration on a
portion of outliers, thus saving exploration costs on samples that
do not yield high returns.

Budget analysis.The size of the budget in each round constrains
the extenr of exploration. We conducted experiments using NPDM
on Private dataset under various budget constraints. The results are
illustrated in Table 4. When the budget for each round is too limited,
the number of samples we can explore becomes minimal, resulting
in a small incremental increase in surplus, which is even less than
the exploration cost. When our budget is substantial, we have the
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Figure 3: The predicted winning rate of training data for different methods.

Figure 4: The surplus increases and realized costs of different
methods. Comparing their cost-effectiveness.

Figure 5: Number of outliers in training data of E/C andCeBE.

capability to explore a large number of samples, even potentially
reaching 100% exploration. Such over-exploration leads to high
costs, thereby diminishing the cost-effectiveness of exploration.
Making a reasonable choice for the size of the budget in each round
is of an essential consideration.

6 CONCLUSION
In this work, we study on an important but unexplored problem —
local optima in bid shading system.We first identify the origin of the

Table 4: Overall performance comparison between different
budget constrains, where the best performance is bold. The
experiments were conducted on Private dataset using NPDM.

Budget %surplus %imps %V %exploration
104 67.38 28.90 89.23 3.40
105 76.25 26.11 91.28 24.46
5 × 105 73.07 27.38 86.85 75.56
106 74.43 28.70 88.26 98.42

local optima — it roots in the absence of winning price information,
which result in the conflict between short-term surplus and model
training, and is further propagated through the over-exploitation
of the winning rate prediction model. To rectify this, we proposes
a cost-effective active learning strategy for bid exploration that
selects a subset of bid requests along with their bid prices. By
trading off a portion of surplus, we train the model using higher-
quality data to enhance its performance, enabling the system to
achieve long-term benefits. Our experiments on public dataset and
private dataset validate that our proposed CeBE outperforms other
active learning-based exploration strategy by a large margin.

Our work only explores local optima in bid shading from ac-
tive learning perspective. One interesting direction for future work
is to investigate more exploration strategies (e.g., contextual ban-
dit). Also, designing an adaptive strategy to adjust the extent of
exploration can lead to higher cost-effectiveness. All of these would
contribute to enhancing the revenue of the online advertising.
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