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On Designing Market Model and Pricing
Mechanisms for IoT Data Exchange

Zhenzhe Zheng
Yidan Xing

Abstract—Data is becoming an important kind of commercial
good, and many online marketplaces are set up to facilitate the
exchange of data. However, most existing data market models and
the corresponding pricing mechanisms fail to capture the unique
economic properties of data. In this paper, we first characterize
the new features of IoT data as a digital commodity, and then
present a market model for IoT data exchange, from an information
design perspective. We further propose a family of data pricing
mechanisms for maximizing revenue under different information
asymmetry settings. Our MSimple mechanism extracts full surplus
for the model with one type of buyer in the market. When multiple
types of buyers coexist, our MGeneral mechanism optimally solves
the problem of revenue maximization by formulating it as a convex
program with polynomial size. For a more practical setting where
buyers have bounded rationality, we design the MPractical mech-
anism with a tight logarithmic approximation ratio. We also show
that the seller can further increase revenue by offering a free data
trial to the buyers. We evaluate our pricing mechanisms on a real-
world ambient sound dataset. Evaluation results demonstrate that
our pricing mechanisms achieve good performance and approach
the optimal revenue.

Index Terms—Internet of Things data, data pricing, revenue
maximization, information design.

I. INTRODUCTION

ATA is becoming an important commodity in the era
D of artificial intelligence. Data has tremendous value to
both its owner and other parties who want to integrate it into
their services. A number of online data exchange platforms are
emerging to enable data sharing and trading over the Internet,
facilitating various kinds of data-based services, such as person-
alized advertising and business decision making. For example,
Gnip [1] aggregates and sells social media data from Twitter,
Xignite [2] vends real-time financial data, and Here [3] trades
tracking and positioning data for location-based services.
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Among various online data exchange platforms, several com-
panies [4], [5], [6] focus on data from Internet of Things (IoT).
IoT data marketplaces allow different stakeholders to share their
sensor network infrastructures through the exchange of IoT
data among different organizations. For example, IOTA [4] is a
blockchain-based data marketplace for aggregating and selling
IoT data, and DataBroker DAO [6] is a peer to peer platform for
IoT data exchange. Data from widely deployed IoT devices is
accurate and fined-grained, which enables many intelligent city
services, such as waste management and environment monitor-
ing [7], traffic jam avoidance [8], smart agriculture and weather
forecasting [9], and etc. The massive value of IoT data in diverse
applications significantly increases its market demand.

One major drawback of existing data marketplaces is the
inefficient data pricing mechanisms: the data sellers either adopt
a fixed price mechanism [4], or choose to negotiate with buyers
offline [2], introducing obstacles for data exchange. Although
there are some existing work dedicated to designing flexible data
pricing mechanisms, most of them only considered structured
and relational data [10], [11]. These work fail to capture the
features of IoT data, and ignore the economic objective of the
data seller. In this work, we aim to analyze the new economic
properties of IoT data compared to the traditional digital goods,
and design efficient pricing mechanisms to achieve the objective
of revenue maximization.

In the following, we first present four properties of IoT data
as a new kind of digital commodity that could heavily influence
the trading model and pricing mechanism design.

* First, IoT data generally falls into the category of digital
goods, and can be reproduced with a negligible marginal cost.
Due to such a cost structure, a buyer can easily generate a new
copy of the raw data, and resell it at a lower price, introducing
the problem of data piracy. Traditional copyright techniques for
digital goods, such as software and movie, can hardly resist such
piratical behaviors over data. To resolve this issue, we argue that
the data seller should share data services instead of raw data in
data marketplaces. The data services could be the mean, median,
maximum values and even statistical models of aggregated data,
or the results of performing data mining techniques on the data.
We note this trading strategy can also preserve the privacy of
data owners to some extent.

* Second, the valuation over IoT data does not necessarily
depend on data volume, but should be highly related to the
amount of information it provides. This property differentiates
IoT data from traditional (digital) commodities. A large volume
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of noisy data from low standard sensors could have less valuation
than a small set of precise data from a professional sensor. One
fundamental question in data exchange is how to quantify the
valuation of data? In the context of IoT applications, buyers
make some decision to earn certain utilities based on the in-
formation extracted from sensory data. With this observation,
we can measure buyer’s valuation towards a set of data by the
utility increment (information gain) after purchasing this data
set. For example, suppose you are going out on a sunny day
and consider it is not necessary to take an umbrella. In this
case, a large set of humidity sensory data confirming a long
sunny day does not generate much valuation, as the provided
information is consistent with your prior belief. By contrast,
a set of sensory data forecasting a heavy rain one hour later
generates high valuation to you, as it changes your belief and
decision, guiding you to take an umbrella.

* Third, the price of data might have a certain correlation with
the information behind the data, and thus directly releasing the
data price may leak the content of data. Suppose the data seller
in the previous “umbrella” example sets prices $1 and $2 for
the “sunny” data set and the “rainy” data set, respectively. A
buyer could distinguish these two data sets through observing
the corresponding prices, as the rainy data set is more valuable
and deserves a higher price. Since buyers are willing to pay a
high price for valuable information, the seller would lose revenue
if she simply reduces the price of the rainy data set to $1. We
therefore argue that, in order to avoid information leakage before
data trading, the seller should decouple the data price and data
content. For example, one possible qualified pricing scheme is:
charge $1 for a weather data set with 25% uncertainty, and charge
$2 for 5% uncertainty, where a x% uncertainty indicates the
contained data is disturbed or messed up by a probability of
2%. Such a content-independent pricing scheme do not leak
information about the actual data.

* Fourth, IoT applications require the price of data to be deter-
mined before data is actually generated. The data buyer would
like IoT data streams to be fed in real-time for time-sensitive
decision making [12], and thus it is impractical to calculate
the price in an online manner. Most of existing work cannot
handle the real-time feature of IoT data, as they always consider
the static data, which is sold after it is collected, structured or
modeled [10], [11]. This feature of IoT data raises a challenging
problem: how do sellers persuade buyers to purchase the data
with appropriate prices when they still have not collected data?

Besides the four features mentioned above, the objective of
revenue maximization introduces additional challenges. As the
seller does not know the valuation of each individual buyer, she
has to determine the price of data under a Bayesian valuation
setting, where only the distribution of valuations is available.
Moreover, with various types of buyers in the market, an opti-
mal pricing mechanism should perform market segmentation or
price discrimination among buyers, which would introduce the
potential strategic behaviors of buyers.

Jointly considering the discussed challenges, in this paper,
we present a new market model for IoT data exchange from an
information design perspective, which captures the aforemen-
tioned unique properties of [oT data. First, the seller in our model
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provides data services to buyers by sending signals with various
amount of information, rather than feeding raw data. Second,
we define the valuation of data as buyer’s utility increment due
to the action change after buying data. Finally, the seller designs
and publishes the pricing schemes before data collection, and
incentivizes buyers to purchase the desired data sets by giving
them the highest expected utility increments. The timing of the
pricing schemes enables the sharing of future data, and ensures
that prices would not leak information about the actual data
content.

Based on the new market model for IoT data exchange, we
then design a series of pricing mechanisms to maximize revenue
from data trading, inspired by the ideas from information design.
As a classical result from the information design literature, the
information designer is often better off by sometimes obfuscat-
ing the receiver, rather than offer completely accurate informa-
tion [13]. We implement this rule by posting a spectrum of data
purchasing options with different accuracy, each catering to a
specific type of buyer. We set higher prices to more informative
data and lower prices to less informative data. Our pricing
mechanisms automatically perform market segmentation among
buyers, which resonates the accuracy-based versioning mecha-
nisms [14], to maximize revenue.

We summarize our contributions in this paper as follows:

¢ First, we characterize four unique properties of IoT data

as a commodity that differentiate IoT data from traditional
goods. We present a market model from an information
design perspective that fully captures these new properties.

e Second, we design revenue-maximizing pricing mecha-

nisms under different market settings. We first consider a
simple setting where only one type of homogeneous buyer
exists in the market, and propose the MSimple mechanism
that extracts full surplus from the market. We then consider
the general setting where different types of buyers coexist.
We present the MGeneral mechanism to this setting, and
show there exists a polynomial time solution by formu-
lating the problem of revenue maximization as a convex
program. We further present the MPractical mechanism
to a more practical setting where buyers have bounded
rationality. We prove MPractical achieves logarithmic ap-
proximation ratio towards the optimal revenue, which is
the upper bound of any mechanism of constant size.

e Third, we observe the seller could further increase revenue

by offering free data trials to buyers before data trading.
We present algorithms for the seller to design profitable
free trials both in the single buyer setting and the multiple
buyers setting.

¢ Finally, we implement our pricing mechanisms on a real-

world ambient sound dataset. We evaluate the influence of
different parameters in the market model, and show that our
mechanisms achieve good performance in terms of revenue
maximization.

