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ABSTRACT
Two-stage bandit-based algorithms have found widespread applica-

tion in modern online platforms, offering a balance between cost

and accuracy. The initial stage involves coarse filtering of a small

candidate set of promising items from a large corpus, while the

subsequent stage refines the selection and presents a single item to

the user. In this work, to the best of our knowledge, we for the first

time undertake a theoretical analysis of the two-stage stochastic

multi-armed bandit problem. Specifically, we model the two-stage

bandit problem as a two-stage online optimization, and conduct a

theoretical analysis. We demonstrate that while the optimization ob-

jective of the first stage may seem intuitive, it is, in fact, non-trivial.

We devise a proxy optimization objective, emphasize the impor-

tance of a carefully designed exploration strategy, and establish the

theoretical analysis for the application of Upper Confidence Bound

(UCB)-based algorithms in the first stage. Furthermore, we provide a

regret analysis of the proposed two-stage bandit algorithm, demon-

strating a gap-dependent upper bound of 𝑂 ( 1

Δ̄
log𝑛Δ̄2), where Δ̄

is the largest reward gap, and a gap-independent lower bound of

Ω(
√
𝑛), where 𝑛 represents the horizon.
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1 INTRODUCTION
Online platforms have gained widespread adoption in industry,

such as recommendation systems and online advertising [4, 11, 20].

The primary objective of these online platforms is to select a single

or several items presented to the user, aiming to maximize Key

Performance Indicators (KPIs) such as Click-Through Rate (CTR),

Conversion Rate (CVR), etc. Bandit algorithms [18, 19] are widely

deployed to the scenarios, where the online platforms do not know

user’s preference over items, and would like to explore and exploit

this information to provide personalized services.

To tackle the challenge of recommending personalized items

from an extensive collection of corpus within a constrained re-

sponse time, the two-stage service paradigm [4, 11, 20] has gained

widespread adoption by online platforms. In this two-stage architec-

ture, the first stage serves to coarsely filter a candidate set of items

from a large corpus, while the second stage refines the selection,

further selecting one item from the candidate set to the user. To

mitigate computation overhead, the models in the first stage are

designed to be lightweight to make a trade-off between the com-

putational complexity and the accuracy [2, 22, 29]. To guarantee

the system performance, a more sophisticated model in the second

stage delivers precise KPI predictions, and the item with the high-

est estimated KPI in the candidate set is recommended to the user.

However, these works lack theoretical analysis of the performance

guarantee in this new two-stage architecture. A line of recent works

on two-stage systems has primarily focused on mobile computing

applications, such as on-device recommendation systems and on-

device machine learning applications [9, 32]. Aiming to address

privacy concerns and reduce response latency, the first stage on

the cloud only observes the partial features of the items, where

the unobserved features are viewed as the user’s privacy, and the

second stage on the device observes all the features, representing

constraints on computation overhead and privacy concerns [26].

In this work, we analyze the performance of the two-stage online

platform in stochastic bandit learning. Specifically, we consider a

two-stage stochastic bandit problemwith 𝑘 arms. At time 𝑡 , the first-

stage bandit algorithm filters a candidate set S𝑡 containing ℎ arms.

Subsequently, the second-stage bandit algorithm further selects

one arm, and observes the corresponding reward. This procedure

repeats for 𝑛 rounds, and the target of the bandit algorithm is to

maximize the cumulative reward.

The first challenge of solving the two-stage stochastic bandit is

the design of the first stage. Specifically, since the primary objective

of the classical bandit algorithms focused on the result of the second

stage, the first stage lacks consideration. In this work, we show that

the optimization objective of the first stage is intuitive but non-

trivial. We observe that the goal of the first stage is to include the

best arm in the candidate set, formulated as an indicator function.

However, this formulation cannot be directly optimized, because

the online platform lacks the knowledge of which arm is the best.
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Thus, we need to design a proxy optimization objective for the first

stage. The difficulty of designing the proxy objective lies in the

requirement of balancing exploration and exploitation. Specifically,

we illustrate the necessity of designing a proper proxy objective by

constructing counterexamples, where the regret scales with 𝑂 (𝑛).
The second challenge arises with the regret analysis of the two-

stage stochastic bandit algorithm. Specifically, the challenge lies in

the analysis of the first stage, compared with the regret analysis

of the classical single-stage bandit algorithms. The crux of the

regret analysis is bounding the probability that the optimal arm

is selected into the candidate set for the second stage. This event

can be decomposed into 𝑂 (
(𝑘
ℎ

)
) sub-events, making it difficult to

formulate and bound its probability.

We propose a new two-stage stochastic bandit algorithm to ad-

dress the first challenge. Specifically, the optimization objective of

the first stage is designed to maximize the probability of the event

that the best arm is chosen to the second stage. Then, we propose

UCB-SR (Algorithm 1) and UCB-LR (Algorithm 2) to tackle this

problem. Specifically, UCB-SR is designed for a special case where

the first stage has no access to the feature vectors, while UCB-LR is

designed for the general case where the first stage observes some

partial feature dimensions. Our algorithms select ℎ arms with the

largest UCBs out of the total 𝑘 arms in the first stage, and play the

arm with the largest UCB in the second stage. Then, we establish

the regret analysis for the upper bound of our proposed algorithms

and the lower bound of this problem. For the second challenge,

we relax the probability of the combination of the sub-events by

jointly considering all the events that a sub-optimal is played, so

that we adopt the two-stage stochastic bandit analysis to the exist-

ing regret analysis framework [18]. We prove a sublinear bound of

𝑂 (𝑘 log (𝛾𝑛)) + 𝑅2 (𝑛,ℎ), where 𝛾 =
( 𝑘−1

⌈ 𝑘−1

2
⌉
)
· (𝑘 − ℎ), and 𝑅2 (𝑛,ℎ)

is the regret of a bandit algorithm with ℎ arms in horizon 𝑛. Regard-

ing the lower bound, we demonstrate that the problem can achieve

Ω

(√︃
𝑛 (𝑘−1)
ℎ

)
regret.

To summarize, our major contributions in this work include:

• We for the first time touch the two-stage stochastic bandit

problem, and theoretically analyze the optimization objective

of the first stage, demonstrating the impossibility of directly

optimizing the objective. We design a proxy optimization

objective that makes it possible and efficient for the online

platform to optimize.

• We propose two algorithms, UCB-SR and UCB-LR, to solve

the two-stage stochastic bandit problem, and establish the

regret analysis. We prove an upper bound of 𝑂 (log𝑛) for
our algorithm and a lower bound of Ω(

√
𝑛) for the problem.

• We validate our proposed algorithms through experiments

on both synthetic and real-world data, with results aligning

well with our theoretical claims. The regret of UCB-LR is

83% less than the UCB algorithm with random selection in

the first stage.

2 PRELIMINARIES
In this section, we introduce the modeling of the two-stage online

platform (Sec. 2.1), and formulate the corresponding problem of

two-stage stochastic bandit (Sec. 2.2).

