
LiteMoE: Customizing On-device LLM Serving via Proxy
Submodel Tuning

Yan Zhuang
Shanghai Jiao Tong University

Shanghai, China
zhuang00@sjtu.edu.cn

Zhenzhe Zheng
Shanghai Jiao Tong University

Shanghai, China
zhengzhenzhe@sjtu.edu.cn

Fan Wu
Shanghai Jiao Tong University

Shanghai, China
fwu@cs.sjtu.edu.cn

Guihai Chen
Shanghai Jiao Tong University

Shanghai, China
gchen@cs.sjtu.edu.cn

ABSTRACT
Considering limited on-device resources, current practices are at-
tempting to deploy a system-level mixture-of-experts (MoE)-based
foundation LLM shared by multiple mobile apps on a device to
support mobile intelligence. However, mobile apps are hard to
customize their services that require tuning adapters associated
with the LLM using private in-app data. The difficulty arises due
to both the limited on-device resources and the restricted control
that apps have over the foundation LLM. To address this issue,
in this work, we propose LiteMoE, a novel proxy submodel tun-
ing framework that supports mobile apps to efficiently fine-tune
customized adapters on devices using proxy submodels. The key
technique behind LiteMoE is a post-training submodel extraction
method, whereby without additional re-training, we can identify
and reserve critical experts, match and merge moderate experts,
to extract a lightweight and effective proxy submodel from the
foundation LLM for a certain app. We implemented a prototype of
LiteMoE and evaluated it over various MoE-based LLMs and mo-
bile computing tasks. The results show that with LiteMoE, mobile
apps are able to fine-tune customized adapters on resource-limited
devices, achieving 12.7% accuracy improvement and 6.6× memory
reduction compared with operating the original foundation LLM.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→Machine learning.

KEYWORDS
Customized LLM Serving, On-Device LLM Fine-Tuning, Mixture of
Experts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys ’24, November 4–7, 2024, Hangzhou, China
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0697-4/24/11. . . $15.00
https://doi.org/10.1145/3666025.3699355

ACM Reference Format:
Yan Zhuang, Zhenzhe Zheng, Fan Wu, and Guihai Chen. 2024. LiteMoE:
Customizing On-device LLM Serving via Proxy Submodel Tuning. In ACM
Conference on Embedded Networked Sensor Systems (SenSys ’24), November
4–7, 2024, Hangzhou, China. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3666025.3699355

1 INTRODUCTION
Large language models (LLMs) have demonstrated powerful capa-
bilities over various tasks. Diverse applications built upon LLMs
have emerged and greatly improved user experience in question
answering [42], intent understanding [34], task automation [62],
etc. Accordingly, there is a growing trend to deploy LLMs on mobile
devices for low-latency model responses and privacy-preserving
model services [36, 62, 68]. To facilitate smooth user experience
on resource-constrained mobile devices, current practices propose
to deploy an LLM at the system level as a foundation backbone
shared by various mobile applications [1, 67], which can relieve on-
device resource pressure by avoiding developing individual LLMs
for each app. To further improve resource efficiency, the LLM usu-
ally adopts sparsely activated architectures (i.e., mixture-of-experts,
MoE) [28, 30, 66] which only activates a small subset of parameters
for inference at a time instead of the entire LLM.

However, a shared foundation LLM fails to provide customized
services for various mobile apps. Although the foundation LLM has
general capabilities, different apps require distinct specialized abili-
ties to enhance the quality of user experience. For example, personal
assistants aim to understand user intent and plan actions, while note
apps focus on text summarization and generation. This customized
ability can be achieved by inserting app-specific adapters [23] (i.e.,
small trainable modules) into the foundation LLM to enhance its
abilities. However, these customized adapters require on-device in-
app data including user behavioral or environmental data for fine-
tuning and updating, which is very privacy-sensitive and can hardly
be transferred to the cloud (or foundation LLM service providers) for
training. On the other hand, on-device training these app-managed
adapters preserves user privacy, but is hindered by the limited com-
putation and memory resources. Additionally, under the existing
LLM-inference-as-a-system-service paradigm, mobile apps have no
control over the system-managed foundation LLM, and thus cannot
effectively apply advanced algorithms [38, 71] that need visibility
to internal model structures or intermediate execution results.

521

https://doi.org/10.1145/3666025.3699355
https://doi.org/10.1145/3666025.3699355
https://doi.org/10.1145/3666025.3699355
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3666025.3699355&domain=pdf&date_stamp=2024-11-04

SenSys ’24, November 4–7, 2024, Hangzhou, China Yan Zhuang, Zhenzhe Zheng, Fan Wu, and Guihai Chen

In this work, we propose a novel proxy submodel tuning frame-
work, namely LiteMoE, to supportmobile apps in efficiently training
and updating adapters on devices. Specifically, for a given mobile
app, LiteMoE efficiently generates a submodel specialized for the
app’s targeted downstream tasks, which acts as a proxy to the
system-level foundation LLM. The app has full control over this
submodel to tune customized adapters with the latest user data.
The resulting adapters can further be seamlessly integrated back
into the foundation LLM for later customized model serving.

The key of LiteMoE is to efficiently generate lightweight proxy sub-
models on devices from the system-level foundation LLM. Specifically,
the generated submodels should satisfy: (1) efficiency: submodels
should be lightweight to fit into an app’s context memory on de-
vices. (2) effectiveness: a submodel should be able to inherit specific
abilities from the foundation LLM, and thus can act as a good proxy
to fine-tune customized adapters. Existing model compression tech-
niques, including generic methods such as model pruning [20] and
distillation [22], and MoE-specific methods such as expert layer dis-
tillation [65] and quantization [18], though effective to scale down
LLMs, are not designed for on-device settings with limited hard-
ware resources andmassive apps, as they require resource-intensive
re-training processes.

To achieve this goal, LiteMoE focuses on compressing sparse
MoE layers, as they constitute the majority of model parameters
and memory footprint. The key observation is that, though multiple
experts significantly enhance LLM performance, not all experts are
equally important for a specific downstream task. This is because
the experts are trained to handle different subspaces of the overall
feature space, excelling at distinct tasks. Therefore, we can compress
the sparse MoE layers by removing the non-critical experts.

Nonetheless, refining experts raises two design challenges. First,
modeling expert-task correlations and then evaluating expert im-
portance is difficult. MoE-based LLMs typically contain tens to thou-
sands of experts [17, 48] that collectively handle a wide range of
mobile computing tasks. Within this vast expert-task space, identi-
fying the capability of a specific expert and assessing its importance
with respect to a targeted task is a non-trivial problem. Second,
simultaneously meeting the requirements of compact model sizes
and effective LLM proxies is difficult. Experts are trained to collab-
orate for achieving superior LLM performance over various tasks.
Simply removing any expert could lead to performance degradation,
making it challenging to create effective proxy submodels under
stringent on-device resource constraints.

To overcome the above challenges, LiteMoE features a post-
training submodel extraction (PTSE) technique that efficiently ex-
tracts proxy submodels from the foundation LLM without necessi-
tating additional model re-training. PTSE contains two main com-
ponents: important expert identification and selective expert merging.
In the first component, we identify that the routers within MoE lay-
ers can act as key indicators for modeling expert-task correlations.
The statistics of router outputs (i.e., the probability of dispatching
tokens from a certain task to various experts) imply informative
patterns about this correlation, thereby can be leveraged to esti-
mate the expert importance. Then, to avoid inferring the heavy
foundation LLM to obtain router outputs across different MoE lay-
ers, we reveal a strong correlation between router outputs across
layers, and design a lightweight predictor to directly derive the

router outputs at deep layers from those at shallow layers. In the
second component, using the predicted importance scores, we re-
move the unimportant experts and merge the moderate experts into
the critical experts to generate lightweight but effective submodels.
We first introduce an expert matching method to identify the ex-
perts with similar abilities, guaranteeing their merging to create
performance-enhanced experts. Then, to merge the knowledge of
the matched experts, we introduce an expert merging method that
first aligns the hidden representations of the experts, and then ap-
plies importance-aware parameter aggregation, thereby reducing
model sizes but still preserving performance.

We have implemented a prototype of LiteMoE on modern edge
devices with various hardware resources, including high-end de-
vices like NVIDIA Jetson Nano (GPU) and low-end devices like
Raspberry Pi 4B (CPU). We evaluate LiteMoE through extensive
experiments across 3 MoE-based LLMs and 8 representative mobile
computing tasks. The results show that LiteMoE is able to generate
proxy submodels in around a minute, which preserves over 90%
of the performance of the foundation LLM with up to 6.6× model
size reduction. With these proxy submodels, mobile apps can tune
or update their customized adapters, achieving 12.7% performance
gains for on-device LLM services.

For the first time, LiteMoE addresses the issue of on-device fine-
tuning system-level LLMs, enabling on-device LLMs to provide
more customized and resource-efficient services. We summarize
the contributions of this work as follows:
• We propose a novel proxy submodel tuning framework for mo-
bile apps to access proxy submodels of the system-level foun-
dation LLM, facilitating efficient on-device LLM fine-tuning for
customized LLM services.
• We study the intrinsic characteristics of experts and tasks, and
design a post-training submodel extraction approach without
additional model training by dynamically identifying, matching,
and merging experts within MoE-based LLMs. Thus, we are
able to obtain specialized submodels on the fly with affordable
on-device resource overhead.
• We prototype LiteMoE and comprehensively evaluate its per-
formance on off-the-shelf devices. The results demonstrate the
effectiveness of our approach and the potential in facilitating
the quality of service of on-device LLMs.

2 BACKGROUND AND MOTIVATION
2.1 Serving LLMs on Edge Devices
On-device LLMs. Large language models (LLMs) represented by
ChatGPT [42], Llama 2 [58], GPT-4 [6], Gemini [55], etc., have
largely changed the landscape of mobile intelligence applications,
benefiting from their superior capabilities in taking various modali-
ties and solving a wide range of tasks. Taking the personal assistant
as a representative example [34], LLM-powered smart agents on de-
vices significantly advance the ability of user intention understand-
ing, tool using, and mobile task automation. Therefore, on-device
LLMs serving is an important step towards democratizing mobile
intelligent applications due to its advantages of privacy protection,
cost efficiency, and availability.