The rest of the paper is organized as follows. In Section II,
we introduce our market model and necessary notations. In
Section III, we present our revenue-maximizing pricing mech-
anisms under different market settings. In Section IV, we study
how free trials increase the seller’s revenue. We evaluate our
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pricing mechanisms in Section V. In Section VI, we briefly
review related work in the literature. Finally, we conclude the
paper in Section VII.

II. PRELIMINARIES

We consider the intersection between a data seller and multi-
ple data buyers. The data commodity in [oT data marketplaces is
the state of nature, denoted by a random variable w drawn from
a sample space Q2 = {wy,wa,...,wy}. The random variable
w could represent a particular numerical value of the sensing
result for an environmental phenomenon. For example, w can
be the mean of the readings from a set of noise sensors near
the street, and correspondingly 2 is a discrete set of possible
numerical values for noise levels. The random variable w could
also denote the data services extracted from multimodal raw
data. For example, the seller can aggregate data from vari-
ous sources—street noise sensors, traffic camera videos, crowd-
sourced pedestrian traces—to analyze the traffic condition of a
certain route. The analytical result is sold to buyers as a data
service. In this case, the nature state w is chosen from a binary
set Q = {Crowded, NotCrowded}.!

The seller trades the data through publishing a menu M =
{(I,tr)}, which contains multiple pricing schemes. Each buyer
chooses a pricing scheme (7, ¢;) that maximizes her expected
utility, which will be defined later. Each pricing scheme contains
an experiment® I and a corresponding price t;. An experiment
I = {S, P} contains a set S of possible signals,’ and an n x |S|
right probability matrix P =[p;; |, 1 <i<n, 1 <j<|S
where 0 < p;; < 1and Z‘JS:II pi; = 1. The interpretation of p;;;
is the probability that the seller sends signal s; € .S to the buyer
when the true nature state is w;, i.e., p;; = Pr(s; | w;).

We consider two special types of experiment: full-information
experiment I and no-information experiment I. In the full in-
formation case, we assume that |S| =n and P is a diagonal
matrix of size n x n. In such case, the seller directly tells the
buyer her entire knowledge about the nature state. Once the
seller observes the nature state as w;, she always sends signal
s; to the buyer. From the perspective of buyer, upon receiving
signal s;, she is fully confident that the true nature state is w;.
In the no-information experiment I, the seller uniformly selects
a signal from S and sends it to the buyer, regardless of the true
nature state,i.e., p;; = 1/|S|foralll <i <mn,1 < j <|S|.The
buyer gains no information from this experiment, and thus the
no-information experiment can be used to fully obfuscate the
nature state.

The buyer is uncertain about the true state of nature, and
seeks to buy data (or data services) from the seller to sup-
plement her knowledge. The buyer has a prior estimation of
the nature state before purchasing data. The buyer may have

s

'Our results can be easily extended to a vector of random variables instead
of a scalar random variable. We would keep the scalar random variable for the
simplicity of discussion in this work.

2An experiment is also called an information structure in the literature [15].

3We abstract different responses from the seller as different signals. For
example, in the context of IoT data exchange, reporting different probabilities
of precipitation to the buyer can be regarded as sending different signals.
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previously bought data from the same sensors, and this relatively
out-of-date data can help her form a good estimation. It is also
possible that the buyers do not have any prior knowledge about
the nature state. For these specific scenarios that buyers do not
have any prior knowledge, we assume the prior estimation to
be an uniform distribution. Under this situation, there is no evi-
dence or knowledge that can help the buyer gain an informative
estimation for the distribution of nature states, and thus it is
reasonable to assume the buyer to believe that each nature state
has a same and uniform probability to happen. This assumption
is also without loss of generality as our solutions would work
for arbitrary prior distribution. We denote the prior distribu-
tion for the random variable w as 0 = (01,60, ...,0,) € AQ*
where 0 < 6; <1and > ;" ,6; = 1. The parameter 6; denotes
the probability that the nature state is w;, i.e., 6; = Pr(w;).
We also call the prior distribution # as the private fype of
buyer, and assume that the type 6 is drawn from a finite set
© with an independent and identical distribution F'(f) € A©.
We further assume the cumulative distribution function F'(6) is
public information, which can be estimated from the historical
interaction with buyers or through some survey deployed by
sellers. These assumptions about type 6 follow from Bayesian
mechanism design literature [16], which are necessary for rev-
enue computation. This is because the same mechanism could
have highly fluctuating revenue performances for buyers with
different prior beliefs, and we need F'(6), the distribution of these
prior beliefs, to estimate the expected revenue of a mechansim
over all the buyer population. As we would observe in Section III,
an inaccurate F'(6) would only affect the revenue performances
of our proposed pricing mechanisms, while the I.C. conditions
are guaranteed to hold regardless of the accuracy of F'(0) by our
design. Therefore, in practice, the seller could first use a F'(6)
estimated from historical interaction data or pre-survey among
buyers, then further collect and update the type distribution
through interactions with the buyers.

We next define the utility of a buyer in IoT data markets. In
IoT applications, the buyer usually faces a decision problem,
where she has to choose an action a from a finite set A, based
on her perception over the nature state. Let u(w, a) denote the
utility of the buyer when the nature state is w and an action a is
taken. Without loss of generality, we normalize u(w, @) to [0,1].
We also assume for each nature state w, there exists one action
to achieve the highest utility 1, i.e., max, u(w, a) = 1,Vw € Q.
Without purchasing data from the seller, the buyer has to rely her
decision only on her prior estimation ¢, and the corresponding
expected utility is

u(B) £ maxEy [u(w, )] = max Y Gru(wi,a). (D)
i=1

After receiving a signal s; from the seller, the buyer 6 updates
her estimation over the nature state using the Bayes’ rule:

o Pr (Sj \wL) Pr(wi) -

Pr(wl‘sj)_ Pr(s) = -
J

ik X O

@)

4AQ denotes all the possible probability distributions over 2.
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and her expected utility becomes

u(d,s;) =

max E,, [u(w,a) | s;]

= maxZPr wi | 85) w(w;,a). 3)

Given an experiment [, from buyer 6’s point of view, the prob-
ability of receiving signal s; is

Pr( ZPr w;)Pr(s; | wi)
=1

Z ezpm

The buyer’s expected utility after buying experiment [ is

S|

ZPr sJ

Therefore, combining the four equations above, buyer 0’s utility
increment for buying the experiment I is

u(f, s;5). 4)

(0, 1) = u(6, 1)

[S| n n
i50i

j=1 \i=1

n
— max E Ou(w;,a
a
i=1
S|

n
E maxg Oipiju(w;,a mgxg Oiu(wi,a
i=1

(&)

We assume buyer 6 is willing to buy the experiment [ if and
only if the price ¢ is no larger than her utility increment. More
specifically, we have the following Individual Rationality (I.R.)
constraint:

v(0,1)—t; >0, V0eo. (LR)

We remark on four advantages about our new market model
for IoT data exchange, which overcomes the challenges we
discussed in Introduction. First, the seller does not directly sell
raw data to the buyer, but instead trades information (signals)
extracted from raw data. This information-based trading model
can resist data piracy and preserve data privacy to some extent.
Second, we propose a new metric to measure the valuation of
data, which depends on the buyer’s utility increment due to
the action change after buying data. While previous metric for
data valuation is simply related to data volume [17], our metric
considers the data’s effect on decision making and reflects the
information contained in the data. Third, the seller sets prices to
different experiments independent of the data content, and the
buyer pays the seller before the nature state is realized. In this
case, the prices in the menu would not leak information about
the actual data content. Finally, the seller sets the prices of data
before it is actually collected, which is suitable for the exchange
of real-time IoT data.
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Fig. 1. Data trading process in IoT data marketplaces.

The data trading process in IoT data marketplaces is illustrated
in Fig. 1, which could be described in sequence as follows: 1)
First, the seller designs a menu M = {(I,¢)} and posts it to
the market; 2) Given the menu, the buyer with prior belief 6
chooses a pricing scheme (7, ¢;) from the menu to maximize
her total gain, i.e., the difference between utility increment and
the payment v(6, I) — t;, and 3) pays the corresponding price
t; to the seller. 4) Then, the true nature state w is realized and
revealed to the seller. 5) After observing the true nature state,
the seller sends a signal s; to the buyer following the rule in
the selected experiment /. 6) After receiving the signal s;, the
buyer chooses an action a with the maximum expected utility
according to (3). 7) Finally, The buyer’s utility u(w, a) is realized
based on the chosen the action chosen by the buyer. We note that
the seller is committed to the designed pricing schemes, meaning
that once the buyer selects a pricing scheme, the seller would
strictly follow the rule of the experiment, and send signals to
the buyer according to the predefined probability matrix. Such
a seller commitment can be implemented in practice via a smart
contract inside a blockchain [18].