2.1 System Modeling
We model the two-stage online platform in the bandit setting. Gen-

erally, an online platform would like to select one item with the

largest estimated KPI (such as CTR [34] and CVR [23]) from a large

item set to the user, and observes the realized KPI through the

user’s feedback. If the KPIs are not known to the online platform

in advance, this problem can be modeled as a linear stochastic ban-

dit problem [19], in which every item is represented as an arm,

and selecting an item is viewed as pulling the corresponding arm.

The online platform interacts with the user for several rounds, and

learns the KPIs using the feedback. The goal of the online platform

is to maximize the cumulative reward, e.g., maximize the number of

clicks within a given horizon. Specifically, at the beginning of round

𝑡 within a finite horizon 𝑛, the learner is given the arm setA𝑡 ⊂ R𝑑
where 𝑑 is the dimension of the arm’s feature, and |A𝑡 | = 𝑘 , from

which it chooses an arm 𝑎𝑡 ∈ A𝑡 , and receives the reward as

𝑋𝑡 = ⟨𝜃∗, 𝑎𝑡 ⟩ + 𝜖𝑡 , (1)

where 𝜖𝑡 is a random noise with zero mean, and 𝜃∗ ∈ R𝑑 is the

linear coefficient which captures the relation between the item’s

feature 𝑎𝑡 to its corresponding reward. The 𝜃
∗
is fixed but unknown

to the online platform. Without loss of generality, we denote 𝜇𝑖 as

the expected reward of the arm 𝑖 and 𝜇𝑖 as the empirical mean. The

regret is defined by

𝑅(𝑛,ℎ) = E
[ 𝑛∑︁
𝑡=1

max

𝑎𝑡 ∈A𝑡

⟨𝜃∗, 𝑎𝑡 ⟩ −
𝑛∑︁
𝑡=1

𝑋𝑡

]
, (2)

where the expectation is with respect to the selected arms 𝑎1, . . . , 𝑎𝑛
and the corresponding noise 𝜖1, . . . , 𝜖𝑛 .

The motivation behind splitting the bandit problem in online

platform into two stages stems from the computational costs as-

sociated with linear stochastic bandits. Computing the upper con-

fidence bound, denoted as 𝜇𝑖 , involves evaluating the expression

𝜇𝑖 + 𝛼
√︃
𝑎𝑇
𝑖
(𝑉𝑇𝑡 𝑉𝑡 + 𝐼𝑑 )−1𝑎𝑖 , where 𝑎𝑖 is the feature vector of arm 𝑖 ,

𝑉𝑡 :=
∑𝑡
𝜏=1

𝑎𝑇𝜏 𝑎𝜏 ∈ R𝑚×𝑑 , 𝛼 is a hyper-parameter, and 𝐼𝑑 ∈ R𝑑×𝑑
denotes an identity matrix. Computing 𝜇𝑖 is computationally in-

tensive due to the matrix multiplications and inversions involved.

Furthermore, in the online platform, we usually have a large corpus

of items (around billion-scale [28]), Hence, a two-stage retrieval

procedure is employed to alleviate the computational overhead.

Specifically, the first stage with an acceptable computation over-

head algorithm to coarse-grained filter a small candidate set from

the whole item set. The second stage is to select one item out of

the candidate set. The first stage alleviates the high computation

overhead, while the second stage ensures a high selection accuracy.

Before formulating the two-stage bandit problem, we discuss

the objectives of the two stages in detail. The second stage can be

viewed as a vanilla one-stage bandit that selects one item within

the candidate set from the first stage to get the largest accumulated

reward. Thus, the objective of the second stage can be modeled as

minimizing the cumulative regret, the same as the vanilla linear

stochastic bandit. In contrast, the objective for the first stage is

different. In round 𝑡 , if the first stage fails to filter the best arm into

the candidate set, the whole system will incur a constant regret,

irrespective of the algorithm applied to the second stage. On the

contrary, if the best arm is filtered into the candidate set, whether
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the best arm can be finally chosen depends on the second stage.

Thus, as long as the best arm is filtered into the candidate set, we

can conclude that the first stage succeeds.

2.2 Problem Formulation
We formulate the problem of two-stage bandits in the online plat-

form. In the first stage, the player selects ℎ candidate arms out of

all the 𝑘 candidate arms as the arm set for the subsequent stage. In

the second stage, the player evaluates the ℎ candidate arms, and

pulls one of them. The problem can be formulated as a two-stage

online optimization problem within a horizon 𝑛, such that:

max

𝑎𝑡 ∈S𝑡

𝑛∑︁
𝑡=1

𝑋𝑡 , (3)

s.t. S𝑡 = arg max

𝑆⊂A𝑡 , |S |=ℎ
𝑟𝑡 (S), ∀ 𝑡 ∈ [𝑛], (4)

where 𝑟𝑡 (·) is the optimization objective of the first stage at time 𝑡 .

As discussed above, the goal of the first stage is to ensure that the

optimal arm 𝑎∗𝑡 is contained in the selected set S𝑡 , and thus:

𝑟 (S) = 1(𝑎∗𝑡 ∈ S). (5)

We note that the optimal solution of Equation (5) is not unique.

We explain the above problem formulation from the perspective

of the two-stage bandits in detail. First, we consider the objective

of the second stage, which is to maximize the cumulative reward

(the sum of the observed reward 𝑥𝑡 ) of the pulled arms, subject to

the constraint of the arm set selected by the first stage. Next, we

consider the first stage, where Equation (4) shows that the objective

of the first stage at time 𝑡 is to maximize a set indicator function

𝑟𝑡 (·) under the cardinality constraints.

3 TWO-STAGE BANDITS
In this section, we discuss the design of two-stage bandit algorithms.

Specifically, in Sec. 3.1, we consider the setting where no features

are available for the first stage. In Sec. 3.2, we consider the case

where the first stage can see several dimensions of the feature

vector.

3.1 Two-Stage Bandit with Stochastic Retrieval
In this subsection, we examine a simplified scenario of the two-

stage bandit. Assuming no features are available for the first stage,

we can regard the first stage as a stochastic bandit problem under

tabular setting [18] and name it as stochastic retrieval.

Before introducing the detailed method for the first stage, we

emphasize the importance of exploration in the first stage. Firstly,

we show that exploration in the first stage is necessary by providing

a counterexample. Suppose that the first stage selects the items

with the top-ℎ estimated reward. When there are ℎ different arms

pulled, the first stage will no longer select the other arms into the

candidate set, since only the selected ℎ arms have means greater

than 0. Thus, the lack of exploration in the first stage leads to a linear

regret. Next, we show that a carefully designed exploration strategy

is necessary by providing another counterexample. Suppose the

first stage selects candidates by uniformly sampling the arms. The

probability of the optimal arm being chosen into the candidate set

is a constant in every round, denoted by 𝑃 . Thus, the regret of this

Algorithm 1: Two-Stage UCB with Stochastic Retrieval

(UCB-SR)

Input: 𝑇𝑖 = 0, 𝜇𝑖,0 = 0, 𝜇𝑖,0 = 0, ∀𝑖 ∈ [𝑘];
Output: The selected arms;

1 for 𝑡 ← 1, . . .𝑇 do
2 S𝑡 ← arg top_h({𝜇1,𝑡−1, . . . , 𝜇𝑛,𝑡−1});
3 𝑖 ← arg max𝑖∈S𝑡 LinUCB(𝐴𝑖 );
4 Play arm 𝑖 and observe 𝑋𝑖,𝑡 ;

5 for 𝑗 ∈ S𝑡 do
6 𝑇𝑗 ← 𝑇𝑗 + 1;

7 if 𝑗 = 𝑖 then
8 𝜇𝑖,𝑡 ← (𝑇𝑖 × 𝜇𝑖,𝑡−1 + 𝑋𝑖,𝑡 )/(𝑇𝑖 + 1);

9 𝜇 𝑗,𝑡 ← 𝜇 𝑗,𝑡 +
√︂

2 log(𝑇 )
𝑇𝑗

;

10 return 𝑖;

algorithm is at least Ω (Δmin𝑃𝑛), where Δmin is the smallest gap

between the optimal and sub-optimal arm, indicating linear regret

with respect to the horizon 𝑛.

