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Abstract: Motivated by online platforms such as Amazon, Airbnb, etc., we consider the
following Bertrand game model of product placement: a number of sellers (e.g., apartment
owners) are interested in placing their products on a platform’s (e.g., Airbnb.com) website.
We assume that the price of a product is determined by the the number of available sellers
and their qualities, and the probability with which a platform user will buy a product is a
function of the prices and the qualities, according to a multinomial logit model. In other words,
the outcomes, i.e., the realized prices and sales, are determined by the Nash equilibrium of a
Bertrand game. The platform can affect the outcome of the game by deciding on a mechanism
to determine which products to display on their websites. For such a Bertrand game, we derive
optimal mechanisms for the platform to maximize either social welfare or revenue.
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1. INTRODUCTION

In recent years, we have witnessed the rise of many suc-
cessful online platform markets, which have reshaped the
economic landscape of the modern world. The online plat-
forms facilitate the exchange of goods and services between
buyers and sellers. For example, buyers can purchase goods
from sellers on Amazon, eBay and Etsy, arrange accom-
modation from hosts on Airbnb and Expedia, and order
transportation services from drivers on Uber and Lyft.

Compared with ancient markets, modern online platform
markets have greater controls over price determination,
search and discovery, information revelation, recommen-
dation, etc. For example, Uber and Lyft adopt the full
control model, in which the ride-sharing platforms use
online matching algorithms to determine matches between
drivers and riders as well as the fee for the route. Amazon
and Airbnb use the discriminatory control model, where
the platforms only control the list of products to display
for each buyer’s search, and the potential matches and
transaction prices are determined by the preference of
buyers and the competition among sellers. The rich control
options for online platforms have led to an increasing dis-
cussion about the design of online marketplaces with dif-
ferent optimization objectives; see Banerjee et al. (2017);
Arnosti et al. (2014); Kanoria and Saban (2017).

In this paper, we investigate the optimal social welfare and
revenue under the discriminatory control model, in which
the platform has only control over search segmentation
mechanisms - which products to display for each buyer’s
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search, and the transaction prices are endogenously deter-
mined by the competition among sellers under a Bertrand
game model. Unlike traditional firms, most online plat-
forms do not manufacture goods or provide services, and
thus they also do not dictate the specific transaction prices.
Instead, buyers and sellers jointly determine the prices at
which the goods or services will be traded. For example,
sellers set prices for their goods on Amazon, and hosts
decide on the prices for their properties on Airbnb. These
prices depend on the demand and supply for comparable
goods and services in the market, and choosing different
displayed products for buyers impacts the transaction
prices and then the social welfare/revenue. Motivated by
this, we study the role of search segmentation mechanisms
in social welfare and revenue optimization in the discrim-
inatory control model with endogenous prices.

2. MATHEMATICAL MODEL

We consider a two-sided market with n sellers S =
{1, 2, · · · , n} and one representative buyer. Each seller
i ∈ S offers a product with quality θi and price pi. We
denote the quality and price vectors by θ = (θ1, θ2, · · · , θn)
and p = (p1, p2, · · · , pn), respectively. The quality vector
θ is fixed, while the price vector p is determined by the
competition among sellers. Without loss of generality, we
assume the products’ quality and prices are non-negative,
i.e., θi ≥ 0 and pi ≥ 0, and the sellers are sorted according
to the product quality in a non-decreasing order, i.e.,
θ1 ≥ θ2 ≥ · · · ≥ θn. Given the quality θ and prices p
of all products, the buyer purchases one of the n products,
or adopts an outside option, i.e., buys nothing from this
market. We normalize the problem parameters so that



outside option’s quality θ0 and price p0 are zero, i.e.,
θ0 = p0 = 0.

In the random utility model descried in McFadden (1986),
the buyer derives utility ui from purchasing the product
i ∈ S or selecting the outside option i = 0 as follows

ui , θi + ξi − pi, (1)

where ξi is a random variable representing buyer’s (pri-
vate) preference about the ith alternative. Given the n+1
choices (n products and the outside option), the buyer
selects the alternative with the maximum utility. Under
the standard assumption that the random variables {ξi}
are independent and identically distributed (i.i.d.) with
Gumbel distribution, Anderson et al. (1992) and McFad-
den (1974) have shown that the buyer selects i ∈ {0} ∪ S
with probability

qi(p) , Pr(ui = max
j∈{0}∪S

uj) =
ai

1 +
∑

j∈S aj
, (2)

where ai = exp(θi − pi) for all i ∈ S. We refer to qi as the
demand or market share of the alternative i ∈ {0}∪S. This
choice model is known as the multinomial logit model in
economic literature. We use q = (q0, q1, · · · , qn) to denote
the market shares of all products.

