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Abstract—Mobile health (mHealth) applications, benefiting from mobile computing, have generated numerous mHealth data. However, they are
dispersed across isolated devices, which hinders discovering insights underlying the aggregated data. Considering the online characteristics of
mHealth, in this work, we present the first online data VAluation and Pricing mechanism, namely VAP, to incentive users to contribute mHealth
data for machine learning (ML) tasks in mHealth systems. Under the Bayesian framework, we propose a new metric based on the concept of
entropy to calculate data valuation during model training in an online manner. In proportion to the data valuation, we then determine payments
as compensations for users to contribute their data. We formulate this pricing problem as a contextual multi-armed bandit with the goal of profit
maximization and propose a new algorithm based on the characteristics of pricing. Furthermore, to tackle the budget constraint, we incorporate
a two-stage multi-armed bandit with a knapsack method. We also extend VAP to advanced ML models by computing the entropy on the
prediction space. Finally, we have evaluated VAP on two real-world mHealth data sets. Evaluation results show that VAP outperforms the
state-of-the-art data valuation and pricing mechanisms in terms of computational complexity and extracted profit.

Index Terms—Data Valuation, Online Pricing, Mobile Health
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1 Introduction

M
obile health (mHealth) technologies offer real-time moni-

toring for health status, facilitate rapid diagnosis of poten-

tial health issues, and provide remote healthcare services [1]. The

recent developments towards intelligent mHealth systems, such

as Apple Health [2], Google Fit [3], and Microsoft Health [4]

are pieces of evidence of these trends [5]. Various machine

learning (ML) models have been developed to extract information

underlying mHealth data [5], [6], [7]. However, the obstacle to

the wide adoption of ML in mHealth applications comes from

model uncertainty [8], which would provide unreliable prediction

and is unacceptable in health applications [9]. The uncertainty

of the model parameters often comes from insufficient training

data and can be eliminated by acquiring enough data [8]. In

mHealth, reducing the model uncertainty and accurately pre-

dicting a phenotype depends upon using a large amount of data

from many other individuals with similar or related diseases.

One potential approach to eliminate this dilemma is to collect

extensive mHealth data from users as training data, harnessing

the wisdom of crowd [10]. Thus, the further development of

mHealth should have the ability to incentive users of mHealth

services to contribute their data into the system to support ML

models’ training.

The valuable mHealth data are dispersed across isolated

devices and have not been exploited efficiently. Users are re-

luctant to voluntarily share their personal health data due to

the potential incurred costs and privacy concerns [11]. Health

information privacy is the right of individuals to control the

access, use, or disclosure of their identifiable health data [12].

And people’s agreement to share their data usually revolves

around the value, which refers to the benefit that is accrued
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to the user or society due to the use of data [10]. Therefore,

it is highly necessary to design an incentive mechanism to

stimulate users to contribute their mHealth data. For incentive

mechanism design in mHealth, we need to take the online

characteristics of the data acquisition into account. First, the

sensing data collected by mHealth can be obtained remotely in

a streaming manner, which is often used for real-time predictive

modeling [13]. Second, within the changing mHealth contexts,

traditional static mHealth models may fail to respond with a

correct prediction result. For example, people may carry out

the same activity in a different manner or suffer from the

same disease with various clinical symptoms [14]. Furthermore,

population demographics, the prevalence of disease, and clinical

practice may also evolve over time. This implies that predictions

based on static data and models can become outdated and hence

no longer be accurate [15]. Last, the users’ participation in the

data acquisition process is dynamic. For example, in disease

detection, the symptoms appear at an unpredictable time. To

address these dynamics, many variants of online learning and

incremental learning models are proposed [14], [15], [16], [17].

With these methods, the mHealth models could update over time

as new data is collected and adapt quickly to new contexts.

Besides, compared to the method that works with the sample

pool once and for all, an online manner will not increase the

permutation complexity.

There are two critical components in designing an incentive

mechanism: data valuation and data pricing. The data valuation

scheme quantifies the contribution of data within the context

of ML model training. Based on this data valuation metric,

the data pricing mechanism determines the compensation to

users for their contributed data. We next summarize two major

challenges for data valuation and pricing arising from the online

characteristics of the data acquisition process in mHealth.

The first challenge is to evaluate the contribution of newly

arrived data in ML model training. The traditional data valuation

schemes [18], [19], [20], [21], [22], built upon the concept
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of Shapley value from cooperative game theory [23], are not

suitable for such an online learning situation. In these methods,

all the data are collected in advance for model training, and the

data contribution is evaluated at the end of model training. In

contrast, we need to measure the data valuation in an online

manner, based on the currently collected data, instead of the

complete training data set. However, it is difficult to infer the

data valuation at the intermediate model training without the

global knowledge of the whole data set. Moreover, considering

the privacy concerns in mHealth, compared to submitting whole

data, it is more proper that users only upload part of the data

(such as the feature of the data sample but not the label of it)

to evaluate the data and query the price. Therefore, the data

valuation module should have the ability to estimate the data

contribution based on such kind of incomplete data.

The second challenge is on designing profit-maximizing data

pricing mechanisms within an asymmetric information environ-

ment. Some auction-based mechanisms have been proposed for

data pricing [18], [24], [25]. However, the bidding model in

the auction is unnecessarily complicated for data pricing, as

users may often be reluctant to provide the minimum willing

payment for their data or even do not know the exact value

of this information. To this end, we turn to the posted pricing

mechanism [26], where the service provider posts a public price,

and the users only need to determine whether to accept the

price and contribute the data. Nevertheless, the posted pricing

mechanism introduces a heavy burden on the service provider.

There is an information asymmetry over the minimum payment

to data between the users and the service provider. Further-

more, users’ arrival sequences are also unknown to the service

provider. Without complete information about the payment to

data, it is hard for the service provider to set an appropriate price.

The optimization of profit maximization needs to take both the

revenue extracted from data valuation and the expenditure for

data acquisition into account. In addition, there may be budget

constraints in the system, maximizing the profit within a limited

budget inevitably doubles the difficulty in the design of data

pricing mechanisms.

In this work, jointly considering the above challenges, we

propose the first online data valuation and pricing mechanism

for ML tasks in mHealth, namely VAP. We summarize our

contributions as follows.

• Firstly, we introduce a novel metric for data valuation

under the Bayesian perspective for Bayesian linear regression.

This metric gauges the influence of data on the machine learning

model training procedure. It is quantified by evaluating the

entropy of the distributions over model parameters, permitting

us to appraise data value in an online manner, eradicating the ne-

cessity for complete dataset collection. Furthermore, we enhance

this data valuation metric from Bayesian linear regression to

more intricate machine learning models by transitioning entropy

computation from the parameter space to the prediction space.

• Secondly, we present an online data pricing mechanism that

incorporates both data valuation and users’ reserve values. We

formulate the determination of payments as a contextual multi-

armed bandit (MAB) problem, aiming to maximize profit and

propose a novel method for data pricing within this framework.

Additionally, when facing the challenge of budget constraints

in more complex scenarios, we model it as a two-stage multi-

armed bandit problem with a knapsack and devise a solution.

In both cases, a dual process of exploration and exploitation
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Fig. 1. Data acquisition process in a mHealth system.

is employed to pinpoint optimal data prices, informed by user

responses across diverse price points. Appreciating the inherent

monotonicity of pricing, we exploit an expanded user feedback

base, thereby securing a more profitable endeavor.

• Finally, we assess VAP’s performance utilizing two authen-

tic mHealth datasets. The assessment results underline that our

VAP holds supremacy over contemporaneous data valuation and

pricing mechanisms for online Machine Learning tasks within

mHealth frameworks, in terms of computational complexity and

profit extraction.

A preliminary version of this work [27] was published in IN-

FOCOM 2022, which only proposed an individual pricing method

without a theoretical guarantee. In this work, we add necessary

proofs and property comparisons with traditional methods for

data valuation. As for online data pricing, we add the regret

analysis of VAP-Pricing and substantially extend the data pricing

problem to a new situation under a fixed limited budget, and

propose a new algorithm, namely VAP-PricingwK. We also add

some experiments to validate the newly proposed method.

The structure of this paper unfolds as follows: In Section 2,

we present the system model and problem formulation. Sub-

sequently, in Section 3, we propose an online data valuation

metric based on the concept of entropy and delve into some

of its characteristics. Moving forward, Section 4 is dedicated to

the design of two distinct data pricing algorithms - one framed

within the contextual Multi-Armed Bandit (MAB) schema, and

the other following the Bandit with a Knapsack method, subject

to a budget constraint. While in Section 5 we elaborate on incor-

porating VAP with more articulated machine learning models.

The results of our performance evaluations take the stand in

Section 6, followed by a review of related works in Section 7.

Finally, we articulate the conclusion of our study in Section 8.