Next, we delve into the design of the exploration method to

maximize Equation (5) of the first stage. We revise the optimization

objective of the first stage. It is challenging to directly optimize

Equation (5) since the bandit player only observes the feedback

and cannot know exactly whether the pulled arm is optimal or not.

However, the player can be sure about whether an arm is optimal

after several rounds with a high probability. Thus, it is possible to

introduce a proxy optimization objective whose maximizer is also

a maximizer of Equation (5) with a high probability. For simplicity,

we assume that all noise 𝜖𝑖 is sampled from N(0, 1). Let 𝑟𝑖 be the
stochastic reward of arm 𝑖 , and 𝐸 denote the event that the best

arm is in the candidate set. Let 𝐸𝑐 as the complementary event of 𝐸

(formal definition will be given in Section 4.1). Maximizing P(𝐸) or
minimizing P(𝐸𝑐 ) can be viewed as maximizing the probability of

𝑟 (S) = 1 in Equation (5).

However, computing P(𝐸𝑐 ) or P(𝐸) requires much computa-

tional burden and it is necessary to be simplified. We note that

P(𝐸𝑐 ) does not equal ∏𝑖∈S P(𝑟𝑖 ≤ max𝑗∈A\𝑖 𝑟 𝑗 ) due to the lack

of independence among the event {𝑟𝑖 ≤ max𝑗∈A\𝑖 𝑟 𝑗 } for all the
arms. To avoid the computational burden of enumerating all event

combinations, we introduce a hyper-parameter 𝑣 and consider

events 𝐻𝑖 = {𝑟𝑖 < 𝑣} for all items, ensuring the independence

of these events. We then focus on the probability

∏
𝑖∈S P(𝑟𝑖 < 𝑣) =∏

𝑖∈S 𝐶𝐷𝐹N(0,1)
(
𝑣−𝜇𝑖
𝜎𝑖

)
, which decreases with 𝑣 . Setting 𝑣 to be

the second-largest value among all 𝜇𝑖 , to minimize

∏
𝑖∈S P(𝑟𝑖 < 𝑣)

is equivalent to maximizing the RHS of Equation (5). Since the

second largest of 𝜇 is unknown to the online platform, we need

more assumptions for further analysis. Specifically, we assume that

𝑟𝑖 for all the arms have the same variance. Under this assumption,

the S∗ = arg minS
∏
𝑖∈S P(𝑟𝑖 < 𝑣) remains constant for any value

of 𝑣 , which will be proved in Appendix B.1. So in the following

analysis, we assume 𝑣 is fixed.

Then, we clarify the optimization objective of the first stage. The

probability P(𝜇𝑖 < 𝑣) can be estimated by𝐶𝐷𝐹N(0,1)
(
𝑣−𝜇𝑖
�̂�𝑖

)
. Then,
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considering 𝐶𝐷𝐹 is non-negative and non-decreasing, minimizing∏
𝑖∈S 𝐶𝐷𝐹N(0,1)

(
𝑣−𝜇𝑖
𝜎𝑖

)
is equivalent to minimizing

𝑟 (S) :=
∏
𝑖∈S

𝐶𝐷𝐹N(0,1)

(
𝑣 − 𝜇𝑖
�̂�𝑖

)
, ∀𝑖 ∈ A, |𝑆 | = ℎ. (6)

However, real applications have complex structures of the envi-

ronment, and require bandit algorithms to be flexible in tuning

the trade-off between exploration and exploitation [6], but Equa-

tion (6) lacks flexibility and can hardly be tuned when using it as the

first stage optimization objective. Specifically, compared with the

vanilla UCB algorithms which can use hyper-parameters to scale

the weight of the upper bound and tune the level of exploration, the

level of exploration by optimizing Equation (6) cannot be manually

tuned. Thus, we need to modify Equation (6) towards the UCB-style.

Let
𝑣−𝜇𝑖
�̂�𝑖

= 𝛼 , 𝑣 = 𝜇𝑖 + 𝛼�̂�𝑖 . Since Equation (6) indicates a smaller 𝛼

would like to be selected to the second stage, for a fixed 𝑣 , an arm

with larger 𝜇𝑖 and �̂�𝑖 is more likely to the selected. Thus, in practice,

we set 𝛼 to be a constant, and an arm with larger 𝜇𝑖 + 𝛼�̂�𝑖 is more

likely to be selected, which is also known as the upper confidence

bound 𝜇𝑖 in bandit literature.

Based on the above discussions, we introduce another formula-

tion that is easier to optimize to replace Equation (6), such that:

𝑟 (S) :=
∑︁
𝑖∈S

𝜇𝑖 + 𝛼�̂�𝑖 , ∀𝑖 ∈ S.
(7)

It is worth noticing that optimizing Equation (7) is equivalent to

finding the top-ℎ UCBs at time 𝑡 . The optimality of Equation (7)

will be discussed in the following section.

Finally, we present Algorithm 1 to address the two-stage bandit

with stochastic retrieval, which can be viewed as the combination

of a stochastic bandit for the first stage and a linear bandit for the

second stage. Line 2 applies top-ℎ selection on the estimated UCBs

to select a set of arms as the arm set for the subsequent second

stage. Line 3 indicates that we employ a classical bandit algorithm,

for example, LinUCB, for the second stage. Lines 5-9 describe the

update procedure for the first stage. After observing the reward

of the pulled arm 𝑖 from the second stage, the first stage updates

the empirical mean of arm 𝑖 and updates the UCBs of all the arms

in S𝑡 . Updating the UCBs of the unpulled arms in S𝑡 encourages
exploration on the other arms outside S𝑡 .

3.2 Two-Stage Bandit with Linear Retrieval
In this subsection, we examine a general case in which the first

stage has access to several dimensions of the arm feature vector.

Since in Section 2, we assume that the expected reward is generated

by a linear model, we apply a linear model in the first stage to

retrieve arms. Thus, we name the first stage in this scenario linear

retrieval.

We introduce Algorithm 2 tailored to address the linear retrieval

scenario. In essence, Algorithm 2 is the fusion of two linear bandit

algorithms. Specifically, in Line 2, we select the top-ℎ arms based

on the UCBs, which will be analyzed in Section 4.2. Line 3 denotes

the application of a linear bandit algorithm for the second stage.