We provide a simple and concrete example to demonstrate
how each step in the above data trading process is proceeded. We
consider a data seller to collect and analyse ambient noise data
from widely deployed sensors, and sells the prediction results of
traffic conditions to data buyers [5], [19]. The basic information
of nature states, the buyer’s type, action set, and her utility
functions are defined as follows. We simplify the nature state
set in this example to be binary Q2 = {w; = Crowded, ws =
NotCrowded}. A buyer with type § = (6; = 0.3, 62 = 0.7)
needs to make a decision selected from her actionset A = {a; =
NotGoingOut, as = GoingOut}. The buyer would get unit
utility if she takes the “right” action, and zero utility otherwise,
ie., u(wi,a1) = u(ws,az) =1 and u(wi,as) = u(we,ar) =
0. Before buying any data, the buyer considers GoingOut would
generate higher expected utility based on her prior estimation 6,
and by (1), her utility before buying the data could be calculated
as u(f) = 0.7. We are now prepared to go through the details
for the trading of traffic condition data. Suppose the seller posts
a menu with two pricing schemes as defined in Fig. 1, and the
buyer chooses the first pricing scheme containing the following
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experiment

- 0.8 0.2
0 1

and pays a price t; = 0.1. This experiment I implies: when
the nature state is NotC'rowded, i.e., w = ws, the seller would
reveal the true state by sending signal s with probability 1, since
P22 = 1; when w = wy, the seller would obfuscate the buyer a
little bit, by telling her the truth (sending signal s; ) with probabil-
ity 0.8, but lying to her (sending signal so) with probability 0.2.
On the buyer’s side, upon receiving signal s;, she updates her
estimation using Bayes’ rule in (2), and gets posterior estimation
Pr(wy | s1) =1 and Pr(ws | s1) = 0. From (3), her expected
utility after receiving signal s; is u(6, s;) = 1. Similarly, we
have u(f,s2) = 0.92. By (4), her expected utility after buy-
ing experiment I is w(f,I) = 0.94. Since the buyer’s utility
increment v(0,I) = u(0,I) — u(f) = 0.24 is higher than the
price t; = 0.1, the buyer would like to buy such an experiment,
giving the seller a revenue of 0.1. We can verify that the revenue-
maximizing pricing scheme in this example is actually the other
pricing scheme provided by the seller, i.e., to completely reveal
the nature state to the buyer, by making I a diagonal matrix with
aprice t; = 0.3. However, as various types of buyers co-exist in
more complicated market settings, we will see that deliberately
obfuscating the buyer might sometimes generate higher revenue
to the seller. We summarize the frequently used notations in
Table I.

III. DATA PRICING MECHANISMS

In this section, we present a family of data pricing mechanisms
for the problem of revenue maximization in IoT data market-
places. We begin with a special case where there exists only one
type of homogeneous buyers, and design an optimal mechanism,
namely MSimple, which is able to extract full surplus from the
buyers. We then step into the general setting with multiple types
of buyers co-existing in the market. We formulate the problem
of revenue maximization in this setting as a convex program,
and propose MGeneral, an optimal mechanism with polynomial
time complexity. Finally, we consider a more practical case with
bounded rational buyers [20], which additionally requires the
seller’s menu to have a constant size. For this case, we present
the MPractical mechanism, and bound the revenue loss with
respective to the optimal revenue. The characteristics of data
pricing mechanisms proposed in this work are summarized in
Table II.

A. A Warm-Up Case

We first consider a simple case, where only one type of
buyers 6 exists in the market, i.e., © = {0} and F(0) = 1. This
corresponds to the situation where all buyers have no other
private source of data, and have a common prior estimation
over the nature state. Since buyers are homogeneous, the only
constraint in this problem is the I.R. property. In this case, the
optimal menu contains only one pricing scheme (I,t;). The

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 11, NOVEMBER 2024

TABLE I
MAJOR NOTATIONS

w Nature state

Q Space of nature states, with [Q] =n

AQ Space of probability distributions over 2

s Signal sent from seller to buyer

S Space of signals

Pij Probability that the seller sends signal s; when the nature
state is w;

P Probability matrix consists of p;;, with ¢ € [1,n] and j €
[1,|S]] (subscripts in subsequent notations have the same
ranges)

I Experiment consists of a signal space S and a probability
matrix P

tr Price of experiment I

0 Buyer’s prior distribution on nature states with 6; denotes the
probability that w; is the nature state

(C] A finite set of buyer’s possible prior distribution 6

F(0) Cumulative distribution function of 6

AO Space of probability distributions over A

a Action the buyer chooses in decision problem

A Space of actions

u(w,a)  Utility of the buyer when the nature state is w and an action
a is taken

u(0) Buyer’s expected utility given prior 0

u(0,s)  Buyer’s expected utility given prior 6 and signal s

u(0,1) Buyer’s expected utility after buying experiment I given prior

v(0,1) Buyer’s expected utility increment given prior 6 and experi-
ment

q; Posterior distribution after receiving the signal s;, where g;;
is the posterior probability that the nature state is w;

Q Probability matrix consists of p;

zf Probabilities of receiving different signals in the experiment
Iy, where z? denotes the probability for signal s

TABLE II
CHARACTERISTICS FOR PROPOSED MECHANISMS

Name Advantage(s) Disadvantage(s)

MGeneral ~ Optimality in revenue High computational complex-

ity

MPractical Revenue approximation  Lack of optimality guarantee

guarantee and  low in revenue
computation complexity

Free data  Additional chances to in-  High computational complex-

trial crease the revenue when ity and lack of revenue guar-

there are multiple rounds  antee

of interactions

problem of revenue maximization can be formulated by

max tr,
s.t. v(0,I)—tr >0,
[S|
Zplj = 17 Vl,
j=1
pij,tr >0, Vi, J. (LR)

This is equivalent to finding an experiment that maximizes
buyer’s utility increment v(6, I'). As we will prove in Theorem 1,
the full-information experiment I is always a utility-maximizing
experiment. Therefore, the optimal pricing scheme is simply a
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full-information experiment I, along with a price that is equal
to the utility increment of the buyer.

Theorem 1: For the single buyer type case, the optimal
pricing scheme is a full-information experiment I with price
tr = > 0; max, u(w;,a) — maxg y_ g iu(wi, a).

Proof: For any experiment I, define a; as buyer’s op-
timal action when she receives signal s;, ie., a; =
arg max, E, [u(w, a) | s;]. We then have

S| n
t; < w0, I)= ZmaxZ@ipiju(wi,a) —u(h)
j=1 i=1

IS| n

= Zzeipiju(wi,aj) — u(9) (6)
j=1i=1
n Bl

= Z Gl Zpiju(wi, aj) — u(@) (7)
i=1 j=1

< Z 0; max u(wg, a) — u(B) (3)
i=1

= u(0, 1) —u(0) €))

The first inequality comes from the I.R. constraint. The first
equation is by the definition of utility increment. Equation (6)
uses the definition of a;. Equation (7) is derived from switching
the order of summation. Equality (8) is obtained by setting the
probability p;; with the largest u(w;, a;) to be 1 and others to
be 0. Equation (9) follows from the definition of u (6, I ), where
the buyer is fully informed about the true nature state, and she
can take exactly the optimal action for any nature state w;. Since
we assume the highest achievable utility in every nature state is
normalized to 1, (8) also suggests u(6, [) = 1, V.

From the preceding derivations, we can easily verify that
the full-information experiment generates the largest utility
increment among all possible experiments, and maximizes the
revenue of the seller. Replacing «(6) in (8) with its definition
in (1), we get the optimal price ¢; for the experiment I. Since
there is only one type of buyer in this simple case, the seller
knows the value of every 6,. Therefore, the optimal price can be
exactly calculated by the seller. ([

In this simple case, there is only one kinds of buyers in the
market, and the seller knows about the type of every buyer she
intersects with, and thus can extract full surplus from buyers. Al-
though this assumption of homogeneous buyers might not hold
in many situations, the useful idea of formulating a mathematical
program as the mechanism in this simple case could be inherited
and applied to more complex cases. It is also worth to note that
by this simple case with homogeneous buyers, we can clearly
illustrate the intuition behind the solution of leveraging the tool
of information design to design a data pricing mechanism.

B. The General Case

We further consider the general setting, in which different
types of buyers co-exist in the market. As fine-grained menu
can extract high revenue from the market, we seek to design a
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discriminatory pricing scheme (I, tg) for each type 6 of buyer.
To avoid the potential strategic behaviors of buyers in selecting
pricing schemes, we need to guarantee that each buyer would
indeed choose the pricing scheme we design for her, and has
no incentive to deviate from such a scheme. This leads to the
following Incentive Compatible (1.C.) constraint:

1)(9,]9) — 1y > 1)(0, Lg/) — tor, Vo, 0 € o. (I.C)

Without loss of generality, we assume whenever the buyer is
indifferent between buying (I, tp) and not buying, she always
chooses to buy. The problem of revenue maximization in this
general case can be formulated as follows:

> F(O)ts,

0cO

max

S.t. U(g, Ig) — 19 >0, Vo, (IR)
v(0,1p) —tg > v(0,Iy) — Ly, Vo, o, (L.C.)
S|
szj - ]-7 Vi5197
j=1
pijatO > 07 Vi?j? I@»t9~ (10)

The feasible region in such a formulation is not convex, lead-
ing to high computational complexity of directly solving this
problem. Specifically, the v(6, ) in LR. and LI.C. constraints
is a piecewise linear combination of the decision variables p;;
due to the “maximum” operation in its definition (5), and this
piecewise linearity causes non-convexity. In order to overcome
the challenges caused by non-convexity, we need to formulate
our problem from a new perspective. The main idea of our
reformulation is to replace the decision variables p;; with some
constant parameters ¢;; that can be pre-computed efficiently.
By doing this, the “maximum” operations are exerted on the
constant parameters, rather than the decision variables, and thus
we can detour the difficulty from the non-convexity of feasible
region.