2 Preliminaries

We consider the data acquisition process for a mHealth system

in an adaptive way, as shown in Fig. 1. There are two types

of participants involved in a mHealth system: data contributors

and a service provider. The service provider trains online ML

models on the collected data from data contributors to provide

healthcare services. Due to the limited amount of data and the

fading freshness of historical data, the ML models’ performance

would decay over time. The service provider needs to acquire

new mHealth data periodically to retrain the ML models. A

specific data acquisition process is conducted as follows. At the

time slot t, first, a data contributor arrives and queries the price

of her data by submitting the training data xxx without the label y,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3316145

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 18,2023 at 01:05:52 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTION ON MOBILE COMPUTING, VOL. XXX, NO. XXX, XXX 3

where the feature xxx would help the service provider to evaluate

the data valuation, and not releasing the label y would preserve

the content of data before the data exchange. Second, the service

provider evaluates the data based on its contribution to ML

model training, calculated by the performance improvement

between the current model and the updated model after the

data is added. Based on the data valuation, the service provider

posts the price determined by the data pricing mechanism to

the data contributor as incentives. Third, if the data contributor

is satisfied with the price, she would contribute the complete

training data (xxx, y). Otherwise, she has no incentives to do so.

Having received the data from multiple data contributors, the

service provider would update the ML model, data valuation

metric, and data pricing mechanism. Finally, the service provider

gives the corresponding payment to the data contributor. We

need to design an appropriate data valuation metric and a data

pricing mechanism to quantify the performance improvement for

model training and make a trade-off between the performance

and data acquisition expenditure.

We present a system model to describe the above data

acquisition process. Each data contributor owns a set of private

mHealth training data, each of which is a pair of a feature and

the corresponding label, denoted by d = (xxx, y). We use GXXX(xxx)
to denote the contribution of a new data sample d = (xxx, y) to the

model training. We consider each data contributor has a reserve
value v to her data set, which indicates the minimum unit willing

price the data contributor would like to share her data. Similar to

the previous work [24], [28], all data contributors’ reserve values

follow an independent and identical distribution with probability

density function f(v) over the range [0, 1]. Different from the

classical Bayesian mechanism design [29], the probability density

function is unknown to the service provider and needs to be

learned from the interaction with data contributors. When one

data contributor arrives at the online mHealth system, the service

provider posts a unit price of p for purchasing each piece of data.

If the data contributor accepts the offered price (i.e. p ≥ v),

she would upload her data and get the corresponding payment;

otherwise (0 ≤ p < v), she would leave without contributing

her data. The goal of the data pricing mechanism is to determine

the posted price p at each time slot to maximize the total profit,

which will be defined in Section 4 later.

3 Data Valuation

3.1 A Simple Case: Bayesian Linear Regression

To illustrate the idea of data valuation, we first consider a

basic model in ML, linear regression [30] under the Bayesian

framework. In mHealth, linear regression models are widely used

in heart rate monitoring [17], blood pressure monitoring [31],

mental illness detection [32], etc. More specifically, we use the

ridge regression model as an example in this subsection and

extend the concept of data valuation to more complex models

such as Gaussian process (GP) [33] and Bayesian neural networks

[34] later.

Ridge regression can be explained under a Bayesian frame-

work as a type of Bayesian linear regression [35], in which max-

imizing the parameter’s posterior probability by the Bayesian

formula is the same as minimizing the loss function in the tra-

ditional frequentist view. Without loss of generality, we assume

the prior probability of the parameters in ridge regression satisfy

Gaussian distribution, i.e. P (βββ) ∼ N
(
0, ℓ2I

)
with precision

parameter (variance) ℓ2. The training process of ridge regression

is to use new data to obtain posterior parameter distribution.

Thus, the Bayesian framework provides a new perspective to

interpret the model training process: the change of posterior

parameter distribution can represent the evolution of the model

training process to some extent. To calculate this change, we first

express the posterior probability of the model parameter βββ from

the Bayesian theorem:

P (βββ|YYY ) =
P (YYY |βββ)P (βββ)

P (YYY )
∝ P (YYY |βββ)P (βββ), (1)

where YYY is the corresponding label of the data set (XXX,YYY ),
and P (YYY |βββ) is the generation probability of YYY under the

model parameter βββ, and follows the Gaussian distribution. As

the product of two Gaussian distributions P (YYY |βββ)P (βββ) is still

Gaussian, the posterior parameter distribution P (βββ|YYY ) follows

a Gaussian distribution. We denote the corresponding mean as

β̄̄β̄β, and the variance as Σ. In this posterior Gaussian distribution,

the exponential power should be equal. So that(
βββ − β̄̄β̄β

)Σ−1 (
βββ − β̄̄β̄β

)
=

1

γ2
(YYY −XXXβββ)⊤(YYY −XXXβββ) +

1

ℓ2
βββ⊤βββ.

(2)

Deriving from Equation (2), by equal coefficients of the same

order, we can get:

βββ⊤Σ−1βββ = βββ⊤

(
XXX⊤XXX

γ2
+

I
ℓ2

)
βββ

Σ−1 =
XXX⊤XXX

γ2
+

I

ℓ2
,

(3)

−2β̄̄β̄β⊤Σ−1βββ = −2β
ββ⊤XXX⊤YYY

γ2

β̄̄β̄β =

(
XXX⊤XXX +

ℓ2

γ2
I
)−1

XXX⊤YYY .

(4)

Thus, P (βββ|YYY ) follows a Gaussian distribution with the mean

and the variance of β̄̄β̄β =
(
XXX⊤XXX + ℓ2

γ2 I
)−1

XXX⊤YYY and Σ =(
1
γ2XXX

⊤XXX + 1
ℓ2 I
)−1

, respectively.

We regard the data’s contribution as how much information

the data samples provide to the model training process. We use

the metric of differential entropy [36], a concept from informa-

tion theory, to measure the information contained underlying

the corresponding model. When a new data sample is added

to the training set, the parameter distribution shrinks, implying

the reduction of the model parameters’ uncertainty. We quantify

this uncertainty reduction as the differential entropy of the prior

parameter distribution and the posterior parameter distribution.

We further use the extent of this reduction to measure the

contribution of a data sample to the model training. The differ-

ential entropy of the model parameter distribution (a Gaussian

distribution) is defined as:

H(βββ) =
1

2
ln [(2πe)n[Σ]] , (5)

which is only related to variance Σ of the current distribution.

And for the parameters βββ of one model, the parameter distri-

bution depends on the collected training data. Thus, we denote

the differential entropy of parameter distribution H(βββ|YYY ) on

the data set (XXX,YYY ) as H(XXX), then the differential entropy of
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parameter distribution with the training data set (XXX,YYY ) can be

calculated by:

H(XXX) =
1

2
ln
(
(2πe)ddet (ΣXXX)

)
=

d

2
ln 2πe+

1

2
ln det(ΣXXX),

(6)

After adding new data sample (xxx, y), the differential entropy of

the parameter distribution is updated to

H(XXX + xxx) =
1

2
ln

(
(2πe)ddet

((
Σ−1
XXX + xxxxxx⊤

)−1
))

=
d

2
ln 2πe− 1

2
ln det

(
Σ−1
XXX + xxxxxx⊤

)
.

(7)

The posterior entropy reduction of the model parameter distri-

bution is

GXXX(xxx) = H(XXX)−H(XXX + xxx)

=
1

2
ln

det
(
Σ−1
XXX + xxxxxx⊤)

det(Σ−1
XXX )

=
1

2
ln det

(
I+ xxxxxx⊤ΣXXX

)
=

1

2
ln
(
1 + xxx⊤ΣXXXxxx

)
.

(8)

Definition 1. VAP-Valuation: The data valuation of data sam-
ple (xxx, y) for the model with data set (XXX,YYY ) is measured by
GXXX(xxx) = 1

2 ln
(
1 + xxx⊤ΣXXXxxx

)
.

Thus, we can use GXXX(xxx) to calculate the valuation of data

xxx, by measuring the marginal contribution that the data xxx will

make to the model that already has been trained by the data XXX .

Considering the importance of reducing uncertainty in

mHealth, we emphasize the relationship between GXXX(xxx) and

traditional predictive uncertainty. In Bayesian linear regression,

in prediction space, for a new set of features xxx to be pre-

dicted, the predictive distribution takes the form P (y|xxx,βββ) =
N
(
xxx|βββ⊤xxx, σ2

N (xxx)
)
. A classic conclusion is that the predictive

uncertainty can be determined by the variance σ2
N (xxx) of the

predictive distribution, which is given by

σ2
N (xxx) = σ2 + xxx⊤ΣXxxx. (9)

The first term represents the inherent noise in the generation

of data, whereas the second term can reflect the uncertainty

associated with the parameter βββ. We can notice that the determi-

nants of a and b are the same, i.e., xxx⊤ΣXxxx. We will discuss the

comparison between them in detail in Section 5. This important

discovery will play an important role in our later extension of

VAP-Valuation to more advanced models.