Lines 5-9 outline the update procedure of the linear bandit for the

first stage after observing the feedback from the second stage. It

is noteworthy that, unlike Algorithm 1, Algorithm 2 updates the

Algorithm 2: Two-Stage UCB with Linear Retrieval (UCB-

LR)

Input: ˆ𝜃𝑐,0 = 0,
ˆ𝜃𝑒,0 = 0, 𝑉𝑐,0 = 𝑉𝑒,0 = 𝜆𝐼

Output: The selected arms;

1 for 𝑡 ← 1, . . .𝑇 do
2 S𝑡 ←

arg top_h

({
ˆ𝜃𝑇
𝑐,𝑡−1

𝑎𝑐,1 + 𝑢𝑡,𝑖 , . . . , ˆ𝜃𝑇
𝑐,𝑡−1

𝑎𝑐,𝑘 + 𝑢𝑡,𝑘
})
;

3 𝑖 ← arg max𝑖∈S𝑡 LinUCB

(
𝑎𝑒,𝑖 , ˆ𝜃𝑖−1

)
;

4 Play arm 𝑖 and observe 𝑋𝑖,𝑡 ;

5 𝐴𝑐,𝑡 ← 𝑎𝑐,𝑡 , 𝑋𝑡 ← 𝑋𝑖,𝑡 ;

6 𝑉𝑐,𝑡 = 𝑉𝑐,𝑡−1 + 𝑎𝑐,𝑖𝑎𝑇𝑐,𝑖 ;
7 ˆ𝜃𝑐,𝑡 ← 𝑉 −1

𝑐,𝑡

∑𝑡
𝑠=1

𝐴𝑐,𝑠𝑋𝑠 ;

8 for 𝑗 ∈ [𝑘] do
9 𝑢𝑡+1, 𝑗 ← ||𝑎𝑐,𝑗 | |𝑉 −1

𝑐,𝑡

√︁
2 log(𝑇 );

10 return 𝑖;

UCBs of all arms after a single round of play, and the size of the

UCB is implicitly represented in Line 9.

4 REGRET ANALYSIS
4.1 Upper Bound of Algorithm 1
In this subsection, we present the regret upper bound for Algo-

rithm 1 of𝑂 ( 1

Δ̄
log𝑛Δ̄2), where Δ̄ is the maximum reward gap. Prior

to presenting the result, we establish the optimality of the proxy

optimization objective for the first stage, as defined in Equation (7).

This is achieved by demonstrating that the maximizer of Equa-

tion (7) is also a maximizer of Equation (5) with a high probability.

Subsequently, leveraging this high probability, we decompose and

relax the regret to derive an upper bound. In the following analysis,

without additional explanation, all the mathematical notations are

relevant only to the first stage. In this section, only the sketch of

the theoretical analysis is provided and please refer to Section A.1

for detailed proofs.

Firstly, we establish the optimality of Equation (7) as a proxy

optimization objective for the first stage. To ease the analysis, we

define several events that are crucial to the regret.

Definition 1. Let 𝐹𝑖 be the ’good’ event for the sub-optimal arm
𝑖 defined by 𝐹𝑖 :=

{
𝜇𝑖,𝑢𝑖 < 𝜇1

}
, where 𝜇𝑖,𝑢𝑖 is the UCB of the arm 𝑖

after 𝑢𝑖 times of play, and 𝑢𝑖 ∈ [𝑛] is a constant to be chosen later.

If 𝐹𝑖 were true, it would indicate that arm 𝑖 is not over-estimated

after pulled for 𝑢𝑖 times. Following the idea of this definition, we

define the good event for all the sub-optimal arms.

Definition 2. Let 𝐹 be the ’good’ event for all the sub-optimal
arms defined by 𝐹 :=

{
∀T ⊆ A\{1}, |T | ≥ ℎ, ∃𝑖 ∈ T , 𝜇𝑖,𝑢𝑖 < 𝜇1

}
.

If 𝐹 were true, it would be indicated that there are at most ℎ − 1

arms over-estimated after pulled for 𝑢𝑖 arms, respectively. Then,

we consider the estimation condition of arm 1 and put everything

together.

Definition 3. Let 𝐸 be the “good" event for the whole environment
defined by 𝐸 :=

{
𝜇1 < min𝑡 ∈[𝑛] 𝜇1,𝑡

}
∧ 𝐹 .
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If 𝐸 were true, it would be indicated that the arm 1 is not under-

estimated and there are at most ℎ − 1 sub-optimal arms are over-

estimated, such that the arm 1 would be selected into the candidate

set. In the following analysis, we aim to demonstrate two key points:

1. If 𝐸 occurs, then the event that a sub-optimal arm is pulled

will happen at most 𝑇 (𝑛) ≤ (𝑘 − 1)𝑢 times.

2. The complement event 𝐸𝑐 occurs with low probability.

In the following analysis, we denote the times that arm 𝑖 till round

𝑛 is pulled by 𝑇𝑖 (𝑛).
Lemma 1 (Bound of the Probability of 𝐸𝑐 ). Under the as-

sumption that the reward of each arm follows an 1-sub-Gaussian
distribution, the probability of the event 𝐸𝑐 is upper bounded by

P(𝐸𝑐 ) ≤ 𝑛𝛿1 + 𝛾 exp

(
−𝑢ℎ𝑐

2Δ̄2

2

)
, (8)

where 𝛾 =
( 𝑘−1

⌈ 𝑘−1

2
⌉
)
· (𝑘 − ℎ), 𝑢 = max𝑖∈A 𝑢𝑖 and Δ̄ = max𝑖∈A Δ𝑖 .

Lemma 1 indicates that P(𝐸𝑐 ) decreases with 𝑢. After choosing
a proper 𝑢, this result will indicate that the bad event 𝐸𝑐 happens

with a low probability with respect to the horizon 𝑛.

Before proving the first claim, we show that if the first and

second stage model were asked to select the best one arm, it is less

possible for the second stage model to give a wrong answer. We

will demonstrate this by showing the variance of in-sample error

of the linear regression model.

Lemma 2 (Variance of In-Sample Error of Linear Regres-

sion). Suppose 𝑦 is a vector of 1-sub-Gaussian variables and 𝐴 has
full rank. If more labels of one feature vector are sampled in the train-
ing set, the variance of the prediction error of this vector is reduced.

An intuitive interpretation of Lemma 2 can be drawn from the

bias-variance trade-off perspective. Duplicating a feature vector

introduces additional information to the training set, yet the models

trained on both pre-duplicated and post-duplicated data remain

unbiased. Thus, duplicating the feature vector intuitively aids in

reducing the variance. Another interpretation of Lemma 2 is that

compared with unstructured stochastic bandit, arms with features

will reduce the variance of estimated mean. This lemma indicates

that it is easier to train the second stage model since arm features

are available, and it will help us bound 𝑇 (𝑛) in the appendix.

Then, we prove the first claim.

Lemma 3. If 𝐸 is true, the event that a sub-optimal arm is pulled
will happen at most 𝑇 (𝑛) ≤ 2(𝑘 − 1)𝑢 times.