The previous formulation considers an experiment from the
“row perspective”: in the experiment Iy, we aim to assign a
proper row probability p; over different signals in S when
the nature state is w;. Now we present a different perspective,
namely “column perspective”, to express the experiment /. For
easy illustration, we define two notations. We use vector g;
(q15+G255 - - qnj)T € A(R) to denote the posterior distribution
Pr(w | s;) after receiving the signal s, where ¢;; is the posterior
probability that the nature state is w;, i.e., ¢;; = Pr(w; | s;). We
denote all the posterior distributions after receiving different sig-
nals to matrix Q = (q1,q2,...,qs|)- Let 2/ = {x? 1s; €8,
where x? denotes the probability of receiving signal s; in the

experiment Iy, i.e., :rf- = Pr(s;). From this “column perspec-
tive”, the experiment can be expressed via the matrix ) and
the vector 7. The following lemma states that we can express
the experiment Iy equivalently from the “row perspective” and
“column perspective” under certain conditions.

Lemma 1: Ttis equivalent to define an experiment Iy from the
row perspective with P = [p;;] and from the column perspective
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with 2% and Q = [g;;], if and only if the Bayes plausibility
restriction is satisfied:

S|

j=1

Proof: The “if” side: Suppose (E.Q.) holds true, and we recall

that x? = Pr(s;), gi; = Pr(w; | s;). Then, for any experiment I
defined by p;;, we can construct an identical experiment [, from
column perspective by setting

(E.Q)

x?:P ZPI‘ wz Pr SJ |W1 Zezpzj7vj7
i=1
Pr(wi)PI’ (Sj | wi) Gipij .o
ql:Pr(wz‘S): == [0 7VZ7]'
J 7 Pr(s;) > 0ipij
(11)

Similarly, for any column experiment, we can construct an
identical experiment using only p;;, by setting
iy = Pr(sy | wi) = TRCIPE @i 39) _ 250
K J Pr(w;) 0;
The “only if” side: Suppose the row perspective is equivalent
to the column perspective in defining an experiment, we have
ZgQij = Pr(w;, s;) = 6;p;;. Summing over j leads to

Vi, g (12)

S| IS

> alay = 0ipi; = 0;.
j=1 j=1

From the above two parts, we have proved this lemma. O

Simply defining an experiment from the column perspec-
tive does not make our problem easier, because the posterior
probability ¢;; is a continuous value. In order to achieve the
optimal solution, we still need to enumerate all possible pos-
terior distribution ¢; (representing all possible experiments) in
an infinite continuous space. To overcome this difficulty, we
propose the following lemma to show that assuming the posterior
g; is chosen from a pre-computed finite subset of A(€2) would
generate the equivalent revenue as it is chosen from the original
infinite continuous space. The idea of this lemma corresponds
to the “interesting posteriors” in [21].

Lemma 2: Given the buyer type space ©, restricting the candi-
date values of posterior distribution g; to a finite set Q* C A(Q)
that can be pre-computed in advance does not reduce the optimal
revenue.

Proof: According to the column representation, utility
u(f,s;) = maxq ., giju(w;,a) can be considered as a
piece-wise linear function f(g;):A(f2) R on ¢;. For
each 0 € O, function (6, s;) partitions the continuous space
A(Q) C R™ into |A| polytopes, and within each polytope
u(0, s;) is linear. We now combine the |O] sets of these partitions
by letting their boundaries cut each other, and we finally get a
finite set of newly partitioned polytopes. All u(6, s;)’s are linear
within each such polytope.

Let @ be the set of all the polytope vertex from the above
new generalized polytopes. For any posterior ¢; € A(£2), we
can rewrite ¢; with linear combinations of posteriors from
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@Q*. Specifically, we can express g; = » . Vkqr, Where g’s
are the vertexes of the polytope that contains ¢;, and v > 0,
> 7k = 1. For each solution to the revenue maximization
problem expressed from the column perspective, if it assigns
a non-zero probability x? to any posterior ¢; ¢ Q*, we can
convert this solution to another one with posteriors only in Q*,
by repeatedly increasing ¥ i for each ;. by fykx and decreasing
z9 5 10 0. As the number of partitioned polytopes is finite, we can
pre-compute Q* in advance. (]

Since the posterior distribution g; is drawn from a finite set Q*
that could be pre-computed in advance as shown in Lemma 2, in
the column perspective, we canregard g;; as constant parameters
rather than decision variables. With this result, we can rewrite the
problem of revenue maximization from the column perspective
as a linear programming:

LP  max Y F(0)ts,

6cO
|
st Y alu(,s;) —u(0) —tg >0, V0, (LR.)

El s

Zx?u(@, sj) —tog > Zx? u(6,6',s))

j=1 j=1

— tg, V0,0, (L.C.)
El

j=1

a,tg >0,  Vj,0. (13)

Since g;;’s are constant parameters, in the above linear program-
ming, utility u(#, s;) can also be pre-computed and considered
as constants, by u(0, s;) = max, y .4 ¢;ju(w;, a). Within this
formulation, we only need to determine the values of variables
x? and tg. The (I.C.) constraints state that buyer 6 is better off
choosing the experiment [y we design for her rather than the
experiment Iy for another buyer #'. In the formulation of column
perspective, we need additional computations to express the
(I.C.) constraints. Specifically, we need to figure out the posterior
distribution of the buyer # when choosing the experiment Iy .
We recall that the experiment Iy maps the prior belief 6 to
a distribution ¥ over the posterior beliefs ¢”. However, Iy
does not map @ to the same distribution of posterior beliefs. We
would first calculate the Iy matrix, i.e., the matrix {p;; }, from
0"s posterior beliefs 27" and q;?/ according to (12). Then by (11)
we could then calculate the distribution over posterior beliefs
that I maps 6 to. Specifically, Iy maps 6 to a distribution {z, }
over posterior beliefs {g; }, where

n o9 0
_ 9_%' 45
- i~

i=1 g

Therefore, in the (L.C.) constraints, u(6,6', s;), the expected
utility of buyer # when choosing the experiment Iy, can be
calculated as u(6,¢', s;) = >°7_; wju(q;), where u(g;) is the
expected utility with the belief ¢;, similar to that in (1).

o' 0
biz; q;;
/
Oix;

and iy =
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An immediate corollary of Lemma 2 is that the LP contains
polynomial number of constraints but an exponential number of
variables. In seeking a solution with polynomial time complex-
ity, we take the dual of LP as follows:

DLP min Z yo,iti — Z u(0)go,
i,0

0

s.t. Z(ha,el —ho o) +90 > F(0), Vo,
0'£6
Z h9/79u(9,, Sj) — Z h979«u(9, Sj)
0'#0 0'#0
> gou(0,5;) — > Yo.ilis» V3,0,
h9,0’ > 07 99 > 07 Y9,i € ]R> Vi7970/'

(14)

This dual linear programming contains O(|0|? + |©] - |£2|) vari-
ables and finite constraints. For a polynomial time solution, we
need to find a separation oracle for the family of constraints
in (14). Since u(0, s;) takes the maximum over |A| linear func-
tions, we can substitute each constraint in the second family with
| A| equivalent constraints. Checking if all the | A| constraints are
satisfied by all g; is equivalent to solving the following problem:

min Z Y0,iqij —
i

+3 hoou(®,s;), VOE€O,a€ A qeAQ).
0'£6

n

go + Z he.o Zqz'ju(wi,a)

040 i=1

15)

As this is a convex program that can be solved exactly in
polynomial time with the standard technique from optimization
theory [22], we can conclude the main result for the general case
in the following theorem.

Theorem 2: The MGeneral mechanism finds the revenue-
maximizing menu in polynomial time in terms of |€2] and |©
by solving the dual linear programming problem DLP.

Therefore, given the set of potential actions and priors of
buyers as well as the prior distribution, the procedure of running
MGeneral mechanism would be: 1) compute the finite set of
posteriors that would not harm the optimality as we introduced
in Lemma 2; 2) use these posteriors to formulate the dual
problem according to program (14), and solve it through the
provided separation oracle. As both the steps could be finished
within polynomial time, the total time complexity of MGeneral
mechanism would be also polynomial. Once the dual program
is solved, the resulted MGeneral mechanism could be applied
repeatedly as long as the prior distribution of buyers keeps the
same.