3.2 Properties of Data Valuation Metric

Compared with traditional data valuation methods in ML such as

Shapley value [18], [19], [20], VAP-Valuation has the following

characteristics:

Submodularity:

Definition 2. ( [37]) LetΩ be a finite ground set and f : 2Ω → R.
Then f is submodular if for all S, T ⊆ Ω with S ⊆ T and every
x ∈ Ω\T ,

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T )

For any data sets S, T s.t. S ⊆ T we define the set U =
T −S . We useUUU , TTT ,SSS to denote the features of the data samples

in the set of U , T and S :

∆ = GSSS(xxx)−GTTT (xxx)

=
1

2
ln

det

(
Σ−1
SSS + xxxxxx⊤)

detΣSSS

det

(
Σ−1
TTT + xxxxxx⊤

)
detΣTTT

=
1

2
ln

det

(
Σ−1
SSS + xxxxxx⊤)

detΣSSSdet

(
Σ−1
SSS +UUU⊤UUU

)
det

(
Σ−1
SSS +UUU⊤UUU + xxxxxx⊤

)
=

1

2
ln

det

(
Σ−1
SSS + xxxxxx⊤ +UUU⊤UUU + xxxxxx⊤ΣSSSUUU

⊤UUU
)

det

(
Σ−1
SSS +UUU⊤UUU + xxxxxx⊤

)
=

1

2
ln det

(
I+

xxxxxx⊤ΣSSSUUU
⊤UUU

Σ−1
SSS +UUU⊤UUU + xxxxxx⊤

)
> 0.

(10)

Thus, we can get GSSS(xxx) > GTTT (xxx), which means the data

valuation metric GXXX(xxx) we proposed is submodular. A more

intuitive understanding is that the marginal contribution of the

data diminishes with the size of the data training set, which

means that for the same data sample, the earlier the data is

submitted, the higher the contribution generated.

Additivity: For a collection of data sets submitted by a data

contributor within a certain period, the total valuation of all the

data (i.e., the total entropy reduction of the model parameter

distribution) is the sum of the individual valuation of each data

set. It is independent of the internal order of the data sets. That

is, the data valuation metric is a set function: Owning (XXX,YYY ),
for any new data set S , using G(S) to denote the data valuation

of data set S , calculated by the features SSS of data in S , it is a

fixed value:

G(S) = GXXX(SSS) = H(XXX)−H(XXX +SSS)

=
1

2
ln det

(
Σ−1
XXX +SSS⊤SSS

)
det(ΣXXX)

=
1

2
ln det

(
I+SSS⊤SSSΣXXX

)
.

(11)

More specifically, G(S) =
∑

si∈S G∑i−1
j=1 sssj

(sssi) regardless the

position of si in S , though the specific value of G∑i−1
j=1 sssj

(sssi)

changes under different order of data sets. Moreover, the val-

uation of the entire dataset I is completely distributed among

all data contributors, i.e. G(I) =
∑

i∈I G(i), which is easily

derived by the additivity.

Fairness: Two data samples that are identical in what they

contribute to the model have the same valuation in an online

manner. That is, for any data s and s′ are equivalent in the

sense that G(S ∪ {s}) = G(S ∪ {s′}),∀S ⊆ I\{s, s′},
then GS(si) = GS(sj). Meanwhile, data with zero marginal

contribution to the model has zero valuation, i.e., if G(S∪{s}) =
G(S), then GS(SSS) = 0. Actually, because the variance of

parameter distribution is non-negative, if data has zero valuation,

it means the variance is zero, and then the Gaussian function

becomes a Dirac delta function, in which βββ only has one possible

value.

Label Anonymity: According to Definition 1, in VAP-

Valuation, each data’s valuation can be calculated only depending

on the data features xxx, without using data label y, which can

preserve the content of the data before data exchange. On the

other hand, VAP-Valuation can infer the contribution ofxxx in real-

time when the data is submitted, without waiting until the end
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of model training, which provides the possibility for subsequent

online data pricing.

Comparison With Shapley Value Valuation (SVV): 1)

SVV is not submodular, and due to its computational character-

istic, whenever a new data sample is added, the SVV of all data

samples will need to be recalculated. 2) SVV also has additivity.

In addition to this, the sum of SVV of all data samples is equal to

1, which is not available in VAP-Valuation. 3)SVV is the only

valuation method with strict fairness. While our method can

satisfy online fairness according to the above. 4)SVV does not

have label anonymity, and can only be calculated after the whole

complete data samples are obtained.

4 Data Pricing

4.1 Profit Maximization Mechanism

In this section, we present a posted pricing mechanism, VAP-

Pricing, to maximize the service provider’s profit in an online

manner. According to Definition 1, GXXX(xxx) denotes the con-

tribution that one piece of data xxx brings to the performance

improvement of model training, from which the service provider

can extract profit. As we have mentioned before, each data

contributor has a reserve value of v. Only if the payment is

higher than the reserve value would she upload her data and get

the corresponding payment; otherwise, she would leave without

contributing her data. Therefore, the profit that the service

provider can obtain from one data contributor with a reserve

value v is:

u(p, v) =

{
π(GXXX(xxx))− np p ≥ v,

0 0 ≤ p < v.
(12)

where p is the unit price of each data and π(GXXX(xxx)) is the

revenue extracted from the updated model after adding n data

samples xxx. We use F (p) =
∫ p
0 f(v)dv to denote the probability

that a data contributor accepts the data price p. Thus, given the

distribution of the reserve value v and the price p, the expected

profit extracted from n data samples can be written as:

E[u(p, v)] = Fv(p)(π(GXXX(xxx))− np). (13)

As we do not know the distribution of reserve value, we

tackle the above profit optimization problem by leveraging

the exploration and exploitation technique from bandit liter-

ature [38], in which a decision-maker (the service provider)

takes actions to maximize his long-term rewards (profits), by

balancing between exploration and exploitation. At each time

slot t ∈ {1, 2, · · · , T}, a new data contributor with a value vt
arrives. The service provider chooses a posted price from the set

of candidate prices P ≜
{
pi | pi = i

K , i = 1, · · · ,K
}

, where

we regard each price pi ∈ P as an arm as the traditional setting

[39]. Then he observes the feedback from the data contributor

and gets the corresponding profit according to Equation (12).

The classical method UCB1 algorithm [40] estimates the

unknown expected reward (profit) of each arm by making a

linear combination of previously observed rewards of the arm.

However, in our problem, the reward distribution behind each

candidate price (arm) is not fixed, which is also determined by

the valuation of data provided by the data contributor. Thus, we

cannot directly use UCB1 to solve the online pricing problem.

We observe that we can regard the data valuation as a type of

context associated with each arm, and thus the pricing problem

can be formulated as a contextual bandit problem [41]. To solve

it, we first rewrite the profit function as:

E[u(p, v)] = Fv(p)(π(GXXX(xxx))− np)

= π(GXXX(xxx))Fv(p)− npFv(p)

=
[
π(GXXX(xxx)) n

] [ Fv(p)
−pFv(p)

]
.

(14)

At time slot t, we define Πt = (π(Gt), nt)
⊤

as the features

of the context, where Gt denotes the total contribution of the

arriving data set, and nt is the number of data samples. Then the

expected reward of arm pi can be expressed as:

µi,t = Π⊤
t ω

∗
i , (15)

where ω∗
i ≜ (Fv (pi) ,−piFv (pi))

⊤
represents the unknown

coefficient vector. To post a reasonable price, that is, to select the

best arm of each round, the service provider needs to estimate

the expected rewards in Equation (15) of arms accurately. The

service provider can obtain the value of Πt based on the VAP-

Valuation. Then we should learn ωi of each arm, which can

be explained as learning the reserve value distributions of data

contributors implicitly. In this way, we can regard the features

of the context as independent variables, and the expected reward

is the dependent variable. With this, we can treat the observed

context-reward pairs as training samples and train a regression

model for each arm.

However, different from the traditional setting in the Lin-

UCB [41] to solve the contextual MAB problem, in our problem,

the feedback information from each choice of one arm (i.e. one

possible posted price) can not only update the current arm but

also be used as training inputs for other arms. That is when

one data contributor rejects a specific price pi, which means

0 ≤ pi < v, she would also reject the price p with p < pi.
Similarly, when one data contributor accepts the price pi, which

means pi ≥ v, she would also accept the price p with p > pi.
Thus, in this work, we define Mi as a design matrix of dimension

j∗i ×2 at time slot t, whose rows correspond to j∗i = ji+ jl+ js
training inputs, where ji is the amount of training data with

price pi, jl is the number of training data with p > pi and the

data contributor rejects the price p, js is the number of data

with price p < pi and the data contributor accepts the price

p. And ci is the rewards corresponding to these contexts. With

this augmented training data set (Mi, ci), we can have a better

estimate of the coefficients by applying ridge regression:

ω̂i =
(
M⊤

i Mi + I
)−1

M⊤
i ci, (16)

where I is the 2× 2 identity matrix.