To improve the usability of on-device LLM, existing works have
made remarkable progress in both algorithms and hardware. For

522

LiteMoE: Customizing On-device LLM Serving via Proxy Submodel Tuning SenSys ’24, November 4–7, 2024, Hangzhou, China

Self-Attention

Add & Norm

Sparse FFN

Add & Norm

Adapter
Nonlinear

Down projection

Up projection

Router

Expert 1 Expert 2 Expert 3 Expert N…

Transformer Block

…

Figure 1: Illustration of sparse Transformers and parameter-
efficient adapters inserted into the Transformer blocks.

example, various compact LLM architectures (such as Gemma [27],
TinyLLaMA [57], MobileLLM [36], etc.) are proposed to fit in lim-
ited on-device memory. Edge hardware vendors also presented
specific hardware and development kits to support on-device LLMs,
including Qualcomm Snapdragon 8gen3 [5], NVIDIA IGX Orin
platform [41], and Intel’s support on LLM inference on CPUs [49].
On-device LLM serving.As AI-poweredmobile apps grow rapidly,
maintaining each app an independent LLM is not feasible due to
limited on-device resources. A promising way is to employ a unified
foundation LLM on a device to serve various mobile apps [67, 68],
termed a model-as-a-system-service paradigm. This paradigm has
been made possible by the recent advances of LLMs that have
emerged with powerful generic capabilities to support various
downstream tasks with a single LLM backbone. Due to the app-
independent nature, this foundation LLM can be managed by the
operating system (OS), and expose service APIs for mobile apps
to invoke. Apps can send texts (i.e., prompts) to query the foun-
dation LLM via service APIs, and get responses generated by the
LLM. A representative example of this paradigm is AICore [1], a
system service proposed by Google that provides access for mobile
apps to Gemini Nano [55] on the device. It also provides limited
flexibility to fine-tune the foundation LLM for apps via the LoRA
method [25]. Apple [3] also provides toolkits to help developers
integrate on-device LLM inference into mobile apps.

2.2 Customizing On-Device LLM Serving
Large language model adapters. To provide app-specific cus-
tomized model services, apps can provide adapters to interact
with the foundation LLM [23, 25]. Here we briefly introduce LLM
adapters for parameter-efficient fine-tuning (PEFT) [13, 23]. Adapters
are independent trainable modules inserted into the foundation
LLM to enhance its ability on specific tasks. The main purpose
of employing adapters is two-fold: (1) the first is to reduce tun-
able parameters when fine-tuning foundation LLMs to downstream
tasks. (2) the second is to tackle system challenges such as lim-
ited on-device memory and computation resources. With adapters,
fine-tuning LLM on devices becomes possible.

We show a popular kind of Transformer adapters in Figure 1.
An adapter typically comprises a down-projection layer followed
by a non-linear layer and an up-projection layer. After forwarding
through these layers, the hidden states are further added via a
residual connection. As such, the function of an adapter can be
expressed as: ℎ ← 𝑓 (ℎ𝑊𝑑𝑜𝑤𝑛)𝑊𝑢𝑝 + ℎ, where ℎ is the hidden

states, and 𝑊𝑑𝑜𝑤𝑛 and 𝑊𝑢𝑝 are weight matrices of the adapter.
When fine-tuning LLMs with downstream data, the foundation
LLM is frozen, and only parameters in the adapters are trainable.
As the adapters only have less than 1% parameters compared to the
foundation LLM [23, 25], the memory and computation required for
fine-tuning can be dramatically reduced. The rationale behind this
lightweight adapter design is that the foundation LLM is powerful
enough with its world knowledge, and the adapters only need to
encode task-specific representations to enhance the foundation
LLM in the targeted downstream tasks.
Motivation of proxy submodel tuning. To customize LLM ser-
vices for the targeted tasks, apps could fine-tune adapters with in-
app data collected during user-app interaction. This data is highly
privacy-sensitive, making it unsuitable to send to the cloud server
for tuning. Thus, on-device tuning is a potential solution. How-
ever, existing methods are still hard to achieve due to the following
challenges. (i) The system-managed foundation LLM is a black box
for mobile apps. That is, apps could only use inference APIs to
interact with the foundation LLM, while having no visibility and
control over its internal architecture or intermediate execution
results. This hinders apps from applying various adaptation meth-
ods such as inserting modules into the LLM. Moreover, different
downstream tasks prefer different kinds of PEFT algorithms and
hyperparameters [8, 71], which is also difficult to operate under the
current paradigm. (ii) Even with adapters, the resource overhead
of on-device fine-tuning the foundation LLM is still prohibitively
expensive. This is because storing the LLM parameters alone al-
ready takes up a large amount of memory budget, leaving little
capacity for training requirements such as storing activations, gra-
dients, and intermediate states of optimizers [32, 46]. Therefore,
this fine-tuning process is highly limited by the large-scale LLM,
and could face complex parameter offloading and I/O scheduling
problems [30, 66], which have not been fully solved in the on-device
fine-tuning scenario.

To tackle the above issues, we propose a proxy submodel tuning
paradigm to enable mobile OS to dynamically expose lightweight
and specialized submodels to apps. These submodels are extracted
from the system-level foundation LLM, acting as effective proxies
to the foundation LLM with respect to certain downstream tasks.
This paradigm brings the following benefits: (1) the submodels
are lightweight and tailored for the current apps, and thus can
act as the role of LLM for customized fine-tuning with much less
resource overhead. (2) With this paradigm, mobile apps have full
control over the submodel, and thus can flexibly employ various
PEFT algorithms for fine-tuning. Once the fine-tuning process has
finished, the obtained adapters within the submodel could be sent
back to and seamlessly integrated into the foundation LLM. As
such, this paradigm is able to offer efficient and effective on-device
LLM fine-tuning for customized LLM services.

2.3 MoE-based LLMs and Opportunities
MoE-based LLMs. The sparsely-activated MoE architecture is
well-suited for edge devices, as it not only enjoys the model perfor-
mance gains brought by the large model size [29], but also avoids
correspondingly increased computation overhead. For example,

523

SenSys ’24, November 4–7, 2024, Hangzhou, China Yan Zhuang, Zhenzhe Zheng, Fan Wu, and Guihai Chen

0.0 0.2 0.4 0.6 0.8 1.0
Parameter Proportion

32 EPL

16 EPL

8 EPL

MoE Layers Non-MoE layers

0.0 0.2 0.4 0.6 0.8 1.0
Inference Latency Breakdown

32 EPL

16 EPL

8 EPL

MoE Layers Non-MoE layers

Figure 2: Cost breakdown of MoE-based LLMs. “EPL” indi-
cates Experts Per (sparse FFN) Layer.

0.0

0.5
Sparse FFN 1

0.0

0.5

Ex
pe

rt
Ac

tiv
at

io
n

Fr
eq

ue
nc

y

Sparse FFN 3

0 1 2 3 4 5 6 7
Expert Index in Sparse FFNs

0.0

0.5 Sparse FFN 5

MNLI SST-2 Cola

Figure 3: Expert activating frequencies in different down-
stream tasks in the 1st, 3rd, and 5th sparse FFN.

GLaM [14] augmented with MoE achieves around 7 times of param-
eters than GPT-3, while it only consumes 1/3 of energy for training,
and requires 1/2 of computation FLOPs for inference. This comes
from the MoE’s advantage of conditional computation, where for
each token only a small subset of parameters are activated for
inference or training.

As shown in Figure 1, the MoE architecture is typically employed
to replace dense FFN layers inside Transformer blocks of LLMs. A
common MoE-based sparse FFN comprises a set of experts, each
of which is also a FFN, and an independent router module. For
each input token, the router decides which expert to activate out
of all potential experts. Formally, the function of a sparse FFN with
respect to input token 𝑥 can be formulated as:

𝑓 (𝑥) =
∑︁
𝑖∈A

𝑅(𝑥)𝑖𝐸𝑖 (𝑥),A = Top-𝑘 (𝑅(𝑥)), (1)

where 𝐸𝑖 (𝑥) is the function of the 𝑖th expert, and 𝑅(𝑥) denotes the
router function.
Observation 1: sparse FFNs dominate resource costs. Despite
the benefits of MoE-based sparse FFNs, they have much higher
memory and time costs compared to other layers within LLMs.
Taking Switch Transformers [17] as an example, we break down
these costs in Figure 2. (i) There are more than half of the param-
eters of LLMs are within sparse FFNs, and the portion increases
with the number of experts. For example, sparse FFNs each with
32 experts take up 89.7% of the parameters of the LLM. (ii) Execut-
ing sparse FFNs on devices also brings high latency regardless of
conditional computation. This is because the device is hard to hold
all parameters in memory, thus introducing additional I/O costs
for loading expert parameters from disks [30, 66]. Therefore, it is

0.2 0.4 0.6 0.8
Expert Removing Percent

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
od

el
 A

cc
ur

ac
y

αp βp

 Cold
Experts

 Moderate
 Experts

Model Accuracy Activating Frequency

0.0 0.2 0.4 0.6 0.8
Expert Removing Percent

1

2

3

4

5

6

7

8

M
od

el
 S

iz
e

(G
B)

Switch-8
Switch-16
Switch-32

0.0

0.1

0.2

0.3

0.4

Ac
tiv

at
in

g
Fr

eq
ue

nc
y

α

β

Hot Experts

Figure 4: Model accuracy (left) and model size (right) under
different expert removing percentages.

critical to optimize the sparse FFNs to reduce costs for on-device
model execution and fine-tuning.
Observation 2: expert activating frequencies are unbalanced
and dynamic. As shown in Figure 3, we analyze the Switch Trans-
former with 8 experts per sparse FFN (denoted as Switch-8), and
visualize expert activating frequencies across several downstream
tasks. We have two observations. (i) First, not all experts are equally
activated, reflected in highly unbalanced activating frequencies for
a given downstream task. For example, for the multi-genre natural
language inference (MNLI) task, there are 38.5% of experts on aver-
age are barely used, and only 19.8% of experts are “heavy-hitters”
that are very frequently activated. Other sparse models exhibit
similar statistics: Switch-16 and Switch-32 have 40.1%, 36.2% cold
experts and 18.2%, 23.7% heavy-hitter experts, respectively. (ii) Sec-
ond, expert activating frequencies are also different across tasks,
following strong task-specific patterns. For example, there are only
26.3% of heavy-hitter experts overlap between the MNLI task and
the CoLA task. Intuitively, although MoE-based LLMs are trained
to have general abilities, the experts within sparse layers are only
trained to handle different subsets of tokens, and thus specialize
in different abilities. Note that the heavy-hitter experts could also
change dynamically, as users could switch mobile apps in use or
focus on different target downstream tasks.
Opportunities in generating lightweight proxy submodels.
Based on the task-specific sparse activating patterns of sparse FFNs,
we have opportunities to extract lightweight submodels for down-
stream tasks that the current apps focus on. A naive solution is to
simply remove the experts with low activating frequencies. How-
ever, our preliminary experiments reveal that this way cannot scale
down the large LLM while preserving specific abilities simultane-
ously. The resulting submodel is not a good proxy for the large LLM,
and thus could compromise the effectiveness of tuning customized
adapters. Specifically, in Figure 4, we show the relation between
the percentage of simply removed experts and the resulting model
performance. The removal percentage could be roughly divided
into 3 regions: (i) cold experts: in the left region with activating
frequency less than a threshold 𝛼 . Removing cold experts has a
negligible impact on the model performance. (ii) moderate experts:
in the middle region with activating frequency range from 𝛼 to 𝛽 .
As more experts are removed, those with moderate activating fre-
quencies but not critical ones are removed. This leads to a gradual
decline in model performance as the number of removed experts
increases. (iii) hot experts (heavy hitters): once the removal rate

524

LiteMoE: Customizing On-device LLM Serving via Proxy Submodel Tuning SenSys ’24, November 4–7, 2024, Hangzhou, China

Post-Training Submodel Extraction

Important Expert Identification (§3.2)

Similarity-based Expert Matching (§3.3.1)

Alignment-based Expert Merging (§3.3.2)

Online Extraction Stage③

Expert Similarity
Evaluation (§3.3.1)

Expert Importance
Modeling (§3.2)

Offline Profiling Stage

Predictor Similarity
matrix

Hardware

User Interaction

OS

Mobile
APP

response

AI-powered
function

Model
Controller

private
user data

Adapter 1

Adapter 2

Adapter 3

…

In
pu
t

O
ut
pu
t

Fine-
tune

Application
Context

…

A
da
pt
er

On-device Foundation LLM

query customized adapter①

⑤

Original
Expert

Enhanced
Expert

⑥

④
App-Specific

Proxy
Submodel

②
Call PTSE
Module

Figure 5: Overview of LiteMoE framework.

surpasses the 𝛽𝑝 point, where some heavy hitters are removed,
the model performance is significantly impaired. To conclude, the
simple expert removing method either lies in the left region, achiev-
ing only limited compression rates, or moves into the middle-right
region, where model performance deteriorates significantly. Either
way fails to produce a lightweight and effective proxy submodel.