[}

C. A Practical Case

While MGeneral mechanism achieves the optimal revenue,
its optimality would also bring some practical problems. A
potential problem with the MGeneral mechanism is that its
menu size can be as large as the number of buyers, making
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it hard to be implemented in practical markets. For a large data
marketplace with thousands of buyers, each buyer has to look
through all the pricing schemes to find the one that optimizes
her utility. Although automated trading agents are commonly
applied in modern online marketplaces, performing Bayesian
belief updates for large number of pricing schemes can still be
computationally burdensome even for a computer agent. On the
seller’s point of view, calculating the optimal menu requires
solving a convex program that involves perhaps thousands of
variables, which is also time-consuming in online marketplaces.
These problems motivate us to find some mechanisms that are
more practical in the online marketplace. As these problems
are brought by the optimality nature of MGeneral mechanism,
to reduce the computational burden and the menu size of pro-
vided experiments, we have to allow certain tradeoff from the
mechanism’s revenue performances. Our aim is to design a
mechanism with low computational burden for both the seller
and the buyers while guaranteeing the revenue performances of
the mechanisms.

In this section, we present our design of a mechanism with low
computational burden for both the seller and the buyers, while
guaranteeing the revenue performances. We prefer a menu with
an explicit and closed-form representation, instead of referring
to solving a convex programming problem. We further require
our menu to have a constant size, listing only a constant number
of pricing schemes for human buyers to choose from, as in the
existing data marketplaces [1], [23].

Our simple mechanism MPractical satisfies the preceding
requirements. MPractical either offers a buyer the most ac-
curate data with a fixed price, or sells nothing to the buyer.
More specifically, this menu contains just two pricing schemes:
a full-information experiment I with a fixed price ¢ for all
buyers, and a no-information experiment / with zero price.
The no-information experiment gives the buyer a chance to
safely opt out when she cannot extract non-negative utility from
the purchase, and thus the I.LR. property is always guaranteed.
Suppose there are in total N buyers in the market. The price
p for the full-information experiment is simply the price that
maximizes seller’s expected revenue:

f:argmtaxze:NXF(H) xtx1[v(6,I)>1],

where the indicator function 1[v(0,1) >t =1]>.1,0;
max, u(w;, a) — u(f) > t] denotes whether the buyer 6 can
extract non-negative utility.

A fundamental question for this simple mechanism is, how
much revenue will the seller lose if she employs MPractical
instead of the optimal MGeneral? In the following, we show
that MPractical can achieve Q(m) revenue of MGeneral
even in the worst case. For easier illustration, we first introduce
a few notations. Let R denote the revenue of MPractical, and
S denote the sum of all buyers’ utility increment towards the
full-information experiment,i.e.,S £ Y, N x F(6) x v(0, 1),
which is obviously the revenue upper bound of any pricing
mechanisms. We assume the number of buyers for each type
is upper bounded by a constant ¢, i.e., N < ¢|©|. We normalize
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buyers’ utility increment v(6, ) into the range [1, h] by prop-
erly scaling the values of the utility function u(w, a). We then
have the following theorem for the performance guarantee of
MPractical mechanism.

Theorem 3: Assuming & > 27 h, the approximation ratio of
MPractical is R/S = Q(m).

Proof: Divide the buyer utility increments into log h bins by
a power of two. For each utility increment v(#, I) in bin By,
(0 < k < log h), wehave 2% < v(6,I) < 2**1, Since the utility
increments sum up to S and there are log h bins, there exists
a bin By such that the sum of all utility increments in By, is
no smaller than S/ log h. If we set the price to be the lowest
utility increment in By, the generated revenue R, will be at least
S/(2logh), since the lowest increment is at least half of any
other increment in By. We now have R > Ry, > S/(2logh)
since R is the revenue generated by the optimal price ¢, which
clearly yields revenue no lower than Ry.

Define v* to be the smallest utility increment such that all the
utility increments below v* sum up to at least S /2. We then have
v* > h/N, otherwise the sum of utility increments below v* is
smaller than Nv* < h < §/2, which contradicts our definition
of v*. We now ignore all the buyers with utility increment below
v*. Denote the optimal price for the remaining buyers as t* and
the corresponding revenue as R*. According to the result from
last paragraph, we now have

. S/2 S
> > .
~ 2log(h/v*) — 4log N

Since Ry, is the revenue extracted from a larger set of buyers,
we have R, > R*. Combining all the results leads to

B S S
R2Re2R" 2 4log N = 4logc|O|
This finishes our proof of R/S = Q(ﬁ\@l)' O

Theorem 3 relies on a reasonable assumption of S > 27h.
This assumption requires the sum of all buyers’ utility incre-
ments to be at least twice of the increment from any single
buyer, which easily holds in practice when the number of buyers
is reasonably large. In the following theorem, we show that the
approximation ratio in Theorem 3 is tight in the worst case: this
logarithmic lower bound is actually also the upper bound for any
menu with a constant size.

Theorem 4: There exist cases where no menu with a constant
size can achieve more than O 151y ) revenue of MGeneral, even
when the assumption of S > 27 A holds true.

Proof: We explicitly construct the following example. As-
sume there are N buyers coming from N different types. We
number the buyers from 1 to [V and set the utility increment of
buyeritobev; = g (1 <7 < N). Without loss of generality, we
can assume the price for any experiment is chosen from a finite
set {N,N/2,N/3,...,1}. Itis easy to see that when adding a
pricing scheme of price ¢ = N/i to the menu, at most 4 more
buyers will have the incentive to buy the data, leading to the
additional revenue of no more than V. Since the menu contains
constant number of pricing schemes, the revenue of any constant
size menu is upper bounded by O(N).
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Now we will show the optimal mechanism can indeed extract
the full revenue of (N log V) in the previous setting. Let the
size of nature state set be |2] = 27 N. In this case, each buyer i
can be represented by a type vector 0; = (0;1,60;2,...,0;2-n).
For buyer ¢, we set 0; ; to be 0 for all j, except for 0; ;1 =
0; 2i = % In this sense, buyer ¢ only cares about the data
concerning nature state wo;—1 and wsq;. In our example, all
buyers share the same utility function u(w,a) defined as:
(D) u(wi,aj) = 0if i # j. (2) u(wai—1,a2i-1) = u(way, az;) =
2N VI<i<N.

We construct the optimal menu as follows. For each buyer, the
pricing scheme we design for her gives her full information on
the two nature states she cares about, and no information on the
other states. Formally, for buyer ¢, we set pa;_1.2i—1 = p2i,2i =
1, and all elements in the other rows of the experiment matrix are
set to ﬁ Since the experiments designed for the others bring
no information increment to the buyer but requires a positive
price, each buyer is only interested in her own pricing scheme,
and hence the I.C. constraint is always satisfied. The readers can
verify that the buyers’ utility increments are exactly v; = N/,
given the utility function and experiments we designed. Finally,
we charge a price of N/i from buyer i (1 <i < N), and by
doing so we extract the full surplus of (N log N) from the
market.

We conclude that in our example, no constant size menu can
extract more than O(m) of the optimal revenue, which is
achieved by MGeneral. Therefore, MPractical is indeed one of
the optimal mechanisms in the bounded computation case. [

Compared to the optimal but relatively time-consuming
MGeneral mechanism, the MPractical mechanism could sig-
nificantly reduce the computation time while achieving a
comparable amount of revenue with a good approximation
guarantee. As a result, when applying these IoT data pric-
ing mechanisms in practice, MPractical is more suitable for
applications with relatively tight time delay requirement to
preserve the freshness of IoT data. In contrast, we need
to adopt MGeneral mechanism for those IoT applications
with relatively loose time delay requirement, where we could
spend sufficient time to compute a mechanism with optimal
revenue.

Besides pricing for IoT sensing data that directly indicates
the nature state, e.g., data that records whether the road is
crowded, our pricing mechanisms could also be applied to more
generalized forms of data, such as text or image dataset, so long
as the data could provide key information to infer the nature state
faced by the buyer. The seller only needs to design one additional
function to extract the valuable information about the nature
states from the dataset, then the remaining pricing procedure
would be the same. As an instance, for the traffic condition
example in Section II, instead of selling ambient noise data, if the
seller could access the real-time photos taken along a mainstream
road from cameras, then the seller could also use these images to
infer whether the road is crowded or not, and selling those data
with our MGeneral or MPractical mechanism. When applying
our pricing mechanisms in reality, another potential problem
is how to convince the buyer that the seller would obey the
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experiment when sending the signal. To deal with this problem,
the seller could either introduce a trusted third-party to build
some commitment protocols, or provide the history trading data
to enable the verification from a statistical perspective.

IV. FREE DATA TRIALS

In previous sections, we consider the case where the seller
interacts with the buyer only once during data trading. In prac-
tice, the data seller may communicate with the data buyers,
such as deploying a data demonstration, before initiating the
data trading. Such kinds of additional interactions provide the
seller with more chances to affect the buyer’s prior beliefs and
achieve the seller’s own objectives. However, the interactions
before the formal trading are more complex to design, since
they would significantly change the buyer’s behaviors and the
resulted revenue in the formal trading when the buyer uses
Bayesian update to estimate the distribution of nature state. In
this section, we study how the seller could extract higher revenue
from buyers if the seller is able to conduct an extra round of
interaction with the buyer. Compared with always providing the
same data pricing menu, the data seller can achieve such revenue
improvement by simply offering a free data trial to buyers before
she reveals the menu, which is ubiquitous in practice. We also
design an algorithm for the seller to find such a profitable free
trial.