Algorithm 1 gives a detailed description of the entire LinUCB

algorithm for pricing, in which Ai = M⊤
i Mi + I and bi =

M⊤
i ci. For the input of the algorithm, α is a parameter to control

the exploration scale, GXXX(xxx) is the VAP-Valuation of xxx, π(·)
is the revenue function, K is the number of arms (candidate

price), and T is the total time slots. At each time slot, there is

a data contributor t querying the price by her data xxxt, and then

we can observe the context (features of the current data) Πt

(Line 2). Then for all possible prices, we estimate the coefficients

according to Equation (16) (Lines 3-6). It can be shown that with

probability at least 1− δ:∣∣∣Π⊤
t ω̂i − E[µi,t]

∣∣∣ ≤ α
√
Π⊤

t A
−1
i Πt (17)
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Algorithm 1: VAP-Pricing

Input: α ∈ R+
, GXXX(xxx), π(·), K , T

1 for t = 1 to T do
2 Observe the features of current data

Πt = (π(GXXX(xxxt)), nt)
⊤

;

3 for i = 1 to K do
4 if pi is new then
5 Ai ← I , bi ← 0;

6 ω̂i ← A−1
i bi, µ̂i,t ← Π⊤

t ω̂i + α
√
Π⊤

t A
−1
i Πt;

7 Choose the arm It = argmax
i=1,··· ,K

µi,t;

8 Posted price p = min(pIt , ⌊π(GXXX(xxxt))/n⌋);
9 Observe and record the response from the data

contributor t;
10 if t is satisfied with the price (pIt ≥ vt) then
11 for i = It to K do
12 rt = π(GXXX(xxxt))− ntpi;
13 Ai ← Ai +ΠtΠ

⊤
t , bi ← bi + rtΠt;

14 XXX =XXX + xxxt;

15 else
16 for i = 1 to It do
17 rt = 0;

18 Ai ← Ai +ΠtΠ
⊤
t , bi ← bi + rtΠt;

19 Update function GXXX(xxx);

for any δ > 0, where αT = 1+
√
2 ln 1

δ + 2 ln
(
1 + t

2

)
. We will

show this result in Section 4.3. The inequality gives a reasonably

tight upper confidence bound for the expected reward of arm pIt ,

from which a UCB-type arm-selection strategy can be derived: at

each time slot t, choose

It = argmax
i=1,··· ,K

(
Π⊤

t ω̂i + α
√
Π⊤

t A
−1
i Πt

)
. (18)

The criterion for arm selection can also be regarded as an additive

trade-off between the reward estimation and model uncertainty

reduction (Lines 7-8). After we post a price, we record the

response from the data contributor. If the data contributor

accepts the posted price, i.e., pIt ≥ vt, we calculate the reward

and update Ai as well as bi for all price pi > pIt . The data

contributor would upload her data, and we add it to the data set

(Lines 10-14). Otherwise, i.e., 0 ≤ pIt < vt, the data contributor

would leave without contributing her data. The reward we get is

0, and we update Ai as well as bi for all price pi < pIt (Lines

15-18).

Next, we introduce the design of revenue function π. By the

additivity property of data valuation metric in Section 3.2, we can

get G(S ∪ T ) = G(S) +G(T ). To make the revenue function

extend the additivity, i.e. π(G(S ∪T )) = π(G(S))+ π(G(T )),
it is easy to prove that π(·) should be the linear function by

Cauchy’s functional equation [42] as

π(G(S) +G(T )) = π(G(S)) + π(G(T )). (19)

In this work, we set π(GXXX(xxx)) = k · GXXX(xxx) − ϵ, where

k can uniform the magnitude between the data valuation and

the revenue. As we have mentioned, k · GXXX(xxx) guaranteed the

additivity when converting data valuation GXXX(xxx) to p. Besides,

ϵ can be seen as the fee per operation, which can also control

the trade-off between total entropy reduction (data valuation)

and the total budget, which we will show in the evaluation

part. By setting proper ϵ, the service provider can acquire data

with different objectives. For example, a budget-limited service

provider may have a limited budget who only wants to collect

a smaller data set and can tolerate a slower data collection rate.

On the other hand, a budget-sufficient service provider has more

budget and wants to collect as much data as possible. A suitable

π(·) can control the trade-off between the data collection scale

and the total budget.

4.2 Properties of Data Pricing Mechanism

The data pricing mechanism we proposed in VAP-Pricing has the

following characteristics:

Incentive for Data Contribution: VAP-Pricing motivates

data contributors to submit data as early as possible because

the data valuation function GXXX(xxx) is submodular with respect

to XXX . Specifically, in VAP-Pricing, earlier data contributors will

have a higher (marginal) data contribution and are more likely

to get more profit, implying that we encourage data contributors

to submit data as soon as possible in the online data collection

process.

Robust to Strategic Behaviors: To guarantee the property

of symmetry, Shapley value leaves the possibility for selfish data

contributors to carry out strategic behaviors, such as copying

data for extra benefits. There are some solutions to solve this

issue, such as discounting the value of the same data [18], but

it will break the property of fairness in Shapley value. However,

VAP-Pricing can naturally decrease the similar data’s valuation,

as the later data will not impact the model too much due to the

submodularity of VAP-Valuation. Meanwhile, the data with the

same contribution will be given the same price at one specific

time slot. Thus, VAP-Pricing guarantees fairness to some extent.

Moreover, this data pricing mechanism is also arbitrage-free

when the VAP-Pricing is stable. Due to the additivity of VAP-

Valuation, regardless of the data order in a data set, the sum of the

data valuation for a dataset is the same, resulting in the identical

posted price. Specifically, we consider the case when the pricing

mechanism is stable, i.e. we have already got the accurate Fv(p).
Suppose the data contributor divides a data set SSS into several

subsets SSSi, i = 1, · · · , n, and submits each subset at different

time slots. Then by the additivity property of VAP-Valuation and

the definition of revenue function π, we can further get

π(G) = π

(
n∑

i=1

Gi

)
=

n∑
i=1

π (Gi) + ϵn, (20)

where we denote G = GXXX(SSS) for the whole data set and Gi =
GX+

∑i−1
j=1 SSSjX+

∑i−1
j=1 SSSjX+

∑i−1
j=1 SSSj

(SSSi) for each subset. We denote p1,i as the posted

price for each separated data subset and p2 as the posted price

for the whole data set. Then,

p1,i = argmax
p1,i

Fv(p1,i) (π (Gi)− p1,i) ,

p2 = argmax
p2

Fv(p2) (π (G)− p2n)

= argmax
p2

Fv(p2)

(
n∑

i=1

π (Gi)− (p2 − ϵ)n

)
.

(21)

As Fv(p) is already known, it is easy to prove that p1,i = p2 −
ϵ = v when p ≥ v, which means if the full dataset can be
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traded, data contributors can not get more payment by splitting

the data set and submitting them separately. Intuitively, if the

data contributor splits the data and submits them separately due

to the influence of the operation fee ϵ in the mapping function,

it results in a lower payment.

Data Privacy Preserving for mHealth: By the Label

Anonymity property of VAP-Valuation, the data contributor i
can query the possible payment by xi without uploading yi.
Then the label yi is not involved in the data valuation and

pricing processes, reducing the risk of privacy leakage. Thus,

in the data collection process, the data contributors have the

right to decide whether the data is used for model training

under the VAP-Pricing framework. Suppose the data contributors

are not satisfied with the current payment and choose not to

contribute their whole data. In this case, they do not leak the

whole information about their data (preserve the label y).

4.3 Regret Analysis

For stochastic linear bandits, a classic setting is a shared pa-

rameter with possibly infinite arms. In our problem, we follow

the original version, considering fixed K arms and disjoint

parameters, i.e., the posted price set is fixed finite, and for each

arm, coefficient vector ω∗
i ≜ (Fv (pi) ,−piFv (pi))

⊤
.

We define the regret of VAP-Pricing as:

RT =
T∑

t=1

(
Π⊤

t ω
∗
i∗ −Π⊤

t ω
∗
it

)
, (22)

where i∗ is the optimal arm (price) and it is the arm taken at

time slot t. The proof is divided into two steps, the first is that

the regret of the shared-parameter setting will be O(
√
dT ). In

this setting, there is only a fixed unknown parameter ω∗
for all

arms, where ω∗ ∈ Rd
. After that, we show the regret of the

disjoint-parameter setting under our problem setting will reach

O(
√
dKT ). Considering the shared-parameter setting, first, we

make some assumptions, which are common in the traditional

stochastic linear bandits problem.