To tackle this issue, our idea is to reach, even surpass the remov-
ing percentage of the 𝛽𝑝 point while keeping model performance
in the left region at the same time. This could be achieved by first
judiciously identifying experts within different groups with respect
to the targeted tasks, and then removing cold experts, selectively
transferring the knowledge of the moderate experts to the heavy-
hitter experts by a newly designed expert merging method. Finally,
we only retain the enhanced heavy-hitter experts, obtaining a light-
weight and effective proxy submodel for mobile apps to further
train customized adapters.

3 DESIGN OF LITEMOE
3.1 Overview
LiteMoE is an on-device LLM tuning framework that enables mobile
apps to continuously fine-tune customized adapters on resource-
limted devices. Figure 5 shows the general working pipeline of
LiteMoE. Given a query from a mobile app (1○), LiteMoE responds
with a proxy submodel extracted from the system-level foundation
LLM using Post-Training Submodel Extraction (PTSE) (2○- 4○). The
proxy submodel is specifically tailored according to the targeted
tasks of this app. The app can further fine-tune or update its cus-
tomized adapters with this proxy submodel using the fresh data
collected during user-app interaction (5○). The customized adapters
can be inserted back into the foundation LLM to provide better user
experience (6○), while the memory of the proxy submodel can be
released once the fine-tuning process is complete.

The key to the success of this pipeline is to generate a sufficiently
good proxy submodel, which is achieved by our post-training sub-
model generation module. This module works with an offline stage
and an online stage. In the offline stage, we profile expert char-
acteristics via Expert Importance Modeling and Expert Similarity

Evaluation, to prepare for the online proxy submodel extraction
process. This stage only corresponds to the foundation LLM, and
thus can be performed on the cloud. In the online stage, when
LiteMoE receives an app query, it first conducts Important Expert
Identification that evaluates experts’ importance scores with re-
spect to the targeted downstream tasks of this app. Then, LiteMoE
identifies the heavy-hitter experts to keep in the submodel, and
removes the other experts. To recover performance drops due to the
removed experts, it further carries out selective expert merging by
first matching removed experts to the retained experts according to
their similarities with Similarity-based Expert Matching, and then
performing Alignment-based Expert Merging to aggregate the pa-
rameters of the removed experts into the retained experts. As such,
the retained experts are further enhanced, and thus the resulting
lightweight submodel can effectively preserve specific abilities from
the large foundation LLM.

3.2 Customized Expert Identification
To generate a proxy submodel, we first need to identify important
experts within sparse FFN layers for the targeted task. We formally
define the importance score of the expert 𝑘 with respect to a given
task 𝐷 𝑗 as its overall activation probability under the inputs of this
task, i.e., 𝑃 (𝐸 (𝑙)

𝑘
|𝐷 𝑗). We can use the activation frequency deter-

mined by the router outputs to estimate this probability. As such,
the importance score of expert 𝑘 can be written as:

𝑓𝑖𝑚𝑝𝑜𝑟𝑡 . (𝐸 (𝑙)𝑘
|𝐷 𝑗) := 𝑃 (𝐸 (𝑙)

𝑘
|𝐷 𝑗) ≈

∑︁
𝑥𝑖 ∈𝐷 𝑗

𝑅
(𝑙)
𝑘
(𝑥𝑖), (2)

where 𝑅(𝑥𝑖) is the router outputs (i.e., routing probabilities) with
respect to token 𝑥𝑖 . However, 𝑅 (𝑙) (·) can only be obtained by for-
warding inputs to the LLM and calculating the router outputs of
sparse FFNs layer by layer. A naive way is to feed all user data
to the foundation LLM to get the routing probabilities, but this
method incurs large extra computation overhead, and could break
on-device resource limitations. Therefore, to calculate the expert
importance, a lightweight and precise prediction method is needed.

Fortunately, we observe that router outputs of different sparse
FFNs exhibit strong cross-layer correlations, based on which we can

525

SenSys ’24, November 4–7, 2024, Hangzhou, China Yan Zhuang, Zhenzhe Zheng, Fan Wu, and Guihai Chen

0 1 2 3 4 5 6 7
Expert Index (Layer 1)

0
1
2
3
4
5
6
7E

xp
er

t I
nd

ex
 (L

ay
er

 3
)

(a) Expert Activation Probability

0 1 2 3 4 5 6 7
Expert Index (Layer 2)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ac
tiv

at
io

n
Fr

eq
ue

nc
y

(b) Activation Prediction

Our Prediction
Ground Truth

Figure 6: Cross-layer correlation of activating experts, and
the prediction results based on this property. This experi-
ment uses a Switch Transformerwith 8 experts in each sparse
FFN and GLUE benchmark.

avoid inferring the large foundation LLM to obtain experts’ impor-
tance scores. The correlation reveals that a subset of experts located
across different sparse FFNs tends to be activated simultaneously
in response to the same input tokens. Figure 6 (a) exemplifies this
correlation, with deeper colors representing a higher probability
of activating the corresponding experts. We can observe that the
experts activated in the 3rd sparse FFN are highly conditioned on
those in the 1st sparse FFN. For instance, a token that activates
expert 3 in the sparse FFN 1 is very likely to also activate expert
4 in the sparse FFN 3, with a probability of 𝑃 (𝐸 (3)4 |𝐸

(1)
3) = 75.4%.

Additionally, Figure 6 (b) demonstrates that the router output dis-
tribution of the 1st sparse FFN encodes sufficient information to
predict the routing probability of deeper sparse FNNs with high pre-
cision. Therefore, we first model this correlation using a function
F : 𝑅 (1) → 𝑅 (𝑙) . Then, for a given input 𝑥 , the routing probability
of 𝑅 (𝑙) can be predicted as 𝑅 (𝑙) (𝑥) = F (𝑅 (1) (𝑥)). Thus, the overall
expert importance with respect to 𝐷 𝑗 can be calculated as:

𝑓𝑖𝑚𝑝𝑜𝑟𝑡 . (𝐸 (𝑙)𝑘
|𝐷 𝑗) =

∑︁
𝑥𝑖 ∈𝐷 𝑗

F (𝑅 (1) (𝑥𝑖)). (3)

Cross-layer expert correlation modeling. To learn the function
F , we employ a compact predictor, i.e., a two-layer MLP, to predict
the routing probability for each sparse FFN within the foundation
LLM. The predictor adopts a multi-head model structure, where
each output head predicts the routing probability of a certain sparse
FFN. This design not only reduces the size of the predictor, but also
can enhance prediction accuracy benefiting from the multi-task
learning regime.

To train this predictor, we further generate a synthetic dataset
with routing probabilities of the first sparse FFN (𝑅 (1)) as input
features, and routing probabilities of the other sparse FFNs (𝑅 (𝑙)) as
labels. This routing dataset can be collected using public data on the
cloud server during LLM pre-training. We adopt a distillation loss
with an additional Kullback-Leibler (KL) divergence term adding to
the final loss function [22]. This approach leverages the complete
distribution information within the routing probabilities, rather
than solely relying on the final expert activating results, which
are the top-1 results of the routing probabilities. Essentially, we
distill knowledge frommultiple routers across different sparse FFNs,

and integrate this information to develop a precise yet compact
predictor that models cross-layer expert correlations.
Online customized expert identification. In the online stage, we
combine the trained predictor with shallow layers of the foundation
LLM (up to the first sparse FFN), forming an end-to-end predictor.
With this end-to-end predictor, the expert importance scores with
respect to a given mobile app are obtained as follows. First, the
app 𝑗 calculates the routing probability 𝑅 (1) (𝑥𝑖) using sampled
app-specific private data 𝐷 𝑗 collected during user interaction, and
then leverages the predictor to calculate experts’ importance scores
following Equation (3). Second, the predicted expert importance
scores which encode the information of targeted tasks are returned
to OS to assist in later proxy submodel extraction. Note that the
above processes are resource-friendly, as the end-to-end predictor
has less than 1% of parameters compared to the foundation LLM,
and only parameters of the multi-head MLP are additional.

3.3 Selective Expert Merging
Based on the distribution of expert importance for a specific mobile
app, LiteMoE is able to customize a proxy submodel for this app as
follows. First, given a aparse FFN, we denote its expert set as E =

{𝐸1, . . . , 𝐸𝑛}, where𝑛 is the total number of experts within this layer.
We divide E as two subsets T and R, where T = {𝑓𝑖𝑚𝑝𝑜𝑟𝑡 . (𝐸𝑖) >
𝛼 |𝐸𝑖 ∈ E} represents the experts whose importance scores larger
than a pre-defined threshold value 𝛼 , and R = E/T denotes the
remaining experts. We can directly remove experts in R, as these
experts have negligible contributions to the model performance
with respect to the targeted task (Section 2).

Second, the importance scores of the experts within T are biased,
leaving an opportunity to further improve the parameter efficiency
of sparse FFNs. Specifically, only several experts (even only one
in some cases) are heavy hitters which deal with most incoming
tokens, and are dominant to the overall model performance. We
denote the heavy-hitter experts within the sparse FFN as Tℎ =

{𝑓𝑖𝑚𝑝𝑜𝑟𝑡 . (𝐸 𝑗) > 𝛽 |𝐸 𝑗 ∈ T }1. The remaining experts within T have
moderate importance, denoted as T𝑟 = T/Tℎ , where removing
them would impair model performance to some extent. Decisions
of whether to keep these experts form a Pareto frontier indicating
the tradeoff between model performance and resource costs.

Our goal is to remove the experts in T𝑟 to further compress the
proxy submodel without compromising performance. Inspired by
model ensembling techniques [39, 40], we propose selective expert
merging to integrate the expert knowledge into fewer, enhanced
experts. Specifically, we judiciously merge the parameters of the
experts in T𝑟 with those in Tℎ . The merged experts can inherit their
original abilities while also being enhanced with the abilities of
other experts, allowing them to serve targeted tasks independently.