To improve the revenue, the data seller should have an infor-
mation advantage over the buyer a priori. In this section, we
consider the scenario that the seller knows exactly the nature
state, and the nature state remains the same during the data
trading process.’ This happens when the seller has external
sources of information or when the true nature state is consistent
over a short period of time and the seller learns this information
from an early transaction. We also assume the buyer is myopic
and only seeks to maximize her utility in each of the separate
phases: the free trial phase and the transaction phase. Otherwise,
the buyer’s optimal dynamic behavior in this two-phase game
would rely on the generating probability distribution of the
nature states, which heavily complicates the analysis for this
problem. We would further relax this assumption in our future
work.

We describe the timeline of the new data trading process with
an additional free trail phase as follows:

e The buyer enters the marketplace and requests a data

service from the seller.

e The free trial phase: The seller offers a free data trial to the
buyer, aiming to manipulate the buyer’s prior belief into
an interim belief. The expected utility of the interim belief
would be lower than that of the prior belief, introducing
the opportunity of the seller to charge a higher price in the
transaction phase.

3Qur solutions can be easily extended to the general case where the seller
only knows a probability distribution of the nature states, which still needs to
contain more information than the prior beliefs of buyers. In this work, we focus
on the case where the seller knows exactly the actual nature state for an easy
exposition.
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e The transaction phase: The interaction between the seller
and the buyer in this phase directly follows that in Fig. 1.
The buyer chooses a pricing scheme according to her
interim belief (instead of her prior belief), pays the price,
obtains a posterior belief based on the signal she receives
from the seller, takes a best action according to her posterior
belief, and finally leaves the market.

We use a simple example to illustrate this new data trading
process, and show the seller can extract higher revenue through
deploying a free data trial. This example follows the same setting
as the traffic condition example in Section II. Without the free
data trial, the highest possible revenue that the seller can get
is 0.3. We now consider how the seller designs a free trial to
increase her revenue. In the free trial phase, the seller offers the
following experiment to the buyer at a price of 0:

0 1
Iiriat = .
4/7 3/7
After receiving the free trial experiment, the buyer with a prior
belief § = (01 = 0.3, 02 = 0.7) would estimate the probability
of receiving signal s; as 0.4, resulting in an interim belief of
0 = (0; = 0, O = 1), and the probability of receiving signal s,
as 0.6, resulting in an interim belief of @ = (0, = 0.5, 65 = 0.5).
Thus, we can calculate that buyer 6’s expected posterior util-
ity after employing the free trial experiment I;,;,; would be
w(0, Itriqr) = 0.7, equal to her prior utility and obtain a zero
utility increment v(60, I;.;4;) = 0. Since the buyer is myopic
and her utility increment is no smaller than the price 0, the buyer
would take the free trial. As the actual nature state is w1, the seller
would deterministically send signal s to the buyer according to
the designed free trial experiment [;,;4;, resulting in an interim
belief 6 = (0; = 0.5, 6 = 0.5). Based on this interim belief,
the seller would offer a full-information experiment to the buyer
at a price of 0.5 in the transaction phase. We can calculate the
revenue after the transaction phase and extract a higher revenue
0.5 compared with the revenue without deploying the free trial
experiment. Note that the interim belief of a buyer is calculated
by the Bayesian update rule given her prior type and the signaling
schemes. Since the seller knows those required information,
the calculation of buyer’s interim belief could be conducted
by the seller individually without the need to explicitly acquire
from the buyer. Therefore, to evaluate the effects of adopting
a specific experiment as the free data trial, the buyer could use
the prior distribution of buyers to estimate the corresponding
interim belief distribution, then use this interim distribution of
buyer types to calculate the final revenue generated in the formal
trading phase.

We would like to point out that the free trial is not always
profitable for the seller. For example, for another buyer with a
prior belief § = (6; = 0.7, 03 = 0.3), there exists no free trial
that could generate higher revenue to the seller. In this case, the
seller’s revenue-maximizing strategy would be directly selling
a full-information experiment at a price of 0.3, without using
the free trial experiment. In the following discussion, we would
identify the condition, under which the free data trial experiment
can increase revenue.
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A. The Single Buyer Case

We start with a simple case where there exists only one type of
buyer in the market, i.e., ® = {0} and F'(f) = 1, the setting con-
sidered in Section III-A. We define ag = arg max, E[u(w, a)]
to be the buyer’s p optimal prior action that generates the highest
expected utility according to the prior belief . Without loss of
generality, we assume the actual nature state is w;. A free data
trial experiment, similar to other experiments, maps a buyer’s
prior belief 6 to an interim belief, which can be expressed in the
column perspective, i.e., a distribution x = {x1,...,z,,} overa
set of posterior distributions Q@ = {q1, . - . , gm } C AQ, with the
Bayes plausibility restriction of § =) ; €jq; from Lemma 1.
Since u(f) is a convex function as defined in (1), we have
>_; wju(q;) = u(f), and the buyer always believes the free data
trial gives her a higher posterior utility in expectation. However,
for a broad category of buyers whose prior beliefs are not well
aligned with the actual nature state (i.e., 6 is relatively small),
the seller is able to further mislead the buyer to a certain interim
belief §'. As the upper bound of price is the utility increment (i.e.,
the utility difference between the interim belief and the posterior
belief), when the utility of the interim belief ' is small, the seller
could hence charge a potentially high price in the subsequent
transaction phase, and extract large revenue. In the following,
we focus on the design of free data trial experiments to extract
additional revenue from these buyers. In Theorem 5, we first
identify a sufficient condition that free data trials can extract
increased revenue under certain assumptions.®

Theorem 5: The seller is always able to increase revenue
using a free trial if the buyer 6 is overconfident, i.e., if there
exists another belief point 8 € A, such that: (1) u(0') < u(6).
2) 0% > 01.(3) ag = ag.

Proof: The first condition guarantees that there exists one
interim belief #' that has a lower expected utility than that
of the prior belief, which provides a chance for the seller to
mislead the buyer to form an interim belief and to obtain a
large utility increment (and then upper bound of price) in the
transaction phase. The second condition means that the belief 6
is less aligned with the actual nature state w; than #'*s, which
is a technical condition to enable high probability to. The last
condition requires the prior action of #! is the same as the action
of 8, which largely simplifies the searching for the optimal free
trial experiments.

Since we have assumed prior belief # is not on the boundary
of AQ, and is not exactly indifferent between two actions, we
could easily find another belief 6", such that

® ap = agr = Aph.

e 30 <A <1,suchthat® = A0' + (1 —1)0".

The first condition states " is on the same hyperplane as 6
and 6'. The second condition means # can be expressed as a
convex combination of #' and 6".

With the two beliefs 6! and 0", the seller could design
an experiment for @ that leads to an interim belief #' with
probability A and interim belief #" with probability 1 — A.

“For an easy discussion, we assume 6 is not on the boundary of space A and
is exactly different between two actions. Specifically, we assume there exists € >
0, such that: (1) 0; > €, Vi. 2) E[u(w,ap)] > E[u(w,d’)] + €, Va' # ag.
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To make it consistent with the notations in Section III-B, we
have q; = 0!, g2 = 0", x{ =i, and 2§ =1 — A. Since 0 =
10" + (1 — 1)0", the Bayesian plausibility (E.Q.) restriction
is satisfied. According to Lemma 1, we could equivalently
define an experiment [y, from the row perspective, where

Dij = %‘i“, Vi, 7. Buyer 0’s expected utility after buying exper-
iment I;,.;4; would be (0, Iiria) = z1u(g1) + z2u(ge). Since
0 = x1q1 + T2go and the belief points #, #' and 6" are on
the same hyperplane (ap = ag: = agn), we have v(0, Liyiq1) =
x1u(q1) + wou(ge) — u(f) = 0. Thus, buyer § would like to buy
Iiriq1 at a price of 0.

However, the actual nature state is wj, so the seller only
sends signal according to the first row of experiment I;,.;q;.

0
14911
01

and sends s, with probability pis = . Therefore, buyer
0’s actual expected utility after buying I;,.;,; should be 4(0) =
p11u(q1) + prau(ge) instead of w(6, I1,;4;) discussed above.