Assumption 1. We assume that the observed noise i.e., (rt −
Π⊤

t ω
∗) is independent standard Gaussian noise, where rt is the

reward and ω∗ ∈ Rd is an unknown but fix parameter.

Assumption 2. We assume that the contextsΠ and the parameter
ω∗ are bounded. ∥Π∥2 ≤ 1, ∥ω∗∥2 ≤ 1.

Then the regret under the shared-parameter setting is:

RT =
T∑

t=1

(
Π∗

⊤ω∗ −Π⊤
t ω

∗
)
, (23)

where Π∗ is the optimal action and Πt is the action taken at

time slot t. To note, it is different from the previous definition

of Π. Here we reuse the symbol for simplicity. The actions here

contain both the original context and the information of the arm

selection, which will be introduced in detail in Equation (34) later.

To complete the proof, we introduce the concept of confidence

ellipsoid. The result shows that ω∗
lies with high probability in

an ellipsoid with center ω̂ [43].

Lemma 1. (Confidence Ellipsoid) Let At = λI+
∑t

τ=1 ΠτΠτ⊤,

ω̂t = A−1
t

∑t
τ=1 cτΠτ , αT =

√
λ +

√
2 ln 1

δ + d ln
(
1 + t

dλ

)
,

then with probability at least 1− δ, for all t ≥ 0, ω∗ lies in the set

Ct =
{
ω ∈ Rd : ∥ω − ω̂t∥At

≤ αT

}
. (24)

Then we can get the regret of shared-parameter LinUCB.

Theorem 1. With probability 1 − δ, the regret RT of shared-
parameter LinUCB satisfies

RT ≤ αT

√
8dT ln

(
1 +

T

λd

)
= O(d

√
T ), (25)

where T is the total time slots, the hyperparameter αT =√
λ +

√
2 ln 1

δ + d ln
(
1 + t

dλ

)
, d is dimension the unknown

parameters, and λ is the coefficient of the identity matrix in the
gram matrix.

Proof. By Cauchy-Schwarz and Lemma 1, we have∣∣∣(ω∗ − ω̂t)
⊤
Π
∣∣∣ ≤ ∥ω∗ − ω̂t∥At

∥Π∥A−1
t
≤ αT ∥Π∥A−1

t
. (26)

Let ω̃t ∈ Ct be the parameter in the confidence set to make that

ω̃⊤
t Πt = maxω∈Ct

ω⊤Π Thus,

Rt = Π∗⊤ω∗ −Π⊤
t ω

∗

≤ Π⊤
t (ω̃ − ω∗)

= Π⊤
t (ω̃ − ω̂t) + Π⊤

t (ω̂t − ω∗)

≤ 2αT ∥Πit∥A−1
t−1

.

(27)

As the definition of αT , we can get αT ≥ 1. By the Assumption

3, we have Rt ≤ 2αT min{1, ∥Πit∥A−1
t−1
}. Then by the Cauchy-

Schwarz inequality and min{1, x} ≤ 2 ln(1+x), we can bound

the regret as

RT =

√√√√T
T∑

t=1

R2
t

≤ αT

√√√√4T
T∑

t=1

min
{
1, ∥Πit∥

2
A−1

t−1

}

≤ αT

√√√√8T
T∑

t=1

ln
(
1 + ∥Πit∥

2
A−1

t−1

)

= αT

√√√√8T ln
T∏

t=1

(
1 + ∥Πit∥

2
A−1

t−1

)
.

(28)

By the definition of A, we have

det(AT ) = det(AT−1 +ΠiTΠ
⊤
iT )

= det
(
A

1
2

T−1

(
I +A

− 1
2

T−1ΠiTΠ
⊤
iTA

− 1
2

T−1

)
A

1
2

T−1

)
= det (AT−1) det

(
I +A

− 1
2

T−1ΠiIΠ
⊤
iTA

− 1
2

T−1

)
= det (AT−1)

(
1 + ∥ΠiT ∥

2
A−1

T−1

)
· · ·

= det (A0)
T∏

t=1

(
1 + ∥Πit∥

2
A−1

t−1

)
.

(29)
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Then, by AM-GM inequality, we can get

det (AT ) ≤
(
Trace (AT )

d

)d

=

(
λd+

∑T
t=1 Trace

(
ΠitΠ

⊤
it

)
d

)d

=

(
λ+

∑T
t=1 Trace

(
Π⊤

it
Πit

)
d

)d

≤
(
λ+

T

d

)d

,

(30)

with detA0 = λd
, we can further get

detAT

detA0
≤
(
1 +

T

λd

)d

. (31)

Then, we can continue bounding the regret as

RT ≤ αT

√√√√8T ln
T∏

t=1

(
1 + ∥Πit∥

2
A−1

t−1

)

= αT

√
8T ln

detAt

detA0

= αT

√
8Td ln

(
1 +

T

λd

)
.

(32)

Till now, we obtain the regret of the shared-parameter setting

with a single true ω∗
assumed.

Theorem 2. With probability 1 − δ, the regret of disjoint-
parameter VAP-Pricing satisfies

RT = O(2K
√
T ), (33)

where T is the total time slots, K is the number of arms, and
αT =

√
λ+

√
2 ln 1

δ + d ln
(
1 + t

dλ

)
in VAP-Pricing.

An intuitive understanding is that the regret of VAP-Pricing

is related to the number of arms (prices) set K and the total

time slots T . As a bigger arm size, the regret will increase due to

a larger range of policies, and VAP-Pricing can get logarithmic

accumulated regret. Also, as α is related to δ, the choice of α in

VAP-Pricing will affect the probability of the regret guarantee.

Proof. In our problem, the parameter is disjoint over each arm so

we have K separate parameters ω∗
i to estimate, one for each arm.

Then it is obvious the regret of the disjoint-parameter situation is

a factor of K worse than that of the shared-parameter LinUCB.

Another explanation for this is that we can generate a new

parameter Ω∗
, to make

Ω∗ =



ω∗
1
.
.
.

ω∗
i
.
.
.

ω∗
K

 , Πt =





0
.
.
.

Πt

.

.

.

0

 : i = 1, 2, . . . ,K


, (34)

where ω∗
i ∈ Rd

. Thus by the definition of Ω∗
, we have Ω∗ ∈

RD, D = dK . Then we can get under shared-parameter Ω∗
, the

regret is bounded by O(D
√
T ) = O(dK

√
T ).

4.4 VAP-Pricing Under Fixed Limited Budget

In Section 4.1, we considered that the service provider’s budget

is not fixed, and it can be adjusted by ϵ. However, in this section,

we consider another common situation in real-life situations,

where the budget is fixed at the beginning. In this case, we

cannot simply model it as an ordinary contextual multi-armed

bandit problem as before. This is because we need to consider

not only the revenue brought by the current arm each time

we pull the arm but also the budget consumption at the same

time to ensure that we can get the maximum revenue when

the budget is depleted. Then a straightforward idea is to model

it as a linear contextual bandit with backpacks problem, which

is an extended version of VAP-Pricing above when considering

fixed budgets. Linear contextual bandits with backpacks had

been studied by previous work [44]. However, we can not apply

the previous method to our model. In previous work, it was

assumed that there is a fixed but unknown distribution D on the

context. Whereas in our modeling, contexts (Πt = (π(Gt), nt)
⊤

,

i.e., data valuation and the number of data samples) do not

follow a fixed distribution (the data valuation is diminishing

marginal). The good news is that the part not known to the

data provider and needs to be inferred by the VAP-Pricing is

the reserve value distribution Fv(p) of data providers. It is a

deterministic distribution that does not vary over time. Thus,

considering the budget limitation, we can remodel the problem to

a static multi-armed bandit with a knapsack framework, instead

of considering time-varying contexts (data valuations). In the

first stage, we predict the reserve value distribution of the data

contributors through a static multi-armed bandit, and then we

combine the expected reserve value distribution and the current

data valuation to compute the accurate posted price.

Next, we give a formal definition of this problem. The service

provider is given access to d-dimensional of K arms (price)

denoted as a ∈ [K] := {1, 2, . . . ,K}. Each time t ∈ [T ], the

service provider pulls an arm at and observes the reward and

consumption. We denote the unknown expected reward as rt,
and the corresponding resource consumption as ct. We assume

there is a fixed total budget B ∈ R+ on the consumption, And

B is a hard constraint on resource consumption. The algorithm

stops at the earliest time τ when B is exhausted.

To solve this bandit with knapsack problem, we decomposite

the budget into each slot. For submission with n pieces of data

samples, we regard the strategy as the repeated n posted price.