To achieve this goal, two challenges arise: (i) how to determine
the expert mapping from T𝑟 to Tℎ . The reason behind this purpose
is that experts exhibit token-level or task-level specializations after
model training [17, 72], and have different abilities from each other
to varying degrees. Merging two or more experts with quite distinct
specializations into one could harm the resulting expert’s ability,

1𝛼 and 𝛽 are hyperparameters that can be tuned according to performance require-
ments. We perform sensitivity analysis with respect to these two hyperparameters
and provide the guideline for the selection of their values in Section 4.5.

526

LiteMoE: Customizing On-device LLM Serving via Proxy Submodel Tuning SenSys ’24, November 4–7, 2024, Hangzhou, China

��� ��� ��	 ��� ��� ���
�����������������
�������

���

���

��	

���

���

���

��
��
��
��
��
��

���
��

��
��
���

����

���

����

���

����

���

����

𝒯!

𝒯"
Expert
Matching

𝐸!" 𝐸!# 𝐸!$

Adjacent matrix
based on the expert similarity

H ∈ R!×#

𝐸!" 𝐸!# 𝐸!$

𝐸%" 𝐸%# 𝐸%$ 𝐸%& 𝐸%"𝐸%# 𝐸%$𝐸%&

Expert matching results
(for further merging)

Figure 7: (Left) Illustration of similarity-based expert match-
ing. (Right) The similarity metric based on routing probabil-
ities (𝜅 = 0.2).

leading to poor model performance. (ii) How to effectively merge
expert parameters given two or more source experts to be merged.
Simply averaging the parameters of the experts fails to preserve
expert abilities, as the experts are initialized and trained separately,
therefore their parameters do not have one-to-one correspondence
for effective merging.

To overcome the above challenges, the selective expert merging
technique comprises two steps: similarity-based expert matching
and alignment-based expert parameter merging. The former step
matches experts in T𝑟 to experts in Tℎ based on their similarity in
abilities exhibited during model training and inference. The latter
step merges the matched experts into one by first aligning their neu-
rons to have aligned hidden representations, and then employing
importance-aware weighted averaging to their parameters.

3.3.1 Similarity-based expert matching . The experts within a sparse
FFN are trained by different subsets of the corpus, typically sharing
some common knowledge while developing distinct abilities, simi-
lar to multi-task learning. Therefore, the key to merging experts
into one is to merge the experts with high similarities to further
enhance their ability, while mitigating the interference of noises or
conflict knowledge from experts with large discrepancies.

To this end, given expert sets T𝑟 and Tℎ , we can formulate the
similarity-based expert matching problem as a weighted bipartite
matching problem as follows. Consider a weighted bipartite graph
𝐺 = (T𝑟 ,Tℎ,D), where T𝑟 , Tℎ represent the two sets of vertices to
be matched, andD denotes edges with weights𝐻 defined by expert
similarities (illustrated in Figure 7). The problem is to find a sub-
graph 𝑆 ⊆ 𝐺 representing the matching from the experts in T𝑟 to Tℎ
that maximizes the overall similarity. We denote a column vector
𝑋 ∈ R | T𝑟 | · | Tℎ | of 0-1 variables to represent expert matchings, with
𝑥𝑖 𝑗 = 1 indicating expert 𝑖 is matched to expert 𝑗 . The constrained
matching problem can be expressed as:

max
𝑋

𝐻 · 𝑋

s.t. 𝐴 · 𝑋𝑖 ≤ 1,∀𝑖 ∈ {1, . . . , |T𝑟 |},
𝐴 · 𝑋𝑖 ≤ 𝑑,∀𝑖 ∈ {|T𝑟 | + 1, . . . , |T𝑟 | + |Tℎ |},
𝑥𝑖 𝑗 ∈ {0, 1},∀𝑖, 𝑗, 1 ≤ 𝑖 ≤ |T𝑟 |, 1 ≤ 𝑗 ≤ |Tℎ |,

(4)

where A is the incident matrix of the bipartite graph [7]. The first
constraint denotes that each noncritical expert (𝐸𝑖 ∈ T𝑟) can only
be merged into one critical expert (𝐸 𝑗 ∈ Tℎ). The second constraint
denotes each expert withinTℎ can receive at most𝑑 incoming expert
within T𝑟 to be merged. This constraint aims to prevent experts
within Tℎ from overloading which would compromise the effect of
expert merging.

Offline expert similarity evaluation. To complete the above
matching problem, we now consider how to evaluate the similarity
between experts. Since an expert network features essentially a
feed-forward layer with two weight matrices for input and output
projection, one would consider defining the similarity between two
experts as the distance between their weight matrices. However,
the weight matrices lie in extremely high dimensional space due to
high hidden dimensions in large MoE-based LLMs. The traditional
distance metrics are less effective and compute-intensive in such a
high dimension.

Fortunately, the router trained to coordinate experts encodes the
information of experts’ abilities, and thus can be used for evaluating
the similarity between experts. Specifically, in the offline stage, we
record the routing probabilities 𝑅(𝑥𝑘) for the input tokens 𝑥𝑘 ∈ 𝐷 .
The similarity between expert 𝐸𝑖 and 𝐸 𝑗 with respect to an input
token 𝑥𝑘 is defined as:

𝑠𝑘𝑖 𝑗 = min{𝑅(𝑥𝑘)𝑖 , 𝑅(𝑥𝑘) 𝑗 }/(max{𝑅(𝑥𝑘)𝑖 , 𝑅(𝑥𝑘) 𝑗 } + 𝜅) . (5)

As illustrated in Figure 7 (right), the intuitive is that two experts
with high routing probabilities for the same token tend to have
higher similarity than those with low routing probabilities. The
constant 𝜅 is to adjust the relative weight of routing probabilities.
The overall similarity between two experts is the average over all the
evaluated tokens: 𝑠𝑖 𝑗 =

∑
𝑘 𝑠

𝑘
𝑖 𝑗
,∀𝑖, 𝑗 . Note that this calculation only

needs to be performed once for an LLM, and can be pre-calculated
in the offline stage.

To solve this weighted bipartitematching problem,we can reduce
it to a transportation problem in the form of linear programming [9].
As such, this problem can be solved efficiently with polynomial
time algorithms.

3.3.2 Alignment-based expert merging. Given a specific expert
𝐸𝑖 ∈ Tℎ and 𝑚 experts {𝐸 𝑗 }𝑚 ⊆ T𝑟 matched to 𝐸𝑖 according to
the above expert matching result, we now consider merging ex-
perts {𝐸 𝑗 } into expert 𝐸𝑖 to enhance expert ability without com-
plex retraining processes and training data. The matched experts
share more common knowledge, thereby properly merging them
could complement the expert ability while reducing resource over-
head [43, 52]. However, it is difficult to identify or quantify knowl-
edge within experts since it is deeply encoded in their parameters.
Simply averaging expert parameters, though efficient, fails to cap-
ture this information. The underlying reason is that experts adopt
fully connected networks, which are permutation-invariant. That
is, even two experts having exactly the same function may differ
in neuron permutations and thus in weight matrices. To solve this
problem, we propose an alignment-based expert merging method.
Align experts’ hidden representations. An expert within MoE
layers is a dense FFN whose function can be expressed as 𝑓𝐸 (𝑥) =
𝜙 (𝑥𝑊 (1))𝑊 (2) , where𝑊 (1) ∈ R𝑑𝑖𝑛×ℎ ,𝑊 (2) ∈ Rℎ×𝑑𝑜𝑢𝑡 are weight
matrices for input and output projection, respectively, and 𝜙 (·) is
the activation function.

We first analyze the permutation invariance property of FFNs.
We write the weight matrices as𝑊 (1) = (𝑎⊤, 𝑎⊤2 , · · · , 𝑎

⊤
ℎ
),𝑊 (2) =

(𝑏1, 𝑏2, · · · , 𝑏ℎ)⊤, where {𝑎𝑖 } and {𝑏 𝑗 } are row vectors, and ℎ is the
number of hidden neurons. The function of the FFN can be written
as 𝑓𝐸 (𝑥) =

∑ℎ
𝑘=1 𝜙 (𝑥𝑎

⊤
𝑘
)𝑏𝑘 . For any permutation 𝜋 to the neurons

527

SenSys ’24, November 4–7, 2024, Hangzhou, China Yan Zhuang, Zhenzhe Zheng, Fan Wu, and Guihai Chen

in this FFN, we denote the permutation matrix as 𝑃𝜋 , and per-
muted weight matrices are𝑊 (1) =𝑊 (1)𝑃𝜋 ,𝑊 (2) = 𝑃𝜋𝑊

(2) . As
the summation operation is permute-invariant, the permuted func-
tion 𝑓𝐸𝜋 (𝑥) =

∑ℎ
𝑘=1 𝜙 (𝑥𝑎

⊤
𝜋 (𝑘))𝑏𝜋 (𝑘) =

∑ℎ
𝑘=1 𝜙 (𝑥𝑎

⊤
𝑘
)𝑏𝑘 is equal to

𝑓𝐸 (𝑥). Therefore, to merge experts effectively, we need to permute
their neurons to have aligned hidden representations. Specifically,
given two experts 𝑝 and𝑞whoseweights are𝑊 (𝑙)𝑝 and𝑊 (𝑙)𝑞 , 𝑙 = 1, 2,
we aim to find the optimal permutation 𝑃∗ that after permuting
neurons of expert 𝑝 , the distance between the resulting weights
𝑊
(𝑙)
𝑝 and𝑊 (𝑙)𝑞 is minimized.
To solve the permutation 𝑃∗, there are different types of aligning

techniques, such as hard-aligning [60] and soft-aligning [51]. We
employ the soft-aligning strategy for expert merging to take ad-
vantage of its flexibility in modeling soft correspondence between
neurons and efficient solving algorithms. Specifically, the neuron
alignment problem is formulated as an optimal transportation (OT)
problem as:

min
𝑃

tr(𝑃⊤𝐶) =
∑︁
𝑖 𝑗

𝑃𝑖 𝑗𝐶𝑖 𝑗

s.t.
∑︁
𝑖

𝑃𝑖 𝑗 =
1
ℎ
,∀𝑗 ∈ {1, 2, . . . , ℎ}∑︁

𝑗

𝑃𝑖 𝑗 =
1
ℎ
,∀𝑖 ∈ {1, 2, . . . , ℎ},

(6)

where 𝐶 ∈ Rℎ×ℎ is the cost matrix defined as the opposite num-
ber of similarities between neurons in the two experts. We define
𝐶𝑖 𝑗 := 1