Since Iy,;4; is strategically designed by a seller with informa-
tion advantage, buyer 6’s actual expected utility () for buying
Iiriq1 18 lower than she anticipated, and is hence lower than her
prior expected utility u(6):

Specifically, he sends signal s; with probability p;; =

IglIw

() = priu(qr) + pr2u(q2)

1
= — [ziqnu(q1) + z2qi2u(q2)] (16)

01
1

= — [z1qniu(qr) + z2q12u(g2)] (21 + 22)

7, a7

1
= 9*1[33%%171(%) + z122q11u(q1)
+ za21q12u(g2) + 25q12u(g2)] (18)

We further have

1
(18) < E[CE%QMU(%) + z122q12u(q1)

+ zaw1q11u(q2) + T3q12u(g2)]
1
1

19)

r1u(q1) + z2u(g2)] (T1q11 + T2q12) (20)

= m1u(q1) + z2u(ge)

— u(0) @n

The equality (16) is by replacing p;; with =4-. The equality (17)
comes from x; 4+ x2 = 1. The (18) is simply by the expansion
of brackets. The inequality (19) is a result of ¢o1 < 01 < 11,
u(qa2) > u(0) > u(qy), and the rearrangement inequality. The
(20) is by factorization. The equality (21) follows from z1q11 +
Taq12 = 01.

Since the buyer’s actual expected utility is lowered after she
takes the free trial, she would have a higher utility increment
towards a full-information experiment I. Therefore, in the trans-
action phase, the seller is able to increase her revenue by charging
the buyer a higher price for I. O

In Algorithm 1, we present the detailed steps to construct a
free trial experiment [;,;,; to improve revenue. We first check
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Algorithm 1: GenerateFreeTrial.

Algorithm 2: SimulateFreeTrials.

Input: A vector 6 = (61,...
buyer’s prior belief.
Output: A profitable data trial experiment I;,.;q;.
1 y* < the optimal solution to CVX;
2 Iiriqr = null;
3 if u(y*) < u(f) then
4 | 0y
5 Binary search for #" with the largest 0 < A < 1
such that @ = \0' + (1 — \)#" and agn = ag;
6 561(—>\,$2(—1—A;
7| 0 ge 0
8 Construct the experiment [y,;q; =
pij = 5L i, g

9 return Im'az;

,0,,) indicating the

[pij], where

the revenue improvement condition in Theorem 5 by solving the
following convex optimization problem CVX.

CVX  minu(y),

n
s.t. Zyl = 1,
i=1
n
Zyl w17a9 ZZ wu 7 Va,

Y1 > 017

If the optimal solution y* to CVX satisfies u(y*) < u(d), then
the three conditions in Theorem 5 are all satisfied. The optimal
solution y* serves as a legitimate value for 0" (Line 4). We then
use the binary search to find the farthest belief point #” such that
0 is a convex combination of ' and 6", and their prior actions
are the same (Line 5). In Lines 6 to 8, we construct the free trial
experiment /;,.;,; based on Lemma 1. The rationale behind such
a free trial experiment is described in the proof of Theorem 5.

B. The General Case

We next generalize the above profitable free trials to the
general case with multiple buyers. We focus on the solution
that offers the same free trial experiment to all the buyers,
instead of designing a separate trial experiment for each type
of buyer. This is because we cannot use price discrimination to
differentiate buyers in the free trial phase, and providing more
free experiments only gives buyers more chances to get a utility
increment for free.

With multiple types of buyers in the market, whether it is
possible to increase revenue through free trials heavily depends
on the buyer type distribution F'(). It is generally impossible to
use a simple mathematical theorem to characterize the condition
of revenue improvement, as we have done in Theorem 5. We
propose a heuristic method that simulates buyers’ interim beliefs
after taking the free trial, and compare the resultant revenue with

Input: Buyer type space © C A2 and the distribution
function F'(f) € A©O.
1 Ry « the optimal solution to DLP with © and F(0);
2 i = null;
3 foreach 0 € © do

4 Iimmp <+ GenerateFreeTrial(0);

5 if I;pp # null then

6 ©’, F'(0) + buyers’ interim belief distributions
after taking Jyp,p;

7 R <+ the optimal solution to DLP with ©’ and
F'(0),

8 if R > R, then

9 Ry + R;

10 L Itrial — Itmp;

11 return /;,;q7;

the revenue benchmark to decide whether a trial experiment is
indeed profitable. We present a simulation-based algorithm in
Algorithm 2 for this purpose.

Algorithm 2 first calculates the seller’s revenue without any
free trials as the benchmark, by solving the linear programming
DLP we proposed in Section III-B. It then enumerates each
buyer type 6, and runs Algorithm 1 as a subroutine to calculate
the potential experiment I;,,, we designed for 6 (Line 4). If
Iimp 1s legitimate, we simulate all the buyers’ interim belief
distribution after taking this free trial experiment (Line 6). We
then input the interim belief distributions into DLP and solve
DLP for the revenue under the interim distribution (Line 7). If
the new revenue is higher than the benchmark, we can conclude
the free trial I;,,, indeed increases revenue, and hence save the
current best revenue and trial experiment.

When applying Algorithm 2 to compute a free data trial, the
seller should first ascertain that the potential buyers would have
more interactions and purchase data from the seller after they
have received some free data from the seller. As the algorithm
adopts MGeneral as a subroutine, it is also more suitable for
trading the IoT data for applications with relatively loose time
delay requirement. We would like to note that Algorithm 2 only
simulates the results of |©| trial experiments. Thus, it could not
provide the theoretical guarantee to always obtain a profitable
data free trial, even if a profitable trial does exist. Finding the
optimal free data trials to increase the revenue for the general
case is an interesting future work.

V. EVALUATION RESULTS

In this section, we evaluate our pricing mechanisms MGeneral
and MPractical on areal-world ambient sound dataset, and com-
pare their performance with the benchmarks. We also evaluate
the revenue increase when the seller offers free trials. The convex
programming parts in our mechanisms are implemented using
the Gurobi software [24].
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A. Evaluation Setup

We use the Ambient Sound Monitoring Network [25] dataset
in our evaluation. The Dublin City Council collected this dataset
with a network of sound monitors to measure the ambient sound
quality at different sites of Dublin. This dataset contains sound
pressure data of every 5 minutes from 15 monitoring sites in
Dublin on each day from 2012 to 2015. The results of the sound
level meters are given in Leq, which denotes the average sound
level over each 5-minute period of measurement. We use the
sensory data from the Walkinstown monitoring site on June 1st,
2015 in our evaluation, and we assume the buyer priors are based
on the sensory data of the same day in the previous three years,
ranging from 44 dB to 68 dB. All the evaluation results are
averaged over 200 runs.

We discretize the interval [44,68] into n intervals as the
sample space of the nature state. The default value for n is
4 and the number of buyer types |O| is 4. We consider three
typical families of prior distributions, including the uniform
distribution, Gaussian distribution and Pareto distribution. For
the uniform distribution, we assume buyer types are uniformly
sampled from the entire belief simplex A2 using the sample
algorithm given in [26]. For the other two distribution families,
we assume buyers of the same distribution family differ from
each other by the distribution parameters: Gaussian distribu-
tions with different mean values, and Pareto distributions with
different values of b for the generating formula f(x) = mh—il.

We compare the revenue of our mechanisms with three
benchmarks, namely the Fully Revealing mechanism, Grid
Search mechanism, and revenue Upper Bound. In the Fully
Revealing mechanism, the seller only offers the full-information
experiment in her menu, but still guarantees the I.C. and L.R.
properties. This mechanism is the optimal solution to a restricted
version of MGeneral mechanism, by additionally requiring all
experiments to be full-information. We choose the Grid Search
mechanism inspired by the versioning [27] and price discrimina-
tion [28] in economics, where we consider the seller to add dif-
ferent extents of noises to the full-information experiment, and
set the prices of each experiment to be a constant multiplying the
maximum value increment among all the buyer types. The seller
would sample the extent of noises added to form different exper-
iments, use grid search to set their prices, and finally choose the
mechanism with highest revenue. Since the Grid Search mecha-
nisms are not I.C., we calculate the revenue through simulating
buyer’s behaviors of choosing the highest-utility experiment.
The revenue Upper Bound is the sum of all buyers’ valuations
towards the full-information experiment, without guaranteeing
the I.C. property. As the Upper Bound extracts full surplus from
all buyers, it is obviously the revenue upper bound of any pricing
mechanism.