Next, we decompose the regret into two terms to bound them

separately. This decomposition is rooted in Lemma 1. As demon-

strated in the lemma, 𝐸𝑐 occurs with a bounded low probability, and

conversely, 𝐸 occurs with high probability. By relaxing P(𝐸) → 1,

we establish that the corresponding regret is upper-bounded by

the regret of the second stage. Therefore, the subsequent analysis

focuses on cases where the first stage fails to retrieve the best arm.

Lemma 4 (Regret Decomposition). Consider Algorithm 1 on a
stochastic bandit instance with 𝑘 arms and 1-sub-Gaussian rewards.
For a horizon 𝑛, with probability at least (1 − 𝛿1 − 𝛿2), the regret
𝑅(𝑛, 𝑘) satisfies:

𝑅(𝑛, 𝑘) ≤ Δ̄ ·
(
2(𝑘 − 1)𝑢 + P(𝐸𝑐 )𝑛

)
+ 𝑅2 (𝑛,ℎ),

where 𝑅𝐿 (𝑛,ℎ) is upper-bounded with probability 1 − 𝛿2.

Then, by putting Lemma 1 and Lemma 4 together, we derive the

regret of both Algorithm 1.

Theorem 1 (Regret Upper Bound of Algorithm 1). Consider
the two-stage bandit algorithm presented in Algorithm 1 applied to
a 𝑘-armed 1-sub-Gaussian bandit problem. For a horizon 𝑛, with
probability at least (1 − 1

𝑛2
− 𝛿2), the regret is bounded by

𝑅(𝑛) ≤ 16(𝑘 − 1)
ℎΔ̄

(
1 + log

(
𝛾𝑛ℎΔ̄2

16(𝑘 − 1)

))
︸                                     ︷︷                                     ︸

T1

+ (2𝑘 − 1)Δ̄︸     ︷︷     ︸
T2

+𝑅2 (𝑛,ℎ)︸   ︷︷   ︸
T∋

(9)

where 𝑅2 (𝑛,ℎ) is the regret of a ℎ−armed bandit algorithm with
horizon 𝑛, and 𝛾 =

( 𝑘−1

⌈ 𝑘−1

2
⌉
)
· (𝑘 − ℎ).

Then, we discuss the implication of Theorem 1. Theorem 1

demonstrates that the regret increases with both 𝑘 and 𝑘 − ℎ. This
aligns with the intuition that if more items were available, it would

be hard to find the best item, and if fewer items were retrieved,

there would be a higher likelihood that the most preferred item

remains unexplored, contributing to a larger regret.

Furthermore, we delve into the regret upper bound. T2 is irrele-

vant with ℎ. T3 ≤ 8

√︁
𝑛ℎ log(𝑛) + 3ℎΔ̄ according to [18]. By relaxing

the log term in T1, there is T1 + T3 ≤ 8

√︁
𝑛ℎ log(𝑛) − (𝛾 ′𝑛Δ̄ − 3Δ̄)ℎ,

where 𝛾 ′ =
( 𝑘−1

⌈ 𝑘−1

2
⌉
)
. Then, with reasonable 𝑘 and 𝑛, the worst

ℎ′ = 16𝑛 log(𝑛)
(𝛾 ′𝑛−3)2Δ̄2

is decreasing with 𝑘 and 𝑛. This result indicates

that when there is enough time and arms to explore, it is better to

employ a larger ℎ to avoid a high regret when the second stage can

support more than ℎ′ arms.

4.2 Upper Bound of Algorithm 2
In this subsection, we modify the analysis in Section 4.1 to the

linear retrieval case in Section 3.2. Before analysis, we assume that

the arm vector is bounded.

Assumption 1. The 𝑙2-norm of the arm vector, i.e. the feature
vector, is bounded.

| |𝑎 | |2 ≤ 𝐿.

Firstly, we demonstrate that the retrieval stage with a linear

regressionmodel can be conceptualized as a stochastic unstructured

bandit problem with arms having varying variances. We consider

the prediction error of the offline linear regression model on a

sample drawn from the training set. Suppose that 𝑥 = 𝐴𝜃∗ + 𝜖 ,
where 𝜖 is zero-mean Gaussian noise with unit variance, 𝜃 ∈ R𝑑 ,
and𝐴 ∈ R𝑛×𝑑 is the combination of arms in a linear bandit instance.

Without loss of generality, we assume that 𝐴 is a full rank matrix.

Then we derive the concentration of the prediction error.

Lemma 5. Under Assumption 1, the prediction error of a sample
out of the training data set can be bounded by

P(𝑒 (𝑎, 𝑥 ; 𝑡) > 𝛿) ≤ 𝑒
− 𝛿2

2| | (𝑈 Σ†𝑇𝑊𝑇 )𝑎 | |2
2 ≤ 𝑒

− 𝜆𝛿2

2𝐿2 , (10)

where 𝐴𝑡 = 𝑈𝑡Σ𝑡𝑊
𝑇
𝑡 by SVD and 𝐴𝑡 is the stack of previously

pulled arm vector till 𝑡 , and Σ†𝑡 is the pseudo-inverse of Σ𝑡 , 𝑒 (𝑎, 𝑥) =
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ˆ𝜃 − 𝜃∗

)𝑇
𝑎, and 𝑡 is the number of training samples with 𝑡 > 𝑑 , and

𝜆 is the smallest eigenvalue of 𝐴𝑇𝐴 with 𝜆 > 0, and 𝐴 is the stacked
matrix of all the arm vectors.

Lemma 5 shows that we can transform the linear bandit prob-

lem into a stochastic bandit style with varying reward variances.

Specifically, each arm 𝑎𝑖 in the bandit instance follows the Gauss-

ian distributionN
(
𝜃∗𝑇𝑎𝑖 , | | (𝑈𝑡Σ†𝑇𝑡 𝑊𝑇

𝑡 )𝑎 | |22
)
, and themean is fixed

but the variance is varying. We will provide the relationship be-

tween the smallest eigenvalue of 𝐴𝑡 and 𝐴 in Section B.1. Thus, we

can consider linear retrieval as a specific type of stochastic bandit,

which will be analyzed in Section 4.2.

Theorem 2 (Regret Upper Bound of Algorithm 2). Consider
the two-stage bandit algorithm presented in Algorithm 2 applied to
a 𝑘-armed 1-sub-Gaussian bandit problem. For a horizon 𝑛, with
probability at least (1 − 1

𝑛2
− 𝛿2), the regret is bounded by

𝑅(𝑛) ≤ 8(𝑘 − 1)𝐿2

ℎ𝜆Δ̄

(
1 + log

(
𝛾𝑛ℎ𝜆Δ̄2

8(𝑘 − 1)𝐿2

))
+ (2𝑘 − 1)Δ̄ + 𝑅2 (𝑛,ℎ),

where 𝑅2 (𝑛,ℎ) is the regret of a ℎ−armed bandit algorithm with
horizon 𝑛, 𝛾 =

( 𝑘−1

⌈ 𝑘−1

2
⌉
)
· (𝑘 − ℎ), and 𝜆 is the smallest singular value

of the matrix 𝑉 = 𝐴𝑇𝐴.