2 (| |𝑎
𝑝

𝑖
−𝑎𝑞

𝑗
| |2 + ||𝑏𝑝𝑖 −𝑏

𝑞

𝑗
| |2), which is the average Euclidean

distance between corresponding weight vectors of neurons 𝑖 and 𝑗 .
Intuitively, this formulation aims to optimally “transport” neurons
in expert 𝑝 to expert 𝑞 with the minimal cost, i.e., the maximal
total neuron similarities. Under the form of optimal transportation,
there are estimated solvers, either exactly or approximately, for
efficiently calculating 𝑃∗ [11].
Expert parameter merging. With the aligned expert parameters,
we are able to merge experts by importance-aware weighted av-
eraging. Specifically, for a given expert 𝐸𝑖 ∈ Tℎ and 𝑚 matched
experts {𝐸 𝑗 }𝑚 ⊆ T𝑟 , we calculate the merged expert parameter
matrices as:

𝑊
∗(𝑙)
𝑖
← 1

𝑓 (𝐸𝑖) +
∑
𝑘 𝑓 (𝐸𝑘)

(
𝑓 (𝐸𝑖)𝑊 (𝑙)𝑖

+
𝑚∑︁
𝑘=1

𝑓 (𝐸𝑘)𝑊
(𝑙)
𝑘

)
, (7)

where 𝑓 (𝐸𝑖) denotes the importance score 𝑓𝑖𝑚𝑝𝑜𝑟𝑡 . (𝐸𝑖) of expert 𝑖 ,
𝑙 ∈ {1, 2}. With this merging strategy, the merging weight of the
critical expert 𝐸𝑖 is dominant, as this expert accounts for most input
tokens. Other expert parameters are used to update 𝐸𝑖 ’s parame-
ters with stepsizes as their corresponding importance scores. Our
experiments show this strategy can effectively balance the original
and newly merged expert abilities.
Update routers for updated experts. After selective expert merg-
ing, the router should also be updated correspondingly to adapt
to the new set of experts. We introduce a masked expert routing
mechanism to update the router. The original routing probability
can be calculated as 𝑟 = Softmax(𝑥𝑊𝑅), where𝑊𝑅 is the parameter
matrix of the router. We apply a mask matrix𝑀 ∈ R𝑛×𝑛 on original

routing probability, obtaining 𝑟 ′ = 𝑟𝑀 , where𝑀 is essentially a per-
mutation matrix obtained according to expert matching results 𝑋 ∗
in Section 3.3.1, wherein𝑀𝑖 𝑗 = 1 represents expert 𝑖 is redirected
to expert 𝑗 .

4 EVALUATION
4.1 Methodology
Implementation. We have built a prototype of LiteMoE using
Python with 3.4k lines of code. We use PyTorch [4] as the base
DL framework, and HuggingFace Transformers [2] and PEFT li-
braries [38] as the NLP toolbox for LLM and adapter implementa-
tion, respectively. For the experiment testbed, we use a Linux server
equipped with 4 NVIDIA 3090 GPUs to act as the cloud server for
offline model profiling, including expert contribution predictor
training and expert similarity evaluation. We evaluate LiteMoE’s
online performance on two popular edge devices: NVIDIA Jetson
Nano (GPU) and Raspberry Pi 4B (CPU). Both of them are equipped
with 8GB total memory capacity and 64GB disk storage.
Downstream tasks, datasets and foundation LLMs.We eval-
uate LiteMoE over classic NLP downstream tasks from the GLUE
benchmark [59] which is a standard multi-task benchmark for
natural language understanding. GLUE contains 9 classification
or regression tasks and datasets from different categories such
as sentiment analysis and natural language inference. For foun-
dation LLMs, we employ three MoE-based LLMs with different
numbers of experts and thus different model scales for evaluation.
These models are based on Switch Transformers [17], a popular
sparse Transformer following the encoder-decoder architecture.
The sparse FFN layers are added at every other FFN layer within
Switch Transformer. For a token, only one expert will be activated
for processing (top-1 routing). We denote the LLMs as Switch-𝑛,
where 𝑛 = 8/16/32 is the number of experts per sparse FFN. The
pre-trained model weights are obtained from HuggingFace [2].
Baselines.We compare LiteMoE with the following baselines. (1)
Full-FT LLM: this is the ideal situation where mobile apps can use
the complete foundation LLM to fine-tune personalized adapters.
This acts as the performance upper bound, but is infeasible in prac-
tice due to its tremendous resource requirements. (2) Foundation
LLM: mobile apps use the general ability of the foundation LLM
without adapters. (3) Proxy submodel: the performance of proxy sub-
models extracted from the foundation LLM using our post-training
submodel extraction technique. (4) FT Submodel: the proxy submod-
els are fine-tuned with personalized data from the app’s targeted
downstream tasks. (5) Proxy-FT LLM : the customized adapters that
are fine-tuned on the proxy submodels are integrated back into the
foundation LLM for evaluation, which represents the outcome of
the complete LiteMoE pipeline.
Metrics. We report results mainly on two aspects. (1) model per-
formance: we use accuracy for classification tasks and the Pearson
correlation metric for regression tasks. (2) system resource overhead:
we report the memory footprint of fine-tuning and inference mod-
els of LiteMoE and baselines, as well as the on-device execution
latency of LiteMoE to verify its efficiency.
Configurations. For the hyperparameters of LiteMoE, we set 𝛼 =

0.05 and 𝛽 = 0.15 by default. The maximum degree 𝑑 for similarity-
based expert matching is set to 2 for Switch-8 and 3 for Switch-16/32.

528

LiteMoE: Customizing On-device LLM Serving via Proxy Submodel Tuning SenSys ’24, November 4–7, 2024, Hangzhou, China

Foundation
LLM

Method Mobile Computing Task Avg. Model
Size (MB)SST-2 CoLA MRPC STS-B QQP MNLI QNLI RTE

Switch-8

Foundation LLM 83.3 71.3 83.8 80.6 81.3 79.0 82.4 63.9 2366
Proxy Submodel 80.8 69.2 80.6 80.1 78.8 72.2 79.6 62.1 921
FT Submodel 84.9 74.3 86.2 84.2 81.8 80.2 87.4 68.2 Reduction:
Full-FT LLM 94.4 83.0 88.9 87.5 91.1 86.4 91.3 74.7 2.57x
Proxy-FT LLM 94.2 81.5 88.7 86.8 89.4 84.1 90.8 72.2

Switch-16

Foundation LLM 85.2 70.7 83.0 82.3 85.9 81.6 83.1 62.6 4094
Proxy Submodel 82.0 69.5 81.3 80.6 83.3 77.4 78.3 60.4 1026
FT Submodel 89.5 77.4 82.6 85.1 84.2 82.6 89.2 70.4 Reduction:
Full-FT LLM 95.2 83.7 89.7 89.0 90.9 87.2 92.6 77.1 3.99x
Proxy-FT LLM 93.7 82.1 88.1 86.5 89.9 87.3 91.9 75.3

Switch-32

Foundation LLM 84.4 72.3 83.6 82.2 84.2 77.3 85.9 70.7 7551
Proxy Submodel 82.1 69.2 79.8 81.9 82.3 76.2 82.3 67.1 1147
FT Submodel 90.6 77.5 81.3 88.3 85.8 80.9 90.8 71.9 Reduction:
Full-FT LLM 95.8 84.8 90.0 89.4 91.2 86.9 93.3 77.6 6.58x
Proxy-FT LLM 93.1 80.7 89.2 88.3 89.6 85.1 92.8 76.3

Table 1: Summary of overall performance (%) of LiteMoE and baselines over various mobile computing tasks.

COLA SST2 MRPC QQP MNLI QNLI RTE STSB0

1

2

3

4

5

M
em

or
y

Fo
ot

pr
in

t (
GB

)

(a) Switch-8 Model.
COLA SST2 MRPC QQP MNLI QNLI RTE STSB0

2

4

6

M
em

or
y

Fo
ot

pr
in

t (
GB

)

(b) Switch-16 Model.
COLA SST2 MRPC QQP MNLI QNLI RTE STSB0

2

4

6

8

10

M
em

or
y

Fo
ot

pr
in

t (
GB

)
(c) Switch-32 Model.

Proxy Submodel (Fine-tuning) Foundation LLM (Inference) Foundation LLM (Fine-tuning)

Figure 8: Memory footprint of the foundation LLM and the proxy submodel.

The parameter 𝜅 in expert similarity evaluation is set to 0.2. Given a
targeted downstream task, a submodel is updated 300 steps during
the (proxy) fine-tuning process. We retain the best-performing
adapter for each task during fine-tuning, and insert it back into the
foundation LLM for further evaluation.

4.2 Overall Performance Evaluation
Table 1 summarizes the overall model performance and average
model sizes of LiteMoE and baselines.

For all tasks, LiteMoE supports fine-tuning adapters with light-
weight proxy submodels, and improves the customized performance
of the foundation LLM. First, compared to the initial foundation
LLM, fine-tuning with apps’ private data can effectively enhance
model performance. For example, the ideal case Full-FT achieves
8.7% model accuracy gains on average over all tasks, demonstrating
the importance of customized fine-tuning. Second, with LiteMoE,
we can reduce the model size from 2.57× to 6.58× while still pre-
serving most of the performance of foundation LLM in targeted
tasks (with a slight degradation of 1.4%). More importantly, after
tuning with the proxy submodels, the adapters that integrate back
into the foundation LLM can improve the accuracy by up to 7.4%
compared to the initial LLM, which is very close to the ideal case
of Full-FT. This attributes to our post-training submodel extrac-
tion technique that generates sufficiently good proxy submodels,

thereby the adapters tuned upon these proxy submodels can ef-
fectively integrate the customized knowledge into the foundation
LLM. Further detailed evaluations of PTSE are shown in Section 4.3.

In Figure 8, we show the memory footprint of fine-tuning or
inferring the foundation LLM and the generated submodels. Lite-
MoE’s proxy submodels reduce memory footprint by 2.42× com-
pared to the complete foundation LLM. This is benefiting from our
submodel extraction method that removes a large portion of cold
and moderate experts, which not only reduces memory for storing
a large number of expert parameters but also saves memory for
intermediate activations of vast expert networks during inference
or fine-tuning. Notably, LiteMoE saves more memory when serv-
ing larger LLMs. For example, LiteMoE reduces 1.49× memory for
Switch-8, while reducing 3.58× for Switch-32. This is because larger
LLMs adopt more experts to accommodate a wide range of general
knowledge, however, the number of experts needed for a specific
task is nearly the same. Therefore, our method is favorable for large
LLMs, especially in the context of ever-increasing LLM scales.

Note that our method is orthogonal to memory and I/O schedul-
ing methods such as [66] and [30]. LiteMoE can be combined with
these methods to further reduce memory overhead. In addition,
with the reduced set of experts, LiteMoE can also enhance the ef-
fectiveness of these methods such as improving the accuracy of
expert pre-loading.

529

SenSys ’24, November 4–7, 2024, Hangzhou, China Yan Zhuang, Zhenzhe Zheng, Fan Wu, and Guihai Chen

1.0 1.2 1.4
Proxy Submodel Size (GB)

0.7

0.8

0.9

Ac
cu

ra
cy

 (%
)

(a) Switch-8, SST-2.