B. Performance of Pricing Mechanisms

We first vary the size of nature state space n from 2 to 12, and
evaluate its influence on the four pricing mechanisms. In this set
of evaluations, we fix the number of buyer types to be |0 = 4,
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and simplify the utility of all buyers to be

( ) = 1, if w=a,
W4 =30, otherwise,

which means that there is only one “correct” action under each
possible nature state, and these correct actions generate one unit
utility to the buyer. Fig. 2 shows the average revenue extracted
from each buyer under three different prior distributions. We can
observe that for all the cases, MGeneral always generates higher
revenue than MPractical, Fully Revealing and Grid Search,
and nearly approaches the revenue Upper Bound. Due to the
sampling and grid search process, the grid search method takes
more computation time than all the other methods considered
in the experiments. However, as we can observe, the revenue
of grid search method does not exceed our simple MPractical
mechanism in all the considered settings, and has a distinct
revenue gap with our optimal MGeneral mechanism in most
of the cases, which demonstrate the effectiveness of our pro-
posed mechanisms in terms of both revenue and computational-
efficiency. The Grid Search method achieves a similar revenue to
MPractical mechanism in most of the cases since the MPractical
mechanism actually belongs to the space of pricing mechanism
covered by the Grid Search mechanism, and the Grid Search
mechanism may not always achieve the best revenue within its
feasible space due to its limited sampling iterations and grid
search precision. For Gaussian distributions, as the size of sam-
ple space n increases, prior distributions of buyers are more dis-
persed over different possible nature states, indicating they are
less certain about the true nature state. In this sense, buyers’ prior
expected utilities u(6) are generally low, and data from the seller
can bring high valuation, i.e., utility increase, to them. MGeneral
makes use of buyers’ uncertainty and can extract almost full
surplus when n is relatively large. When n = 12, MGeneral
achieves 99.91% revenue of Upper Bound, and outperforms
MPractical and Fully Revealing by more than 9.5%, in the Gaus-
sian distribution case. For uniform distributions, when n = 12,
MGeneral extracts 96.25% revenue of Upper Bound. For Pareto
distributions, the revenue for all mechanisms are lower com-
pared with the other two distributions, because buyers have more
confident and accurate prior estimations, and their prior expected
utilities u(0) are relatively high. In this case, it is hard to extract
large additional revenue by providing data to the buyer, but
MGeneral still generates 73.56% revenue of the very optimistic
Upper Bound when n = 12. Under all three distributions, the
revenue of our mechanisms increase with n. Since the parameter
n denotes the discretization level of data, we can conclude that
the seller can extract higher revenue by selling more fine-grained
data.

We then evaluate the impacts of the number of buyer types
|©] on the four mechanisms. We report the evaluation results in
Fig. 3, when the number of types |O| varies from 2 to 12 and the
number of possible nature states n is fixed at 4. As |©| increases,
more types of buyers with heterogeneous prior distributions
appear in the market, and their strategic behaviors raise more
challenges to our pricing mechanisms to guarantee the properties
of I.C. and I.R.. For Gaussian and uniform distributions, the
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average revenue of our mechanisms do not decrease much as
|©| grows. This indicates that our mechanisms are robust against
multiple types of strategic buyers under these two distributions.
For Pareto distributions, however, the average revenue of our
mechanisms decrease with |©] significantly. This is because
buyers under Pareto distributions are confident about their prior
estimations and thus have higher prior expected utilities before
buying data from the seller. As more confident buyers join
the market, seller’s average revenue from each buyer certainly
decreases.

We also validate the I.R. and I.C. properties of the complex
MGeneral Mechanism empirically in the same settings of Fig. 3.

Given a computed MGeneral mechanism, to verify the L.R.
conditions, we compute the utility of each type choosing the
corresponding mechanism, and for the I.C. conditions, we com-
pute the utility differences for a specific type of buyer choosing
different experiments other than the experiment corresponding
to her true type. We record the maximum and minimum values
among those L.R. utilities (could be regarded as utility difference
between current utility and zero utility) and I.C. utility differ-
ences and present them in Fig. 4. As all the values are larger
or equal to zero, our proposed mechanisms empirically satisfy
the I.LR. and I.C. conditions, which aligns with our theoretical
results.
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We finally evaluate the influence of the standard deviation
o in Gaussian distributions. We are interested in this parameter
because it denotes how confident the buyers are about their prior
estimations. We vary o from 0.5 to 4.0, while fixing both n
and |O| to be 4. As we can observe in Fig. 5, MGeneral still
outperforms other mechanisms, and achieves 93.40% revenue
of Upper Bound when o = 4.0. The average revenue of all
mechanisms increase with o, because when buyers are uncertain
about the nature state, the data from the seller can bring high
utility increments to them. Therefore, we can conclude that when
buyers are not confident about their prior knowledge, the seller
can take advantage of buyers’ uncertainty and extract higher
revenue.

From the above three sets of experiments, we could observe
that the performance of Mpractical mechanism is always quite
close to that of MGeneral mechanism. This result demonstrates
that MPractical mechanism can still obtain good revenue in
practical deployment, even we restrict the size of menu to be
a constant.

C. Free Data Trials

We now evaluate the revenue increase when the seller has the
option to offer free trials. In Fig. 6, we present the results where
buyer types are uniformly sampled from the belief simplex, and
the results of using other distributions are similar.

We start with the single overconfident buyer case. We vary
the size of nature state space n from 2 to 12, and evaluate the
average revenue with and without free trials. As we can see
from Fig. 6(a), free trials are more effective when the nature
state space is relatively small. When n = 2, free trials achieve
a revenue increase of 57.44%, and when n = 12, the seller
increases revenue by only 0.67% with free trials. On average,
free trials give a 8.71% revenue increase to the seller.

We then evaluate the performance of Algorithm 2 in the
general setting. We vary the number of nature states n from
2 to 12 in Fig. 6(b) and vary the number of buyer types |©] in
Fig. 6(c). As we can see, free trials always achieve a stable
revenue increase in all parameter settings. On average, free
trials increase revenue by 2.86% and 8.20% in Fig. 6(b) and
(c), respectively. We can conclude that free trials indeed can
guarantee a revenue increase in certain scenarios.
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VI. RELATED WORK

In recent years, designing data pricing frameworks has at-
tracted increasing interests. Balazinska et al. [29] first envi-
sioned the emergence of cloud-based data markets, and outlined
potential challenges and research opportunities. Following this
work, many query-based frameworks have been proposed to
price ad-hoc query data. These frameworks allow the seller
to manually assign prices to a few views, and automatically
extrapolate the prices to other ad-hoc queries from the buyer.
In [30], Koutris et al. first identified two key properties that
a pricing function must satisfy, namely arbitrage-freeness and
discount-freeness, and proposed a polynomial time algorithm
that derives the price for common types of queries. Similar
work in this direction include arbitrage-free pricing functions
for arbitrary queries [11], and a scalable framework for pricing
relational queries [31]. A set of accountable protocols named
AccountTrade was proposed in [32] for Big Data trading among
dishonest customers. These work assume data has been collected
and structured before being priced, and their objective is not to
maximize the revenue of the seller.

Data trading and exchange has also been an active research
topic in the community of Internet of Things. Perera et al. [7] sur-
veyed smart city applications that can benefit from data markets.
An IoT data transfer framework for cloud-based applications
was proposed in [33]. The authors in [34] designed a decen-
tralized infrastructure for IoT data trading based on blockchain
technologies, but did not elaborate on the pricing mechanisms.
A two-sided market for crowdsensed data was proposed in [35],
and secondary market models for mobile data were studied
in [36]. In a recent paper, Zheng et al. [14] took advantage
of the geographical locality of sensory data, and employed a
versioning technique based on the accuracy of data. Our work
differs from previous work by further revealing and utilizing the
unique features of IoT data as a commodity, and propose a new
market model for [oT data trading.

Recently, data markets have also drawn increasing attention
in the machine learning community. In [37], the authors studied
how a machine learning system fairly distributes revenue to its
training data contributors. They proposed a family of efficient
algorithms to determine the data valuation based on Shapley
value. Ghorbani et al. [38] also proposed a data valuation frame-
work for supervised machine learning based on Shapley value.
Agarwal et al. revised Shapley value to be robust to freely repli-
cable goods in the context of data marketplaces [39]. The authors
in [40] considered a transfer learning setting, and implemented a
blockchain-based data marketplace that guarantees privacy and
consumer’s benefit. In arecent paper [41], the authors envisioned
the challenges and opportunities in the valuation, pricing, and
governance of Al data.

Information design is a rapidly growing research area in
both computer science and economics literature. Different from
providing incentives to participators in mechanism design prob-
lems, information design studies how to influence the belief of
participators by providing payoff-relevant information to them
through strategic interactions. A special yet influential case
called Bayesian persuasion, concerning one information sender
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and one receiver, was studied in [42]. In a model similar to
ours [13], Bergemann et al. investigated the problem where a
buyer seeks supplemental information from the seller to facilitate
her decision making. As they sought optimal solutions in the
continuous space, they had to put strict restrictions on the model
to maintain tractability. In another related work [21], Babaioff
et al. considered the optimal mechanism for selling information
sequentially. Smolin [43] studied revenue-maximizing menus
for pricing objects with several attributes. Papers [44] and [45]
provide excellent surveys of the information design literature.

The preliminary version of this paper was published as a
regular conference paper in [46]. In this full version, we give the
complete proofs of Lemmas 1 and 2. We further extend the data
exchange to a two-phase process, and show that the seller can
increase revenue through deploying free data trials. We add two
examples to illustrate the data trading process and how the seller
extracts higher revenue through free data trials. We also update
the references regarding the recent work on machine learning
data markets.

VII. CONCLUSION

In this paper, we have studied the problem of revenue max-
imization in IoT data marketplaces. We have characterized the
unique economic properties of IoT data, and proposed a new
market model accordingly from an information design perspec-
tive. We have presented our pricing mechanisms that achieve
optimal revenue in different market settings, and designed free
data trials that further increase revenue. Evaluation results have
shown that our mechanisms achieve good performance and
approach the revenue upper bound.
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