Thus, in each time slot, we only need to consider the unit reward

and the unit cost of each price pi, i ∈ [K]. First, we define the

unit reward (profit) and cost for each arm. The reward (profit)

that the service provider can obtain from one data contributor

with a reserve value v is:

r(pi, v) =

{
π(GXXX(xxx))/n− pi pi ≥ v,

0 0 ≤ pi < v.
(35)

, where arm i ∈ [K]. And the unit cost that the service provider

pays for each arm i with a reserve value v is:

c(pi, v) =

{
pi pi ≥ v,

0 0 ≤ pi < v.
(36)

As we mentioned above, we transform them into functions

related to Fv(pi),

E[r(pi, v)] = Fv(pi)(π(GXXX(xxx))/n− pi).

E[c(pi, v)] = Fv(pi)(pi).
(37)
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Algorithm 2: VAP-PricingwK

Input: α ∈ R+
, K , T , B, ϵ, GXXX(xxx), π(·)

1 Initialization: for i = 1 to K do
2 f(i)← 0, m(i)← 0;

3 for t = 1 to T do
4 Exit if the budget B is exhausted;

5 if t < K + 1 then
6 Posted price pIt = pt;

7 else
8 for i = 1 to K do
9 Fv(pi) =

f(i)
m(i) ;

10 r̃t(i) = Fv(pi)(
π(GXXX(xxxt))

nt
− pi) + α

√
ln t
m(i)

11 c̃t(i) = Fv(pi)(pi)− α
√

ln t
m(i)

12 solving

maxq∈∆ r̃t · q
s.t. c̃t · q ≤ (1− ϵ)ntB

T
13 It = random(q);
14 Posted price pIt = min(pIt , ⌊π(GXXX(xxxt))/nt⌋);
15 Observe and record the response from the data

contributor t;
16 if t is satisfied with the posted price (p ≥ vt) then
17 for i = It to K do
18 f(i)← f(i) + 1;

19 m(i)← m(i) + 1;

20 XXX =XXX + xxxt;

21 Update function GXXX(xxx);

22 else
23 for i = 1 to It do
24 m(i)← m(i) + 1;

Then in first stage, we calculate the Fv(pi):

Fv (pi) =
f(i)

m(i)
, (38)

where f(i) is the number of times that data contributors accept

pi, i.e., pi ≥ v in m(i). Then based on the estimation of Fv (pi),
we can calculate the expected reward and cost. We give detailed

data pricing with a knapsack algorithm, called VAP-PricingwK in

Algorithm 2. For the input of the algorithm, α is a parameter to

control the exploration scale, K is the number of arms (candidate

price), T is the total time slots, B is the total Budget of the service

provider, ϵ is the budget factor, GXXX(xxx) is the VAP-Valuation of xxx,

and π(·) is the revenue function. We initialize the parameter f(i)
and m(i) for each arm i (Lines 1-2), and for all possible prices,

we pull each arm once (Lines 5-6). As for each time slot t, there

is a data contributor t querying the price by her data xxxt. First,

we estimate the reserve value distribution as Equation (38) based

on the historical observation (Line 9). To estimate the reward

rt(i) and cost ct(i) for each arm, inspired by the UCB-based

algorithm for BwK [45], which is based on “optimism in the face

of uncertainty”, we make optimistic estimates of them:

r̃t(i) = Fv(pi)(
π(GXXX(xxxt))

nt
− pi) + α

√
ln t

m(i)
,

c̃t(i) = Fv(pi)(pi)− α

√
ln t

m(i)
,

(39)

where r̃t(i) is the upper confidence bound of rt(i) and c̃t(i) is

the lower confidence bound of ct(i) (Lines 10-11). After getting

r̃t(i) and c̃t(i), we solve the following linear programming to

get the policy:

maxq∈∆ r̃t · q
s.t. c̃t · q ≤ (1− ϵ)ntB

T

, (40)

where q is the probability to pull each arm, and ϵ =
√

γd
B +

log(T )γdB , γ = log
(
Td
δ

)
. Then we select arm It randomly

according to the probability in q, and post the price (Lines 12-

14). After posting a price, we record the response from the data

contributor. If the data contributor accepts the posted price, i.e.,
p ≥ vt, we update f(i) as well as m(i) for all arms i > It.
The data contributor would upload her data, and we add it to

the data set (Lines 15-21). Otherwise, i.e., 0 ≤ p < vt, the data

contributor would leave without contributing her data. We only

update m(i) for all arms i ≤ It (Lines 23-24).

5 Extensions to General Models

In this section, we extend VAP to advanced ML models. In

Bayesian linear regression, we can easily calculate the posterior

parameter distribution by a closed-form expression. However, in

other advanced ML models, such as Bayesian neural network

[34], parameter spaces are often high dimensional, and comput-

ing their entropy is usually intractable. Furthermore, for non-

parametric processes, such as the Gaussian process [33], the

parameter space is infinite-dimensional, which further increases

the computational complexity.

To solve this problem, inspired by Equaition (9) and Equa-

tion (8), we transfer the objective from computing uncertainty in

the parameter space to the prediction space, avoiding gridding

parameter space (exponentially hard with dimensionality). Fig. 2

shows the comparison of parameter probability density distri-

bution and prediction uncertainty. We can find that they have

the same shrinking trend when adding more training data. The

model’s grasp of the parameter is getting higher, implying the

model uncertainty and prediction uncertainty reduction. Thus,

the data valuation we obtained can be regarded as a measure

of uncertainty. The difference is that Equation (9) calculates the

predictive distribution variance in the prediction task, the aim of

which is to get the uncertainty in the current test data to evaluate

the reliability of a prediction. However, Equation (8) calculates

the entropy reduction of parameter βββ caused by adding new

training data from the training data set. The goal is to get the

model uncertainty changes caused by current training data to

measure each data’s contribution.

Thus, we can calculate entropy in low-dimensional output

space using the idea of prediction uncertainty. For new data,

d = (xxx, y), we calculate its contribution by regarding xxx as the

features of the prediction task to calculate its prediction uncer-

tainty. Specifically, for a representative non-parametric model,

we write Gaussian process regression(GPR) as yyy = f(xxx) + εεε
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(a) Change of parameter distribution. The amount of training data increases from left to right (2, 100, and 600). We only show two dimensions of

parameter β1 and β2 for straightforward demonstration.
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uncertainty.

Fig. 2. Model Changes during data addition.

with the unknown function f follows a N (µ, k) and εεε fol-

lows a N (0, γ2I) [33]. Different from parameter βββ in range

regression, there are no specific parameters in f . Thus, GPR

is a non-parametric model. Consider the current purchased

data set D = {di}ni=1 containing n data with di = (xxxi, yi),

[f (xxx1) , f (xxx2) , . . . , f (xxxn)]
⊤ ∼ N (µµµ,K), where µµµ is the

mean vector and KKK is the n × n covariance matrix, KKKij =
k (xxxi,xxxj). To make a prediction of new data sample xxx by the

current model, the predictive distribution is:

p (f(xxx) |XXX,YYY ,xxx) = N (µ̂µµ,Σxxx), (41)

where the predictive distribution variance is:

Σxxx =KKK(xxx,xxx)

−KKK(XXX,xxx)⊤
(
KKK(XXX,XXX) + γ2I

)−1
KKK(XXX,xxx).

(42)

Then, similar to the Equation (8), the valuation function in GPR

can be set as

GXXX(xxx) =
1

2
ln(1 + Σxxx). (43)

Moreover, for the complex parametric model, neural network,

similar to the Bayesian linear regression, we can put a prior dis-

tribution over its weights, such as a Gaussian prior distribution:

WWW ∼ N (0, γ2I). Such a model is referred to as a Bayesian

neural network (BNN) [34]. For each new data x, we can obtain

the corresponding predictive distribution uncertainty using the

BNN uncertainty [8]. Firstly, we optimize the parameters of

the simple distribution instead of optimizing the original neural

network’s parameters in BNN, where the posterior p(WWW |XXX,YYY )
is fitted with a simple distribution q∗θθθ(WWW ), parameterized by θθθ.