Simple Pruning
Prune w/ Retrain
LiteMoE-PTSE
Full Model

1.0 1.2 1.4
Proxy Submodel Size (GB)

0.6

0.7

0.8

Ac
cu

ra
cy

 (%
)

(b) Switch-8, MNLI.

Simple Pruning
Prune w/ Retrain
LiteMoE-PTSE
Full Model

1.5 2.0
Proxy Submodel Size (GB)

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 (%
)

(c) Switch-16, SST-2.

Simple Pruning
Prune w/ Retrain
LiteMoE-PTSE
Full Model

1.50 1.75 2.00 2.25
Proxy Submodel Size (GB)

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

 (%
)

(d) Switch-16, MNLI.

Simple Pruning
Prune w/ Retrain
LiteMoE-PTSE
Full Model

Figure 9: Proxy submodel performance under different memory budgets represented by model sizes.

Figure 10: On-device execution latency of extracting proxy
submodels from the foundation LLM.

4.3 Proxy Submodel Evaluation
To verify the effectiveness and efficiency of LiteMoE-PTSE, we dive
deeper to evaluate the proxy submodel accuracy and extraction
overhead under different memory budgets and submodel extraction
approaches. We use two representative GLUE tasks in this set of
experiments: SST-2 (a relatively easy task for sentiment analysis)
and MNLI (a more challenging task for natural language infer-
ence) [59, 61].
Submodel accuracy under different memory budgets. Figure 9
demonstrates that PTSE can preserve most of the foundation LLM’s
performance, and significantly outperforms Simple Pruning2 and its
retraining variants (Prune w/ Retrain). In SST-2, LiteMoE submodels
achieve 94.3% and 97.1% of the accuracy of the foundation LLM, even
only preserving 19.8% and 9.9% of experts in Switch-8 and Switch-
16, respectively. In the challenging MNLI task, LiteMoE submodels
still preserve 88.5% and 93.8% of accuracy with 85.4% and 81.3%
experts being removed. This is benefiting from the selective expert
merging technique that preserves the ability of the removed experts.
Otherwise, the submodel accuracy would be severely impacted as
in the Simple Pruning approach whose submodel accuracy is at
most 35.7% lower than LiteMoE. Surprisingly, LiteMoE achieves
comparable performance, even better in some cases, compared to
the Prune w/ Retrain method. For example, with Switch-16, PTSE
2Simple Pruning refers to a very lightweight method that simply removes less impor-
tant experts with respect to the current task without further processing.

Method
Switch-8 Model Switch-16 Model
SST-2 MNLI SST-2 MNLI

Simple Pruning w/ IE 80.6% 55.4% 71.3% 72.6%
Pruning w/o IE (Δ) -4.4% -2.6% -9.7% -34.7%
LiteMoE w/o SM (Δ) +9.1% +8.2% +17.9% +7.7%
LiteMoE w/o AM (Δ) +9.8% +2.2% +18.3% +3.5%
LiteMoE-PTSE (Δ) +11.6% +23.4% +20.0% +9.2%

Table 2: Submodel accuracy in ablation study of key compo-
nents in LiteMoE. “IE”: important expert identification; “SM”:
similarity-based expert matching; “AM”: alignment-based
expert merging.

achieves 92.7% and 85.4% accuracy on SST2 and MNLI, respectively,
while the Prune w/ Retrain method only obtains 90.8% and 83.7%.
We assume this is because, in the latter method, the ability lost with
the removed experts cannot always be well recovered by limited
model re-training.
On-device execution latency. LiteMoE is able to extract sub-
models on resource-limited devices within several tens of seconds.
In Figure 10, we measure the proxy submodel extraction latency
on two representative types of edge devices. We report the mean
latency of 5 runs with error bars showing standard deviations. Lite-
MoE costs on average 47.7s and 74.9s to extract a proxy submodel
on Jetson Nano and Raspberry Pi, respectively, slightly higher than
Simple Pruning of 20.2s and 36.12s, but is significantly lower than
Prune w/ Retrain of 513.4s and 916.8s. This is attributed to the
training-free advantage of PTSE, as the retraining process is very
time-consuming on resource-limited devices. The main overhead
of LiteMoE is calculating expert importance scores and merging
experts, which account for 84.7% of the total latency. Fortunately,
given today’s increasingly powerful hardware equipped by mobile
devices, this extraction latency can be further reduced by mobile
GPUs or NPUs. This fast response time can support apps to query
the proxy submodels and update customized adapters efficiently to
maintain high-quality of model services.

4.4 Performance Breakdown Analysis
Ablation study. We ablate and evaluate the key components of
LiteMoE. The results are summarized in Table 2. To highlight the
contribution of each component, we report the accuracy difference
between our method and Simple Pruning. We observe that prun-
ing experts without knowing their importance (Pruning w/o IE)

530

LiteMoE: Customizing On-device LLM Serving via Proxy Submodel Tuning SenSys ’24, November 4–7, 2024, Hangzhou, China

0 5 10 15
Expert Index (Switch-16)

0.00

0.25

0.50

0.75

1.00

CD
F

Block 4
Block 8
Block 12

0 10 20 30
Expert Index (Switch-32)

0.00

0.25

0.50

0.75

1.00

CD
F

Block 4
Block 8
Block 12

Figure 11: CDF of the distribution of expert importance of
MoE-based LLMs. Solid lines denote actual expert importance
scores, and dashed lines denote predictions of LiteMoE’s Ex-
pert Importance Predictor.

Low
Similarity

Moderate
Similarity

High
Similarity

Oringal
Experts

60

70

80

90

M
od

el
 A

cc
ur

ac
y

(%
)

(a) SST-2 Task.

Switch-16
Switch-32

Low
Similarity

Moderate
Similarity

High
Similarity

Oringal
Experts

40

60

80

M
od

el
 A

cc
ur

ac
y

(%
)

(b) MNLI Task.

Switch-16
Switch-32

Figure 12: Model accuracy of inference using experts with
different levels of similarities to original experts.

severely impacts model performance, which is not surprising as it
ignores experts’ specializations. Therefore, this IE module lays the
foundation for compressing the LLM. Next, the other two modules,
SM and AM, work complementary in enhancing expert perfor-
mance, especially on challenging tasks. For example, for Switch-8
on the MNLI task, the SM and AM modules alone can only improve
the accuracy by 8.2% and 2.2%, respectively, while working together,
they can improve accuracy by 23.4%.

Next, we evaluate the effectiveness of the offline expert charac-
teristics profiling of LiteMoE.
Expert importance predictor. As shown in Figure 11, we use our
predictor to predict the importance of experts in shallow, middle,
and deep sparse FFNs, represented by the Transformer blocks 4, 8,
and 12, respectively. LiteMoE perfectly follows the actual expert
importance distribution, even for experts in deep FFNs. This is
attributed to the observation of the learnable expert activating
patterns, and the training method which fully exploits the routers
to model the activating patterns encoded in their outputs, and
adopts the distillation loss to enhance the predictor training.
Expert similarity evaluation. To verify the effectiveness of Lite-
MoE’s expert similarity metric, we replace the original experts with
other experts that have different levels of similarity scores and
test the resulting model accuracy. The results shown in Figure 12
indicate that the accuracy increases with expert similarity, demon-
strating that our metric successfully captures the similarity between
experts. For example, in the SST-2 task, choosing high-similarity
experts yields a 13.2% higher accuracy than the low-similarity case,
and is 7.2% higher than that obtained by randomly choosing experts.
Additionally, we observe that the accuracy of Switch-32 is more
impacted by replacing dissimilar experts. The possible reason is
that the experts in Switch-32 share less knowledge, as it has more
experts for fine-grained specialization.

0.00 0.05 0.10 0.15
The Value of Alpha (SST-2 Task)

60

70

80

90

Su
bm

od
el

 A
cc

ur
ac

y
(%

)

beta=0.10
beta=0.12
beta=0.16

0.00 0.05 0.10 0.15
The Value of Alpha (MNLI Task)

60

70

80

Su
bm

od
el

 A
cc

ur
ac

y
(%

)

beta=0.10
beta=0.12
beta=0.16

Figure 13: Submodel performance under different values of
the hyperparameter 𝛼 and 𝛽 .

4.5 Sensitivity Analysis
During LiteMoE-PTSE, the hyperparameters 𝛼 and 𝛽 play a critical
role in selective expert merging, influencing the identification of
experts as heavy-hitters (hot), moderate, or cold experts. To better
understand the sensitivity of PTSE to these hyperparameters, we
vary their values and report the resulting submodel accuracy in
Figure 13. Overall, The results indicate that PTSE demonstrates
robust performance across different choices of 𝛼 and 𝛽 .

First, we observe that the average submodel accuracy is higher
when 𝛽 is smaller, which is intuitive, as a smaller 𝛽 retains more
experts in the submodel, leading to increased accuracy at the cost
of a larger submodel size. However, by selecting a proper value
of 𝛼 , the accuracy gap among submodels under different 𝛽 can be
minimized. For instance, the accuracy gap between the optimal
submodels between 𝛽 = 0.1 and 𝛽 = 0.12 (as well as 𝛽 = 0.12 and
𝛽 = 0.16) is only 2.59% (1.27%) in the SST-2 task, demonstrating the
effectiveness of the selective expert merging technique.

Second, an optimal value of 𝛼 (e.g., around 0.08 in this set of ex-
periments) can maximize submodel performance. Either too large
or too small 𝛼 negatively impacts submodel performance. We an-
alyze the underlying reason as follows. (i) With a large 𝛼 , more
important experts are removed without merging to preserve their
specific abilities, and thus results in poor submodel performance. In
the extreme case where 𝛼 = 𝛽 , LiteMoE-PTSE degrades to Simple
Pruning. (ii) With a small 𝛼 , the submodel accuracy is also impacted,
due to the merging of more cold experts, which are less relevant to
the targeted task. Fortunately, the impact on performance is slight
in this case, with an average accuracy gap of only 2.62% between the
submodel with 𝛼 = 0 and the optimal submodel (𝛼 = 0.08). This is
attributed to the constraint value 𝑑 in expert matching, which limits
the maximum number of experts that can be merged, along with
the importance-aware weighted averaging design which assigns
very small weights to the irrelevant experts in averaging.

To conclude, 𝛽 controls the submodel size, which is guided by
the desired accuracy-cost tradeoff (and resource constraints) in the
given application, while 𝛼 determines which experts will be merged
to enhance the resulting submodel. A relatively small 𝛼 is safe to
achieve near-optimal submodel performance at least.
Computation complexity and scalability analysis. The execu-
tion of LiteMoE-PTSE consists of three primary steps: important
expert identification (IE), similarity-based expert-matching (SM),
and alignment-based expert merging (AM). Notably, the AMmodule
accounts for the most execution latency, followed by the IE module.
For example, for Switch-16, the AM and IE modules account for
an average of 72.1% and 12.6% of total latency, respectively. The

531

SenSys ’24, November 4–7, 2024, Hangzhou, China Yan Zhuang, Zhenzhe Zheng, Fan Wu, and Guihai Chen

latency of AM comes from the necessity of resolving an OT problem
for each expert merging operation.