4.3 Lower Bound
In this subsection, we establish the minimax lower bound for our

two-stage bandit problem. The underlying principle for proving

the lower bound involves constructing two bandit instances that

share similarities but possess distinct optimal arms [18]. In such

scenarios, distinguishing between instances from a finite-length

sequence becomes challenging. This challenge arises from the na-

ture of the problem settings rather than the characteristics of the

algorithms employed. Through employing rigorous mathematical

techniques, it becomes feasible to derive the lower bound for the

sum of cumulative regrets in these two instances. Consequently,

we obtain the lower bound for the regret of the two-stage bandit

problem. In the subsequent analysis, we adhere to this fundamental

approach to introduce and establish the lower bound.

Firstly, before deriving the regret lower bound, we introduce the

divergence decomposition lemma [18].

Lemma 6 (DivergenceDecomposition [18]). Let𝜈 = (𝑃1, . . . , 𝑃𝑘 )
be the reward distributions associated with one𝑘-armed bandit, and let
𝜈 ′ = (𝑃 ′

1
, . . . , 𝑃 ′

𝑘
) be the reward distributions associated with another

𝑘-armed bandit. Fix some policy 𝜋 and let P𝜈 = P𝜈𝜋 and P𝜈 ′ = P𝜈 ′𝜋
be the probability measures on the canonical bandit model induced by
the n-round interconnection of 𝜈 and 𝜋 , (respectively 𝜈 ′ and 𝜋 ). Then,

𝐷 (P𝜈 , P𝜈 ′ ) =
𝑘∑︁
𝑖=1

E𝜈 [𝑇𝑖 (𝑛)]𝐷 (𝑃𝑖 , 𝑃 ′𝑖 ) .

Lemma 6 suggests that the relative entropy between measures

in the canonical bandit model can be decomposed as the sum of

divergences between the reward probabilities of each arm.

Next, with Lemma 6, we show that the regret of the two-stage

bandit problem is at least Ω
(√︁

𝑛𝑘/ℎ
)
.

Theorem 3 (Minimax Lower Bound). Let 𝑟 ∈ [0, 1], then for
any policy:

𝑅(𝑛) ≥ 1

24

√︂
2𝑛(𝑘 − 1)

𝑒ℎ
+ 𝑅2 (𝑛,ℎ),

where 𝑅2 (𝑛,ℎ) is upper-bounded of the second stage.

The proof of Theorem 3 is given in Section B.2. Theorem 3

demonstrates that the regret increases with 𝑘 and decreases with

ℎ. This aligns with the intuition that if fewer items are retrieved,

there is a higher likelihood that the most preferred item remains

unexplored, contributing to an increase in regret.

5 EVALUATION
5.1 Synthesis Data
5.1.1 Setup. We establish an environment with 𝑘 = 100 arms,

where each arm’s context is a 𝑑𝑒 = 10 dimensional vector, and

rewards are generated from Gaussian distributions. Specifically, we

randomly generate an arm matrix 𝐴 ∈ R𝑛×𝑑𝑒 with full rank and

create a target model 𝜃∗. The reward for arm 𝑖 is sampled from

a Gaussian distribution N(𝜃∗𝑇𝑎𝑖 , 0.1). For the first-stage features,
we extract the first 𝑑𝑐 = 5 dimensions of 𝐴, forming a matrix 𝐴𝑐 ∈
R100×5

. The experiment is conducted with a horizon of 𝑛 = 1000,

and the results for each setting represent the average over 100

independent experiments.

To compare the regret between one-stage and two-stage algo-

rithms, we choose LinUCB and 𝜖-Greedy as the second-stage al-

gorithms. For the first stage, we select LinUCB, 𝜖-Greedy, and uni-

formly random selection. We fix ℎ = 5 for each two-stage algorithm.

In this experiment, 𝜖 = 0.1 for all 𝜖-Greedy implementations, and

𝜆 = 0.01 for all LinUCB implementations.

To assess the impact ofℎ on the cumulative regret of Algorithm 2,

we vary ℎ from {5, 10, 15, 20, 25} while keeping other settings con-

sistent with the previous experiment.

To illustrate the necessity of exploration strategy, we design an

experiment based on two-stage 𝜖-Greedy by tuning the 𝜖 of the

first stage while fixing 𝜖 = 0.1 for the second stage. We select 𝜖

from {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8}.

5.1.2 Results and Discussion. Figure 1a depicts the regret of various
one-stage and two-stage bandit algorithms on the synthetic data.

The legend in Figure 1a follows the format "first stage algorithm +

second stage algorithm." Solid lines represent two-stage algorithms

with conventional bandit algorithms on each stage, dashed lines

denote results with the first stage replaced by the uniformly random

selection method, and dash-dot lines depict conventional one-stage

bandit algorithms serving as the baseline. Comparing solid lines

with corresponding dashed lines reveals that random selection in

the first stage boosts performance, highlighting the importance

of exploration strategy at the first stage. Furthermore, comparing

solid lines with dash-dot lines indicates that, for LinUCB methods,

the two-stage algorithm has a larger cumulative regret than the

vanilla one-stage algorithm. Conversely, for 𝜖-Greedy methods,

employing LinUCB in the first stage results in a better performance

for the two-stage algorithm compared to the one-stage algorithm,

showcasing the superior performance of LinUCB over 𝜖-Greedy.

Figure 1b illustrates the regret of Algorithm 2 with varying ℎ.

Red and green dashed lines represent the theoretical upper and
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(a) Regret comparison among two-stage ban-
dit, random selection in first stage and single-
stage bandit algorithms.

(b) Regret of two-stage bandit with various ℎ,
i.e. the size of candidate set.

(c) Regret of two-stage bandit with 𝜖-Greedy +
LinUCB with various 𝜖 .

Figure 1: Evaluation results on synthesis data.

(a) Regret comparison among al-
gorithms.

(b) Regret of two-stage bandit
with 𝜖1-Greedy + 𝜖2-Greedy.

Figure 2: Evaluation results on MovieLens 1M dataset.

lower bounds, respectively. Generally, the regret decreases with

increasing ℎ, since a larger ℎ makes it more likely for the best arm

to be filtered into the candidate set by the first stage.

Figure 1c emphasizes the significance of exploration strategy at

the first stage using 𝜖-Greedy + LinUCB. When 𝜖 is too large, exces-

sive exploration occurs, causing the first stage to uniformly select

arms and making it less likely to filter the best arm into the candi-

date set, resulting in a large cumulative regret. Conversely, when 𝜖

is too small, the first stage model tends to be stuck, overfitting on

noisy samples in the initial rounds and missing the best arm. The

comparison between these two extreme cases underscores the im-

portance of setting an appropriate 𝜖 for the first stage, highlighting

the significance of exploration strategy in this context.