Then by the Dropout in BNN, which can be interpreted as a

variational Bayesian approximation, epistemic uncertainty can

be measured. For classification, the model prediction can be

approximated using Monte Carlo integration as follows:

p(fWWW (xxx) = r |XXX,YYY ,xxx) ≈ 1

T

⊤∑
t=1

softmax
(
fŴWW t(xxx)

)
, (44)

with T sampled masked model weights ŴWW t ∼ q∗θθθ(WWW ), where

q∗θθθ(WWW ) is the Dropout distribution [8]. Then the valuation func-

tion can be calculated by:

GXXX(xxx) = −
R∑

r=1

pr log pr, (45)

where R is the number of categories. For regression, the predic-

tions are made by approximating the predictive mean:

E(fWWW (xxx)) ≈ 1

T

T∑
t=1

fŴWW t(xxx). (46)

The prediction uncertainty is captured by the predictive variance,

which can be approximated as:

Var(fWWW (xxx)) ≈ 1

T

T∑
t=1

fŴWW t(xxx)⊤fŴWW t (xxx)− E⊤E, (47)

Similarly, the valuation function can be calculated by:

GXXX(xxx) =
1

2
ln(1 + Var(fWWW (xxx))). (48)

Thus, we can extend the VAP for various online ML models

as long as they can calculate prediction uncertainty, such as GPR

and the model under the Bayesian framework. More intuitively,

rather than collecting data for significantly reducing the param-

eter distribution’s differential entropy, we marginally seek the

data for which the model is most uncertain about the predictions.
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If there is a higher degree of uncertainty about the prediction of

arriving data, we do not have enough data whose features are

similar to its features, so we have less confidence in it. So when

we add this data to our training data set, it will significantly

reduce the model uncertainty in this data region. Thus, such

data will contribute more to the model, leading to more entropy

reduction of parameter distribution, and the service provider

would like to post a higher price for it. In addition to online

learning models, VAP can be used in some other domains to

guide the data collection process. For example, in domains such

as active learning [46] and Bayesian reinforcement learning [47],

where the model should have the ability to identify the most

valuable data for model training and add it to the training set.

6 Evaluation Results

In this section, we evaluate our VAP through extensive experi-

ments on real-world human behavior indicators data, which can

be involved in mHealth.

6.1 Evaluation Setup

We present the evaluation results based on two real-world

human behavior data sets: 1) Human Activity Recognition (HAR)

database [48], a data set built from the recordings of 30 data

contributors performing daily living activities while carrying a

waist-mounted smartphone with embedded inertial sensors. The

obtained data set was randomly partitioned into two sets, where

70% of the volunteers were selected to generate the training data

and 30% the test data. 2) Pima Indians Diabetes (PID) [49], a

data set initially from the National Institute of Diabetes and

Digestive and Kidney Diseases. The data set’s objective is to

diagnostically predict whether a patient has diabetes based on

specific diagnostic measurements included in the data set.

6.2 Results of Data Valuation

6.2.1 VAP on Different Models and Tasks

We evaluate the performance of VAP-Valuation. Fig. 3 shows that

VAP-Valuation is a proper model value evaluation metric leading

to smaller model uncertainty and higher model accuracy. First,

as for RC, in Fig. 3(a) and Fig. 3(d), the general trend in total

entropy reduction and prediction accuracy boost is consistent,

which means the goals of data collection and model optimization

are consistent under VAP. Meanwhile, in Fig. 3(b) and Fig. 3(e),

by observing that the model accuracy increases slowly with the

decrease of VAP-Valuation and that the turning points of them

are close (for about 20 in Fig. 3(a) and 500 in Fig. 3(c), we can

conclude that the VAP is able to judge the proper scale of the

data collection. That is to say, after collecting such an amount of

data, the valuation of the new data is relatively small, and the

accuracy of the model is relatively stabilized.

As for GPC and BNN, using the VAP-Valuation in Section 5,

we value the data on the outcome space. As the PID is a smaller

data set, we adopt the GPC model to it. Meanwhile, HAR is a

more extensive data set, which is more suitable for training with

the BNN model. In Fig. 3(c) and Fig. 3(f), we can get a similar

result with the RC model. By adding a new data sample, the

model uncertainty is smaller, leading each data’s contribution

to the model more negligible, and the model accuracy increases.

Also, the turning points of them are close, for about 20 in Fig. 3(c)

and 1000 in Fig. 3(f). Moreover, from all the results in these

three models, we can notice that the contribution of each data

point shows the characteristic of diminishing marginal, which

is consistent with the properties we described in Section 3.2.

Valuation on the outcome space (Fig. 3(c) and Fig. 3(f)) appears

to fluctuate more than the valuation on the parameter space

because there is only one parameter space, and its dimension

is higher and the previous decline is more. While the predictive

distribution for each data is a different distribution. We can also

notice some prominent high points in VAP-Valuation. Such data

points may be the data points of new distributions in the system

that have not been acquired before. In practice, in addition to

data points that may be of higher epistemic uncertainty and thus

show high value to the model, it can also be some incorrect

data due to the problems arising from equipment acquisition.

Furthermore, the service provider can identify and distinguish

between the two types of data based on specific tasks. For

example, the service provider can distinguish whether data is

from a hypertensive patient (150/100 mmHg) or is derived from

an abnormal collection (500/100 mmHg).

6.2.2 Performance of Different Data Valuation Metrics

We compare our method with other static data valuation met-

rics for machine learning, including TMC-Shapley [20], G-

Shapley [20] and Random (one possible online metric) in Fig. 4.

Compared with other methods, VAP-Valuation is more suitable

for online learning for the following reasons. First, as Fig. 4(a)

shows, the VAP-Valuation shows many excellent characteristics

for data pricing and collection. It has a significant downward

trend as the gradual increase of data over time considers the

arrival order, which can incentive an earlier data submission.

Besides, we can see that VAP-Valuation is always strictly positive,

which provides convenience for data pricing.

Moreover, Shapley value and its variants are common prac-

tices in data valuation for the ML field, so here we empha-

size why VAP outperforms Shapley in online learning tasks.

Compared to the Shapley value, VAP-Valuation can perform

online calculations without corresponding labels and testing data

according to the inferrability of VAP-Valuation we mentioned in

3.2. Simultaneously, the computational complexity will increase

significantly with the larger scale of the data set in static Shapely

value. Although there are some approximate calculation methods

such as TMC-Shapley [20], it still requires a lot of test data and

high computational cost, which is impossible and inappropriate

to achieve in a real-world mHealth system. G-Shapley, an approx-

imation of TMC-Shapley, can be adapted to online learning. The

marginal contribution in G-Shapley is the change of the model’s

performance. However, as shown in Fig. 4(a), we can find the G-

Shapley does not achieve a good approximation of TMC-Shapley,

because the calculation result can be affected by various factors,

the size of the test set, learning rate, haphazard, etc. Finally, We

can see that VAP-Valuation consistently outperforms the other

two mechanisms as illustrated in Fig. 4(b), as it shows a better

decrease over time than others as removing high-valuation data

points. Thus, VAP-Valuation is more suitable for online learning

tasks.

6.3 Results of Data Pricing

First, we compare the performance of different data pricing

mechanisms under a regular situation: VAP-Pricing, Random,

Half Fix, Half Valuation, LinUCB [41] and UCB1 [40]. In Random
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Fig. 3. VAP-Valuation on different models (Ridge classification (RC), Gaussian process classification (GPC)) and Tasks (HAR and PID Database).
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Fig. 4. Performance of different data valuation metrics. (a) Comparison of the
valuation of the first 100 PID data; (b) The effect of removing high-valuation
data points under different data valuation metrics.

pricing, the posted price p is uniformly distributed within [0, 1].
In Half Fix pricing, we set p = 0.5. And in Half Valuation

pricing, we set p = min(0.5 · GXXX(xxx), 1). In all experiments,

we set α = 1.2, ϵ = 0,K = 10, T = 500, and the reserve value

is an approximately normal distribution within [0, 1], where the

mean is 0.5, and the variance is 0.01 unless otherwise noted.

In Fig. 5, we can see that VAP-Pricing is always better than any

other policies under different settings of reserve values of data

contributors. Moreover, when the reserve value distribution is

closer to the constant distribution, VAP-Pricing can get a higher

profit. As for other mechanisms, we can see that Random is

always the worst. The performance of Half Fix will be worse

than contextual methods because it cannot capture the valuation

information of the data samples. It can be considered as the

optimal case of the traditional UCB1 method (also without

considering the context), and Fig. 5 turns out that it is true.

In addition, from the last figure in Fig. 5, it can be shown

that Half Fix has a very high profit in the early stage. This

is because when the reserve value is a constant f(v) = 0.5,

the posted price p = 0.5 in each time slot will definitely be

accepted by data contributors. The profit growth of Half Fix will

be slow or even negative in the later period, also because the

lack of data valuation results in the purchase of low-value data

at high prices. In contrast, Half Valuation can always buy the

data sample with a higher valuation by posting a high price, so

it can always maintain a better growth trend. However, without

the estimation of the reserve value will overbid, causing its total

benefit to be damaged. Besides, the naive LinUCB method does

not take into account the monotonicity of pricing and also leads

to unsatisfactory profits.

Besides, we evaluate the performance of different ϵ. In Fig. 6,

we can see that a bigger ϵ leads to a smaller budget and total

entropy reduction while maintaining a high profit. Supposing

that the service provider chooses a higher ϵ, correspondingly,

he tends to use the limited budget to collect a smaller data

set, this limited data set can effectively reduce the uncertainty

of model predictions. On the contrary, if the service provider

chooses a smaller ϵ, he wants to use more budget to collect more

data. This adequate data set can further significantly reduce the

uncertainty.