We further analyze the complexity and scalability of the AM
module from two perspectives: (i) scaling with the number of hid-
den dimensions (ℎ) within experts. The complexity of solving the
OT problem scales as𝑂 (𝑑3 log𝑑) in the worst case [44], which may
lead to efficiency issues when ℎ becomes very large. Fortunately, ap-
proximation methods such as the entropy-regularized method [11]
can solve the problem orders of magnitude faster. In modern MoE-
based LLMs, the hidden dimension typically ranges from hundreds
to a few thousand (e.g., ℎ = 3072 in Switch Transformers), allowing
solving algorithms to operate within several seconds even with ex-
act solvers. For example, in the SST-2 task, solving the OT problem
exactly takes approximately 2.1s, while the approximation solver
only requires 0.3s, incurring a mere 1.2% accuracy loss compared
to the exact solver. (ii) scaling with the number of experts to be
merged (denoted as 𝑛𝑟). The latency of the AM module linearly
increases with 𝑛𝑟 , as the OT problem will be solved 𝑛𝑟 times inde-
pendently. Considering the modern MoE-based LLMs that typically
adopt several tens of MoE layers with 8-64 experts per layer, 𝑛𝑟 can
range from tens to hundreds. In our experiments, 𝑛𝑟 varied from
9 to 42, with an average of 21.5. Even in extreme scenarios where
𝑛𝑟 reaches a few hundred, the AM process remains manageable
within several minutes on modern mobile devices.

5 RELATEDWORK
Resource-efficient LLMs with MoE. The sparsely activated MoE
architecture is adopted as an effective approach to scale up model
size without linearly increasing computation overhead. First em-
ployed as a building block in LSTMs that achieve SOTA machine
translation performance [48], MoE is further widely adopted in
Transformer-based LLMs for superior model performance and re-
source efficiency [12, 14, 17, 28, 33, 50, 72]. For example, Mixtral
8x7B [28] which comprises 8 experts with a top-2 routing mecha-
nism achieves comparable, even better performance than Llama 2
70B and GPT-3.5. Nevertheless, MoE-based LLMs have lower param-
eter efficiency than dense LLMs, which hinders their deployment
on resource-limited mobile devices. Noticing this phenomenon,
LiteMoE is designed to help identify and refine important experts
within MoE layers for better parameter efficiency, and preserve
targeted model performance as well.

Additionally, another line of work creates sparsely activated
MoE architectures from established LLMs [35, 56, 69, 70] to take
advantage of its conditional computation benefits during model
serving. Thanks to the expert specialization of the MoE layer, Lite-
MoE can be applied to arbitraryMoE-based LLMs, forming compact,
app-specific proxy submodels by refining MoE layers.
Cost optimizations to MoE-based LLMs. Various works have
attempted to reduce the resource costs of serving MoE-based LLMs
using model compression strategies such as expert quantization [18,
66], parameter pruning [10], and sparse-to-dense distillation [17, 45,
65]. QMoE [18] proposed an MoE-specific quantization method cou-
pled with corresponding GPU decoding kernels, which compresses
large-scale LLMs to sub-1-bit levels. Chen et al. [10] proposed task-
specific expert pruning, which progressively prunes experts during

model fine-tuning. Other works [17, 45, 65] leveraged the knowl-
edge distillation technique to distill large sparse LLMs into smaller
dense models. For example, Switch Transformers [17] preserved
30% quality gains of the sparse MoE design while compressing the
model by 20×. These methods require model retraining processes
to recover performance after compression, making them unable to
quickly generate small models on devices. Instead, LiteMoE elimi-
nates the training process for efficient on-device execution.
On-device model serving and adaptation. On-device model
serving is becoming increasingly important, as it not only provides
better interactive user experience and enhanced data privacy, but
also alleviates the high computational pressure on the cloud. To
adapt large models that are originally designed for cloud platforms
to resource-limited devices, existing works have developed various
approaches such as lightweight model architectures [24, 27, 37, 47,
53–55], model compression methods [20–22, 64], and flexible model
size adaptation strategies [16, 19, 63]. With the sparsely activated
design, on-device MoE model serving is mainly bottlenecked by I/O
overhead. To address this issue, [15, 26, 31, 66] proposed a series
of memory and I/O optimizations. For instance, EdgeMoE [66]
and Fast Inference [15] predict which experts will be activated
during inference and preload their weights before they are actually
used, allowing the I/O process to overlap with computation, thereby
reducing overall latency. Nevertheless, these works are not designed
for on-device fine-tuning, as they still retain all potential experts
without considering the specific task an app focuses on. Themassive
redundant expert weights and intermediate states (e.g., gradients)
can lead to an unaffordable memory footprint. In contrast, LiteMoE
is specifically designed for on-device fine-tuning by creating proxy
submodels with better parameter efficiency and lower resource
overhead, making it suitable for customizing model services for
mobile apps.

6 CONCLUSION
In this work, we have proposed LiteMoE, a new proxy submodel
tuning framework to support mobile apps to provide customized
model services via on-device tuning adapters. The key technique
of LiteMoE is post-training submodel extraction, where by dynami-
cally identifying, matching, and merging important experts, we can
obtain lightweight submodels efficiently without additional retrain-
ing processes. Extensive experiments demonstrate that LiteMoE
can effectively support fine-tuning adapters on resource-limited
devices, and greatly improve LLM serving quality with reduced
memory overhead.

ACKNOWLEDGMENTS
We sincerely appreciate the anonymous shepherd and reviewers
for their valuable comments. This work was supported in part
by National Key R&D Program of China (No. 2023YFB4502400),
in part by China NSF grant No. U2268204, 62322206, 62132018,
62025204, 62272307, 62372296. The opinions, findings, conclusions,
and recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding
agencies or the government. Zhenzhe Zheng is the corresponding
author.

532

LiteMoE: Customizing On-device LLM Serving via Proxy Submodel Tuning SenSys ’24, November 4–7, 2024, Hangzhou, China

REFERENCES
[1] 2024. AICore. https://developer.android.com/ml/aicore.
[2] 2024. HuggingFace models. https://huggingface.co/models.
[3] 2024. Introducing Apple’s On-Device and Server Foundation Models. https:

//machinelearning.apple.com/research/introducing-apple-foundation-models.
[4] 2024. PyTorch. https://pytorch.org/.
[5] 2024. Snapdragon 8 gen 3 mobile platform product brief. https:

//docs.qualcomm.com/bundle/publicresource/87-71408-1_REV_C_
Snapdragon_8_gen_3_Mobile_Platform_Product_Brief.pdf.

[6] OpenAI: Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, et al. 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774
(2023).

[7] Faez Ahmed, John P. Dickerson, and Mark D. Fuge. 2017. Diverse Weighted
Bipartite b-Matching. In International Joint Conference on Artificial Intelligence
(IJCAI). 35–41.

[8] Dongqi Cai, Yaozong Wu, Shangguang Wang, Felix Xiaozhu Lin, and Mengwei
Xu. 2023. Efficient Federated Learning for Modern NLP. In Proceedings of the 29th
Annual International Conference on Mobile Computing and Networking (MobiCom).
1–16.

[9] Cheng Chen, Lan Zheng, Venkatesh Srinivasan, Alex Thomo, Kui Wu, and An-
thony Sukow. 2016. Conflict-Aware Weighted Bipartite B-Matching and Its Ap-
plication to E-Commerce. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 28 (2016), 1475–1488.

[10] Tianyu Chen, Shaohan Huang, Yuan Xie, Binxing Jiao, Daxin Jiang, Haoyi Zhou,
Jianxin Li, and Furu Wei. 2022. Task-Specific Expert Pruning for Sparse Mixture-
of-Experts. arXiv preprint arXiv:2206.00277 (2022).

[11] Marco Cuturi. 2013. Sinkhorn Distances: Lightspeed Computation of Optimal
Transport. In Advances in Neural Information Processing Systems (NeurIPS). 1–9.

[12] Damai Dai, Chengqi Deng, Chenggang Zhao, R.x. Xu, Huazuo Gao, Deli Chen,
Jiashi Li, Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y.k. Li, Panpan Huang,
Fuli Luo, Chong Ruan, Zhifang Sui, and Wenfeng Liang. 2024. DeepSeekMoE:
Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models.
In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (ACL). 1280–1297.

[13] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su,
Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. 2023. Parameter-
efficient fine-tuning of large-scale pre-trained language models. Nature Machine
Intelligence 5 (2023), 220–235.

[14] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin,
Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al.
2022. Glam: Efficient scaling of language models with mixture-of-experts. In
International Conference on Machine Learning (ICML). 5547–5569.

[15] Artyom Eliseev and Denis Mazur. 2023. Fast Inference of Mixture-of-Experts
Language Models with Offloading. arXiv preprint arXiv:2312.17238 (2023).

[16] Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: Resource-Aware Multi-
Tenant On-Device Deep Learning for Continuous Mobile Vision. In Proceedings
of the 24th Annual International Conference on Mobile Computing and Networking
(MobiCom). 115–127.

[17] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity. The
Journal of Machine Learning Research (JMLR) 23 (2022), 5232–5270.

[18] Elias Frantar and Dan Alistarh. 2023. QMoE: Practical Sub-1-Bit Compression of
Trillion-Parameter Models. arXiv preprint arXiv:2310.16795 (2023).

[19] Rui Han, Qinglong Zhang, Chi Harold Liu, Guoren Wang, Jian Tang, and Lydia Y.
Chen. 2021. LegoDNN: block-grained scaling of deep neural networks for mo-
bile vision. In Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking (MobiCom). 406–419.

[20] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. In 4th International Conference on Learning Representations (ICLR). 1–14.

[21] Song Han, Jeff Pool, John Tran, andWilliam J. Dally. 2015. Learning bothWeights
and Connections for Efficient Neural Network. In Advances in Neural Information
Processing Systems (NeurIPS). 1135–1143.

[22] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. arXiv preprint arXiv:1503.02531 (2015).

[23] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In International conference on
machine learning (ICML). 2790–2799.

[24] Andrew G. Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen,
Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan,
Quoc V. Le, and Hartwig Adam. 2019. Searching for MobileNetV3. IEEE/CVF
International Conference on Computer Vision (ICCV) (2019), 1314–1324.

[25] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on Learning Representations (ICLR).
1–13.

[26] Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho Hwang, Xiaohu Tang, Ting
Cao, and Mao Yang. 2024. Pre-gated MoE: An Algorithm-System Co-Design for
Fast and Scalable Mixture-of-Expert Inference. In 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA). 1018–1031.

[27] Google Inc. 2024. Gemma: Introducing new state-of-the-art open models. https:
//blog.google/technology/developers/gemma-openmodels/.

[28] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou
Hanna, Florian Bressand, et al. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088 (2024).

[29] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[30] Rui Kong, Yuanchun Li, Qingtian Feng, Weijun Wang, L. Kong, and Yunxin Liu.
2023. Serving MoE Models on Resource-constrained Edge Devices via Dynamic
Expert Swapping. arXiv preprint arXiv:2308.15030 (2023).