5.2 MovieLens 1M Dataset
5.2.1 Setup. We use the ratings of MovieLens 1M dataset to con-

struct the environment for bandit. The ratings data can be refor-

mulated as a big sparse matrix 𝑅𝑁1×𝑁2
with missing values where

𝑅𝑖 𝑗 ∈ [0, 1] denotes the rating of user 𝑖 to movie 𝑗 . Then we apply

PMF [25] to complete and factorize𝐴 into𝑈𝑀𝑇
where𝑈 ∈ R𝑁1×𝑑𝑒

and 𝐴 ∈ R𝑁2×𝑑𝑒
. Each row of 𝐴 is viewed as the feature vector of

a movie and each row of 𝑈 is viewed as the target model of the

corresponding user.

We run the experiment on the first 10 users with themost number

of ratings in the original dataset. For each user, we independently

repeat the experiment with a horizon of 𝑛 = 1000 for 100 times

with random initialization and average the results. We set 𝑑𝑒 = 32

for the data preparation. For the first-stage features, we extract the

first 𝑑𝑐 = 16 dimensions of 𝐴.

To compare the regret between one-stage and two-stage algo-

rithms, we choose LinUCB and 𝜖-Greedy as the second-stage al-

gorithms. For the first stage, we select LinUCB, 𝜖-Greedy, and uni-

formly random selection. We fix ℎ = 20 for each two-stage algo-

rithm. In this experiment, 𝜖 = 0.1 for all 𝜖-Greedy implementations,

and 𝜆 = 0.1 for all LinUCB implementations.

To illustrate the necessity of exploration strategy, we design an

experiment based on two-stage 𝜖-Greedy by tuning the 𝜖 of the

first stage while fixing 𝜖 = 0.1 for the second stage. We select 𝜖

from {0, 0.2, 0.4, 0.6, 0.8, 1}.

5.2.2 Results and Discussion. Figure 2a illustrates the regret of

various one-stage and two-stage bandit algorithms on the synthetic

data. The comparison between solid lines and corresponding dashed

lines reveals that random selection in the first stage enhances per-

formance, underscoring the importance of exploration strategy at

the first stage. Furthermore, contrasting solid lines with dash-dot

lines indicates that, for LinUCB methods, the two-stage algorithm

has a larger cumulative regret than the vanilla one-stage algorithm.

Conversely, for 𝜖-Greedy methods, utilizing LinUCB in the first

stage results in better performance for the two-stage algorithm

compared to the one-stage algorithm, highlighting the superior

capabilities of LinUCB over 𝜖-Greedy.

Figure 2b accentuates the significance of exploration strategy

at the first stage using two-stage 𝜖-Greedy. When 𝜖 is too large,

excessive exploration occurs, causing the first stage to uniformly

select arms and reducing the likelihood of filtering the best arm

into the candidate set, resulting in a substantial cumulative regret.

Conversely, when 𝜖 is too small, the first stage model tends to

become stuck, overfitting on noisy samples in the initial rounds and

missing the best arm. The comparison between these two extreme

cases underscores the importance of setting an appropriate 𝜖 for

the first stage, emphasizing the significance of exploration strategy

in this context.
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6 RELATED WORK
6.1 Two-Stage Recommender System
Two-stage recommender systems have found widespread applica-

tion in industries such as YouTube [4] and Pinterest [20]. In this

setup, the first stage filters a candidate set with high precision, gen-

erally deemed relevant to the user, while the second stage ranks the

items for optimal display. Various traditional methods are employed

in the first stage, including collaborative filtering and matrix factor-

ization [5, 25], as well as content-based filtering [27]. Lightweight

designed deep neural networks are also utilized for candidate set

generation [33].

An emerging trend is the deployment of recommender systems

on both cloud and edge collaboratively, aiming to reduce cloud re-

source consumption, latency, and preserve privacy [32]. Alibaba in-

troduced EdgeRec [9], a real-time edge recommender system for the

reranking stage. Yao and Wang et al. [31] presented DCCL, a frame-

work for large-scale on-device recommendation model personal-

ization. Yang et al. [30] addressed the challenge of on-device mod-

els getting stuck when user interests undergo significant changes.

Gong et al. [8] deployed a compact ranking model on devices to

capture real-time feedback.

Several theoretical works have analyzed the performance of two-

stage recommender systems under different settings. Hron and

Krauth et al. [14] considered a different two-stage bandit model

where there are multiple nominators (players) in the first stage ob-

serving partially overlapped action spaces. The study demonstrated

the necessity of synchronizing exploration strategies between the

ranker (second stage player) and the nominators. However, they

did not provide a theoretical analysis of the regret of two-stage

bandits, which is the main contribution of our work. Hron et al. [13]

discovered that independent nominator training could lead to per-

formance comparable to uniformly random recommendations and

found that careful design of item pools, each assigned to a different

nominator, alleviates these issues. Recent work [15] established the

asymptotic characteristics of the two-stage recommender system,

showing the convergence rate in an offline setting, compared with

the online learning setting of our work.

6.2 Bandit in Recommendation
The application of linear contextual bandits to online recommen-

dation was initially introduced by Yahoo [19] for news recommen-

dation. In this context, a news article is considered as an arm, and

a ridge regression model is trained using the LinUCB algorithm

to estimate the CTR for each article. Subsequent approaches in

industrial systems have incorporated various learning algorithms,

including 𝜖-greedy [24], Thompson sampling [3, 12], and others. In

addition to linear models, diverse machine learning models have

been explored, such as leveraging deep neural networks to capture

KPIs and associated uncertainties [7], as well as employing deep

Bayesian models [10].

Another line of research involves understanding user choice

whenmultiple items are recommended, compared to single-item rec-

ommendation [19]. The cascade model [17] simplifies user choice,

assuming evaluation of items from position 1 to 𝑘 , clicking on the

first satisfying item. Subsequent works extend this to allow mul-

tiple clicks with satisfaction probabilities [16] and captures CTR

as the product of user preference and display position scores [35].

Industry practices also focus on designing algorithms for delayed

feedback scenarios [1, 3].

Bandit algorithms find application in the two-stage recommen-

dation framework as well. Apple [21] proposed a two-layer bandit

framework for recommending items on top of search results. A

Lower Confidence Bound (LCB) based method is employed in the

first stage to prevent distracting users from search results.

7 CONCLUSION
In this paper, we delve into the theoretical analysis of the two-stage

multi-armed bandit problem. We conduct a theoretical analysis of

the optimization objective design for the first stage and propose a

UCB-based two-stage bandit algorithm. Our algorithm is proven to

achieve a gap-dependent regret upper bound of𝑂 ( 1

Δ̄
log𝑛Δ̄2), while

the gap-independent lower bound for this problem is established

to be Ω(
√
𝑛).

A APPENDIX
Here we provide the missing proofs in the main text

1
.

A.1 Related Proofs for Theorem 1
To start with, we prove the second claim first. To show that 𝐸𝑐

happens with low probability, we employ the following lemmas to

show that 𝐹𝑐
𝑗
and 𝐹𝑐 happens with low probabilities first.