Comparing the price of different pricing policies in Fig. 7, we

can see that the VAP-Pricing method can maintain the downward

trend of valuation compared to Half Valuation, which is also

fairer than other Random or Half Fix. Compared with other

advanced bandit methods, i.e., UCB1 and LinUCB, VAP-Pricing

can better estimate the reserve value distribution of contributors,

leading to faster convergence and a more reasonable price. It can

monitor changes in data valuation and adjust the posted price

promptly to maximize the profit.

In order to explain the effect of VAP-Pricing more intuitively,

we also designed a set of experiments in a special case, that is

when the reserve value v = 0. Fig. 8 shows that VAP-Pricing can

converge quickly to the lowest price to extract more profit.

As for the performance of different data pricing mechanisms

under a fixed limited budget, we compare the performances of

VAP-Pricing, Random, Half Fix, Half Valuation, LinUCB, UCB1,

and VAP-PricingwK in Fig. 9. VAP-PricingwK shows demon-

strates exceptional budget control capability, consistently halting

close to the predetermined timeframe (T = 500), contrasting

with other methods that cease earlier due to budget exhaustion.

Concurrently, the total profit of VAP-PricngwK is maximal and
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Fig. 5. Performance of different data pricing mechanisms under different reserve values’ distribution, from left to right: f1(v): An approximately normal
distribution within [0, 1], where the mean is 0.5, and variance is 0.1; f2(v): An approximately normal distribution within [0, 1], where the mean is 0.5, and
variance is 0.01; A constant distribution as f3(v) = 0.5.
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Fig. 6. Performance of Different ϵ (ϵ = 0, 0.1, 0.5) and different reserve values’
distribution (From top to bottom are f1(v), f2(v), and f3(v)) on budget and
entropy reduction.

the UCB1 and random methods are the worst. In addition, it can

be noticed that VAP-PricingwK does not grow as fast as some

of the other algorithms in the early stages due to the need to

control the budget and not to adopt a particularly aggressive

exploration strategy, but since it retains a larger budget, it will

have the opportunity to collect valuable data for higher profits

in the later stages. It is also worth noting that although VAP-

Pricing consumes the budget more rapidly, the performance is

acceptable. This is ascribed to the incorporation of contextual

information, which enhances learning speed. However, under a

fixed budget, it is challenging to identify an appropriate budget

control factor ϵ for VAP-Pricing in advance, resulting in a loss of

final profit. Conversely, VAP-PricingwK’s control under a fixed

budget is automatic. Finally, we also find that when the variance

of the reserve value v is smaller, the magnitude of the change is

smaller, making it easier for VAP-PricingwK to estimate Fv(pi),
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Fig. 7. Price Comparison of Different PricingMechanisms (From top to bottom
are VAP-Pricing, Half Valuation, Random, LinUCB, and UCB1).

thus obtaining larger profits.

7 Related Work

7.1 Mobile Health

The researchers develop multiple models by combining princi-

pled medical approaches with ML techniques in mHealth in a

variety of domains, including diabetes [50], [51], [52], activ-

ity recognition [53], [54], depression treatment [55], [56], and

blood pressure monitoring [31], [57]. Recently, researchers are

making recent progress in COVID-19 [7], [58], [59], [60]. The

design of the mobile device not only proposes a viable mHealth

solution and drives the further development of mHealth, but

also generates a large amount of mHealth data in the process.

Based on such massive data, various machine learning models

have been developed, especially some online learning models and

incremental learning models are proposed [14], [15], [16], [17], in

which the mHealth models would continuously update over time

as more information is collected and made available. There are

also many researchers who focus on the integration of Bayesian

methods into mobile health [61], [62], [63]. However, these

works are currently considering designs of hardware devices

and ML models’ improvements. Few of them consider the data
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acquisition mechanism, neither data valuation, and data pricing

mechanism. Barriers still exist in the journey of mHealth data

from generation to use.

7.2 Data Valuation and Pricing for ML Tasks

Lately, Shapley value has been widely used in the data valuation

and pricing problem for ML tasks. Agarwal et al. [18] design

a market mechanism to price training data and match buyers

to sellers based on Shapley value. Jia et al. introduce several

additional approximation methods for efficient computation of

Shapley values for training data [19]; subsequently, they provided

an algorithm for the exact computation of Shapley values for the

specific case of nearest-neighbour classifiers [22]. Meanwhile,

Ghorbani et al. developed a truncated Monte Carlo sampling

scheme (TMC-Shapley), demonstrating empirical effectiveness

across various ML tasks [20]; subsequently, they proposed dis-

tributional Shapley, where the value of a point is defined in

the context of an underlying data distribution [21]. However,

these data valuation methods are not suitable for online ML

tasks. Despite not being used for data valuation, ranking the

importance of training data points has been used for under-

standing model behaviors, detecting data set errors, etc. Existing

methods include using the influence function [64] for smooth

parametric models, and a variant [65] for non-parametric ones.

Ogawa et al. [66] proposed rules to identify and remove the least

influential data to reduce the computation cost when training

support vector machines (SVM). Kendall et al. measured the

uncertainties in Bayesian deep learning for computer vision [67].

These approaches could potentially be used for valuing data.

7.3 Uncertainty in Machine Learning

The VAP-Valuation metric is closely related to the concept of

epistemic uncertainty in machine Learning. In Bayesian mod-

eling, there are two main types of uncertainty one can model.

Aleatoric uncertainty comes from the noise when data is gen-

erated or collected, for example, sensor noise or motion noise.

Aleatoric uncertainty cannot be reduced even if more data were

to be collected. While epistemic uncertainty comes from the

model’s ignorance of the data when the collected data is not

enough. This uncertainty can be explained away given enough

data and is often referred to as model uncertainty. These two

uncertainties were first studied and classified by Kiureghian and

Ditlevsen [68]. And these two types of uncertainty have further

been more specifically studied in bayesian deep learning for

computer vision by Kendall and Gal [69]. Before that, Gal and

Ghahramani proved that deep neural networks could be cast

as performing approximate variational inference in a Bayesian

setting [70] and extend it to arbitrary deep learning models [71].

Based on that, they model uncertainty with dropout NNs [72]. In

previous work, uncertainty is the predictive distribution variance

in the prediction task for the current test data to judge the cred-

ibility of a prediction. However, in VAP-Valuation, we calculate

the posterior distribution entropy reduction of parameter or the

predictive distribution variance of new data to measure each

data’s contribution.

7.4 Multi-armed Bandits

The multi-armed bandit (MAB) problem is a sequential decision-

making model and widely studied by many works with different

models and solutions, such as upper confidence bound [40], ϵ-
greedy [73], and Thompson sampling [74], [75]. In the traditional

setting of MAB, an arm can be represented by a scalar to

infer the reward that is drawn from its distribution which is

unknown to the player, while in the contextual bandit [41],

[43], a context vector represents each arm, and Õ(
√
T ) regret

bounds can be achieved based on UCB. Moreover, as classical

modeling, the linear reward model has been widely studied in

contextual bandits [76], [77]. Considering knapsack constraints

on various resources in the bandit framework, the bandit with

knapsack (BwK) is first studied by Badanidiyuru et al. [78], who

presented two algorithms and proved that the regret achieved

by both algorithms is optimal up to polylogarithmic factors.

Later, based on the optimal regret, Agrawal and Devanur further

proposed alternative optimal algorithms under concave rewards

convex knapsacks [45], and a linear contextual setting [44].

Many real-world problems can be modeled as various versions

of bandit problems [79], [80], [81], because MAB represents an

online learning paradigm that naturally captures the intrinsic

exploration-exploitation tradeoff in sequential decision-making

process.

8 Conclusion

In this work, we have introduced VAP, an innovative online

data valuation and pricing mechanism designed specifically for

ML tasks in the context of mobile health (mHealth). We value

the data by measuring its contribution to the ML model under

the Bayesian perspective, using the entropy of the distributions

over model parameters. To address the profit maximization

problem, we have developed an online posted price data pricing

mechanism within a contextual multi-armed bandit framework,

leveraging the data valuation metric provided by VAP. And

further, for the limited budget situation, we have proposed

VAP-PricingwK under a multi-armed bandit with a knapsack

framework. Moreover, we have extended VAP from Bayesian

linear regression to more complex ML models by computing

the entropy from the parameter space to the prediction space.
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Fig. 9. Performance of different data pricing mechanisms under a fixed limited budget B = 100. Reserve values’ distributions from left to right are f1(v),
f2(v), and f3(v).

Through comprehensive evaluation, we have demonstrated that

VAP outperforms existing online data valuation and pricing

mechanisms. The results highlight the effectiveness and supe-

riority of our approach in the mHealth domain.
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