[31] Rui Kong, Yuanchun Li, Qingtian Feng, Weijun Wang, Xiaozhou Ye, Ye Ouyang,
Linghe Kong, and Yunxin Liu. 2024. SwapMoE: Serving Off-the-shelf MoE-based
Large Language Models with Tunable Memory Budget. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (ACL). 6710–6720.

[32] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model Serving with PagedAttention.
In Proceedings of the 29th Symposium on Operating Systems Principles (SOSP).
611–626.

[33] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2020. Gshard:
Scaling giant models with conditional computation and automatic sharding. arXiv
preprint arXiv:2006.16668 (2020).

[34] Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu,
Jiacheng Liu, Wenxing Xu, Xiang Wang, Yi Sun, Rui Kong, Yile Wang, Hanfei
Geng, Jian Luan, Xuefeng Jin, Zi-Liang Ye, Guanjing Xiong, Fan Zhang, Xiang Li,
Mengwei Xu, Zhijun Li, Peng Li, Yang Liu, Yaqiong Zhang, and Yunxin Liu. 2024.
Personal LLM Agents: Insights and Survey about the Capability, Efficiency and
Security. arXiv preprint arXiv:2401.05459 (2024).

[35] Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu
Zhang, Yatian Pang, Munan Ning, and Li Yuan. 2024. MoE-LLaVA: Mixture
of Experts for Large Vision-Language Models. arXiv preprint arXiv:2401.15947
(2024).

[36] Zechun Liu, Changsheng Zhao, Forrest N. Iandola, Chen Lai, Yuandong Tian,
Igor Fedorov, Yunyang Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krish-
namoorthi, Liangzhen Lai, and Vikas Chandra. 2024. MobileLLM: Optimizing
Sub-billion Parameter Language Models for On-Device Use Cases. arXiv preprint
arXiv:2402.14905 (2024).

[37] Ningning Ma, Xiangyu Zhang, Haitao Zheng, and Jian Sun. 2018. ShuffleNet
V2: Practical Guidelines for Efficient CNN Architecture Design. arXiv preprint
arXiv:1807.11164 (2018).

[38] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak
Paul, and Benjamin Bossan. 2022. PEFT: State-of-the-art Parameter-Efficient
Fine-Tuning methods. https://github.com/huggingface/peft.

[39] Michael Matena and Colin Raffel. 2022. Merging models with fisher-weighted
averaging. In Advances in Neural Information Processing Systems (NeurIPS). 17703–
17716.

[40] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS). 1273–1282.

[41] Sean Huver Nigel Nelson and Mostafa Toloui. 2023. Deploy Large
Language Models at the Edge with NVIDIA IGX Orin Developer Kit.
https://developer.nvidia.com/blog/deploy-large-language-models-at-the-edge-
with-nvidia-igx-orin-developer-kit/.

[42] OpenAI. 2022. ChatGPT. https://openai.com/blog/chatgpt/.
[43] Arthi Padmanabhan, Neil Agarwal, Anand Iyer, Ganesh Ananthanarayanan,

Yuanchao Shu, Nikolaos Karianakis, Guoqing Harry Xu, and Ravi Netravali.
2023. Gemel: Model Merging for Memory-Efficient, Real-Time Video Analyt-
ics at the Edge. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 973–994.

[44] Ofir Pele and Michael Werman. 2009. Fast and robust Earth Mover’s Distances.
In 2009 IEEE 12th International Conference on Computer Vision (ICCV). 460–467.

[45] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Am-
inabadi, Ammar AhmadAwan, Jeff Rasley, and YuxiongHe. 2022. Deepspeed-moe:
Advancing mixture-of-experts inference and training to power next-generation
ai scale. In International Conference on Machine Learning (ICML). 18332–18346.

[46] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
memory optimizations toward training trillion parameter models. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). 1–16.

533

https://developer.android.com/ml/aicore
https://huggingface.co/models
https://machinelearning.apple.com/research/introducing-apple-foundation-models
https://machinelearning.apple.com/research/introducing-apple-foundation-models
https://pytorch.org/
https://docs.qualcomm.com/bundle/publicresource/87-71408-1_REV_C_Snapdragon_8_gen_3_Mobile_Platform_Product_Brief.pdf
https://docs.qualcomm.com/bundle/publicresource/87-71408-1_REV_C_Snapdragon_8_gen_3_Mobile_Platform_Product_Brief.pdf
https://docs.qualcomm.com/bundle/publicresource/87-71408-1_REV_C_Snapdragon_8_gen_3_Mobile_Platform_Product_Brief.pdf
https://blog.google/technology/developers/gemma-openmodels/
https://blog.google/technology/developers/gemma-openmodels/
https://github.com/huggingface/peft
https://developer.nvidia.com/blog/deploy-large-language-models-at-the-edge-with-nvidia-igx-orin-developer-kit/
https://developer.nvidia.com/blog/deploy-large-language-models-at-the-edge-with-nvidia-igx-orin-developer-kit/
https://openai.com/blog/chatgpt/

SenSys ’24, November 4–7, 2024, Hangzhou, China Yan Zhuang, Zhenzhe Zheng, Fan Wu, and Guihai Chen

[47] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018),
4510–4520.

[48] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).

[49] Haihao Shen, HanwenChang, BoDong, Yu Luo, andHengyuMeng. 2023. Efficient
LLM Inference on CPUs. arXiv preprint arXiv:2311.00502 (2023).

[50] Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. 2024. JetMoE: Reaching
Llama2 Performance with 0.1M Dollars. arXiv preprint arXiv:2404.07413 (2024).

[51] Sidak Pal Singh and Martin Jaggi. 2020. Model fusion via optimal transport. In
Advances in Neural Information Processing Systems (NeurIPS). 22045–22055.

[52] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. 2017.
Federated Multi-Task Learning. In Advances in Neural Information Processing
Systems (NeurIPS). 1–11.

[53] Mingxing Tan and Quoc Le. 2021. EfficientNetV2: Smaller Models and Faster
Training. In Proceedings of the 38th International Conference on Machine Learning
(ICML). 10096–10106.

[54] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. arXiv preprint arXiv:1905.11946 (2019).

[55] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, et al. 2023. Gemini: A Family of Highly Capable Multimodal
Models. arXiv preprint arXiv:2312.11805 (2023).

[56] LLaMA-MoE Team. 2024. LLaMA-MoE: BuildingMixture-of-Experts from LLaMA
with Continual Pre-training. https://github.com/pjlab-sys4nlp/llama-moe/blob/
main/docs/LLaMA_MoE.pdf.

[57] Inar Timiryasov and Jean-Loup Tastet. 2023. Baby Llama: knowledge distillation
from an ensemble of teachers trained on a small dataset with no performance
penalty. arXiv preprint arXiv:2308.02019 (2023).

[58] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, et al. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models.
arXiv preprint arXiv:2307.09288 (2023).

[59] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R.
Bowman. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for Natu-
ral Language Understanding. In International Conference on Learning Representa-
tions (ICLR).

[60] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris S. Papailiopoulos, and
Yasaman Khazaeni. 2020. Federated Learning with Matched Averaging. In Inter-
national Conference on Learning Representations (ICLR). 1–16.

[61] Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo. 2023. Tabi: An Efficient
Multi-Level Inference System for Large Language Models. In Proceedings of the
18th European Conference on Computer Systems (EuroSys). 233–248.

[62] HaoWen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi
Jiang, Yunhao Liu, Yaqin Zhang, and Yunxin Liu. 2024. AutoDroid: LLM-powered
Task Automation in Android. In Proceedings of the 30th Annual International
Conference on Mobile Computing and Networking (MobiCom). 543–557.

[63] Hao Wen, Yuanchun Li, Zunshuai Zhang, Shiqi Jiang, Xiaozhou Ye, Ye Ouyang,
Yaqin Zhang, and Yunxin Liu. 2023. AdaptiveNet: Post-deployment Neural
Architecture Adaptation for Diverse Edge Environments. In Proceedings of the 29th
Annual International Conference on Mobile Computing and Networking (MobiCom).
1–17.

[64] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song
Han. 2023. SmoothQuant: Accurate and Efficient Post-Training Quantization for
Large Language Models. In Proceedings of the 40th International Conference on
Machine Learning (ICML). 38087–38099.

[65] Fuzhao Xue, Xiaoxin He, Xiaozhe Ren, Yuxuan Lou, and Yang You. 2022. One
Student Knows All Experts Know: From Sparse to Dense. arXiv preprint
arXiv:2201.10890 (2022).

[66] Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shangguang Wang, and Mengwei
Xu. 2023. EdgeMoE: Fast On-Device Inference of MoE-based Large Language
Models. arXiv preprint arXiv:2308.14352 (2023).

[67] Wangsong Yin, Mengwei Xu, Yuanchun Li, and Xuanzhe Liu. 2024. LLM as a
System Service on Mobile Devices. arXiv preprint arXiv:2403.11805 (2024).

[68] Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang, Xin Yuan, Zeling Zhang,
Xiang Li, Dingge Zhang, Hanzi Mei, Xianqing Jia, Shangguang Wang, and Meng-
wei Xu. 2024. Mobile Foundation Model as Firmware. In Proceedings of the 30th
Annual International Conference on Mobile Computing and Networking (MobiCom).
279–295.

[69] Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
2022. MoEfication: Transformer Feed-forward Layers are Mixtures of Experts. In
Findings of the Association for Computational Linguistics (ACL). 877–890.

[70] Haizhong Zheng, Xiaoyan Bai, Beidi Chen, Fan Lai, and Atul Prakash. 2024.
Learn To be Efficient: Build Structured Sparsity in Large Language Models. arXiv
preprint arXiv:2402.06126 (2024).

[71] Zhe Zhou, Xuechao Wei, Jiejing Zhang, and Guangyu Sun. 2022. PetS: A Unified
Framework for Parameter-Efficient Transformers Serving. In 2022 USENIX Annual
Technical Conference (ATC). 489–504.

[72] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean,
Noam M. Shazeer, and William Fedus. 2022. ST-MoE: Designing Stable and
Transferable Sparse Expert Models. arXiv preprint arXiv:2202.08906 (2022).

534

https://github.com/pjlab-sys4nlp/llama-moe/blob/main/docs/LLaMA_MoE.pdf
https://github.com/pjlab-sys4nlp/llama-moe/blob/main/docs/LLaMA_MoE.pdf

	Abstract
	1 Introduction
	2 Background And Motivation
	2.1 Serving LLMs on Edge Devices
	2.2 Customizing On-Device LLM Serving
	2.3 MoE-based LLMs and Opportunities

	3 Design of LiteMoE
	3.1 Overview
	3.2 Customized Expert Identification
	3.3 Selective Expert Merging

	4 Evaluation
	4.1 Methodology
	4.2 Overall Performance Evaluation
	4.3 Proxy Submodel Evaluation
	4.4 Performance Breakdown Analysis
	4.5 Sensitivity Analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