Under the above model, we can also obtain an explicit
form for the utility ū of the representative buyer

ū , E[ max
i∈{0}∪S

ui] = log(1 +
∑
i∈S

ai). (3)

From the market share qi(p) in (2), we can express seller
i’s expected revenue ri(p) in terms of prices

ri(p) , pi × qi(p) = pi ×
ai

1 +
∑

j∈S aj
.

The social welfare of the two-sided market is measured by
the sum of buyer’s utility and the total revenue of sellers:

sw(p) , ū+
∑
i∈S

ri(p) = log(1+
∑
j∈S

aj)+
∑
i∈S

pi×
ai

1 +
∑

j∈S aj
. (4)

The revenue of the market is the total revenue of all sellers:

re(p) ,
∑
i∈S

ri(p) =
∑
i∈S

pi ×
ai

1 +
∑

j∈S aj
. (5)

3. MAIN RESULTS

In this section, we first investigate the existence and
uniqueness of equilibrium in the Bertrand game with a
subset S ⊆ S sellers. In a Bertrand competition, seller
i ∈ S selects price pi to maximize her revenue ri(p) =
pi × qi(p), where the corresponding market share qi(p)
is determined by the prices p of all products in (2). We
can formally represent the Bertrand game as a triplet
Gb = (S, (Pi)i∈S , (ri)i∈S), where S is a set of players, Pi is

the strategy space of player i ∈ S (i.e., Pi , {pi|pi ≥ 0}),
and ri(p) is the payoff of player i ∈ S. From Gallego et al.
(2006), we have the following result.

Theorem 1. There exists a unique (pure) Nash equilibrium
in the Bertrand game Gb = (S, (Pi)i∈S , (ri)i∈S). Further-
more, a vector of prices p̄ = (p̄1, p̄2, · · · , p̄n) ∈ P satisfies
∂ri(p̄)/∂pi = 0 for all i ∈ S if and only if p̄ is a Nash
equilibrium in P.

We can calculate a closed-form expression for the Nash
equilibrium prices p̄ by solving the system of the first-
order condition equations ∂ri(p̄)/∂pi = 0.

Theorem 2. In Bertrand game Gb = (S, (Pi)i∈S , (ri)i∈S),
the Nash equilibrium price p̄i and the corresponding mar-
ket share q̄i for each seller i ∈ S are given by 1

p̄i =
1

1− V (q̄0 × exp(θi − 1))
and q̄i = V (q̄0×exp(θi−1)),

where q̄0 is the unique solution to∑
j∈S

V (q̄0 × exp(θi − 1)) = 1− q̄0. (6)

With this result, we can obtain the equilibrium social
welfare in the Bertrand game with the sellers S ⊆ S

sw(S) = − log (q̄0) +
∑
i∈S

q̄i
1− q̄i

. (7)

Similarly, we can get the equilibrium revenue:

re(S) =
∑
i∈S

q̄i
1− q̄i

. (8)

We next show how the choice of the set of sellers S can
be optimized by the platform to maximize either social
welfare or revenue. We have the following main results for
social welfare maximization and revenue maximization.

Theorem 3. For social welfare maximization, the optimal
mechanism is to display all products S in the platform.

Theorem 4. For revenue maximization, the optimal mech-
anism is to display the top k∗ products, where k∗ is
determined by the quality of all products θ, and can be
calculated in linear time.

The idea behind the proofs of these two results is to express
the equilibrium social welfare/revenue in (7) and (8) as a
function with an independent variable q̄0, and show certain
properties of this function. To prove Theorem 3, we show
that such function is decreasing with respective to q̄0,
implying that adding a new product can always improve
the equilibrium social welfare. To prove Theorem 4, we
show that such function is quasi-convex, guaranteeing that
the maximum revenue can be obtained at one of the two
endpoints. These two endpoints correspond to the options
of staying at the current set of products or involving a
new product with the highest quality. With this critical
observation, the platform will always select the available
product with the highest quality when it decides to add
a new product. Thus, if the current product set does not
contain all the top k∗ products, we can further improve the
equilibrium revenue by repeatedly replacing one currently
selected product with a new product with a higher quality.
The detailed proofs can be found in Zheng and Srikant
(2019).

We give a simple example to illustrate the difference
between these two mechanisms. We consider two cases:
a low quality case, e.g., θ1 = θ2 = · · · = θn = 0.5, and a
high quality case, e.g., θ1 = θ2 = · · · = θn = 10. From
Theorem 3, the optimal mechanisms for social welfare
maximization in these two cases are to display all products.
However, for revenue maximization, the platform still
displays all products in the low quality case, but only
displays the first product in the high quality case.

1 For any x ∈ (0,∞), V (x) is the solution v ∈ (0, 1) satisfying

v× exp
(

v
1−v

)
= x. This function is similar to the Lambert function

W (x), which we recall is the solution w satisfying w × exp(w) = x.
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