Lemma 7 (Bound of the Probability of 𝐹𝑐
𝑗
[18]). Under the

assumption that the reward of each arm follows an 1-sub-Gaussian
distribution, the probability of the event 𝐹𝑐

𝑗
for sub-optimal arm 𝑗 is

upper bounded by

P(𝐹𝑐𝑗 ) ≤ exp

(
−
𝑢 𝑗𝑐

2Δ2

𝑗

2

)
,

where Δ 𝑗 = 𝜇1−𝜇 𝑗 is the gap between arm 𝑗 and the optimal arm, 𝑐 ∈

(0, 1) is a hyper-parameter to be chosen later and Δ 𝑗 −
√︂

2 log(1/𝛿1 )
𝑢 𝑗

≥
𝑐Δ𝑖 .

Lemma 8 (Boundof the Probability of

{
𝜇1 ≥ min𝑡 ∈[𝑛] 𝜇1,𝑡

}
[18]).

Under the assumption that the reward of each arm follows an 1-sub-
Gaussian distribution, the probability of the event 𝐹𝑐

𝑗
for sub-optimal

arm 𝑗 is upper bounded by

P

({
𝜇1 ≥ min

𝑡 ∈[𝑛]
𝜇1,𝑡

})
≤ 𝑛𝛿1 .

With Lemma 7 and Lemma 8, we can now derive the bound of

the probability of 𝐸𝑐 .

Proof of Lemma 1. First, we decompose the event 𝐹𝑐 . Since the

𝐹𝑐 indicates that there are at least ℎ arms over-estimated, we enu-

merate all the possible cases such that there are ℎ to 𝑘 − 1 arms

over-estimated. It is worth noticing that all these cases are disjoint.

1
More proof details are provided in https://drive.google.com/file/d/

1t6Z7VXcZxm4jF2FPdDkIRBDbGHXYP5rT/view?usp=drive_link
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Thus, we can decompose the probability of P(𝐸𝑐 ) using a sum of

probabilities, such that

P(𝐹𝑐 ) =
𝑘−1∑︁
𝑖=ℎ

∑︁
𝑗∈T𝑖 ,T𝑖⊆A, | T𝑖 |=𝑖

∏
𝑗∈T𝑖
P(𝐹𝑐𝑗 )︸      ︷︷      ︸
T1

∏
𝑚∈A\{1}\T𝑖

(1 − P(𝐹𝑐𝑚))︸                         ︷︷                         ︸
:=T2

≤
𝑘−1∑︁
𝑖=ℎ

(𝑘−1

𝑖

)
P

(
𝐹𝑐

)𝑖
≤

( 𝑘−1

⌈ 𝑘−1

2
⌉
)
· (𝑘 − ℎ) · exp

(
−𝑢𝑐

2Δ̄2ℎ

2

)
= 𝛾 · exp

(
−𝑢𝑐

2Δ̄2ℎ

2

)
,

where P
(
𝐹𝑐

)
= max𝑗∈A\{1} P(𝐹𝑐𝑗 ). We obtain the second line by

relaxing T2 to 1 since 1−P(𝐹𝑐𝑚) < 1, and take the maximum possible

P(𝐹𝑐
𝑗
) to relax T1. The third line is obtained by using Lemma 7, and

then taking the maximum over 𝑢 𝑗 , Δ 𝑗 and the number of combina-

tions. It is worth noticing that 𝑢 and Δ̄ may not be corresponded to

the same arm.

By putting Lemma 8 and P(𝐹𝑐 ) together, we obtain Equation (8).

□

Proof of Lemma 2. Let 𝑋 denote the training set with distinct

feature vectors, and let 𝑎 ∈ 𝑋 be a feature vector. The variance of

the prediction error of 𝑎 is 𝜎 = ∥𝑈 Σ†𝑇𝑊𝑇𝑎∥2, where 𝑎 is stacked

into 𝑋 . Suppose we sample one more label of 𝑎 in an extended

training set 𝑋+. Then the variance of the prediction error becomes

𝜎+ = ∥𝑈+Σ†𝑇+ 𝑊𝑇
+ 𝑎∥2. Assume, for the sake of contradiction, that

𝜎 < 𝜎+. This implies 𝑡𝑟𝑎𝑐𝑒 (Σ†𝑇 ) ≤ 𝑡𝑟𝑎𝑐𝑒 (Σ†𝑇+ ), leading to ∥Σ∥𝐹 >

∥Σ+∥𝐹 . Since 𝑋+ has one more vector than 𝑋 , ∥Σ∥𝐹 ≤ ∥Σ∥, which
results in a contradiction. □

Proof of Lemma 3. If 𝐸 is true, 𝐹 and

{
𝜇1 < min𝑡 ∈[𝑛] 𝜇1,𝑡

}
are

true. Then there are at least 𝑘 − 1 − ℎ and at most 𝑘 − 1 sub-

optimal arms, for example, arm 𝑖 , such that 𝐹𝑖 is true. Let 𝐺𝑖 ={
𝜇1 < min𝑡 ∈[𝑛] 𝜇1,𝑡

}
∧ 𝐹𝑖 . Suppose that there is a single-bandit

instance with the arms A′ ⊆ A, {1, 𝑖} ⊆ A′ and vanilla UCB

algorithm, and it has been proven by [18] that 𝑇 ′
𝑖
(𝑛) ≤ 𝑢𝑖 if 𝐺𝑖 is

true where𝑇 ′
𝑖
(𝑛) is the times that arm 𝑖 is pulled in this single-stage

instance. We notice that

𝑇 ′𝑖 (𝑛) =
𝑛∑︁
𝑡=1

1(𝑎′𝑡 = 𝑖 |A′),

𝑇𝑖 (𝑛) =
𝑛∑︁
𝑡=1

1(𝑖 ∈ S𝑡 )1(𝑎𝑡 = 𝑖 |S𝑡 ) (1(1 ∈ S𝑡 ) + 1(1 ∉ S𝑡 ))

≤ 𝑇 ′𝑖 (𝑛) +
𝑛∑︁
𝑡=1

1(𝑖 ∈ S𝑡 )1(𝑎𝑡 = 𝑖 |S𝑡 )1(1 ∉ S𝑡 ),

where the inequality holds because when 1(𝑖 ∈ S𝑡 )1(𝑎𝑡 = 𝑖 |S𝑡 ) =
1, the second stage can be viewed as the instance A′. Although
Lemma 5 shows that the variance of the empirical mean of an arm

has a potentially large upper bound for infinitely many arms, in

the bandit instance with fixed finitely many arms, the variance is

still 𝑂 (1/𝑢𝑖 ) which can be deduced by Lemma 2. Thus the result

in [18] that when 𝐺𝑖 happens, the arm 𝑖 is played for at most 𝑢𝑖

times still holds. Thus,

𝑇 (𝑛) =
∑︁

𝑖∈A\{1}
𝑇𝑖 (𝑛)

≤ (𝑘 − 1)𝑢 +
∑︁

𝑖∈A\{1}

𝑛∑︁
𝑡=1

1(𝑖 ∈ S𝑡 )1(𝑎𝑡 = 𝑖 |S𝑡 )1(1 ∉ S𝑡 )

= (𝑘 − 1)𝑢 +
𝑛∑︁
𝑡=1

1(1 ∉ S𝑡 ) ≤ 2(𝑘 − 1)𝑢,

where the last inequality holds becausewhen every time the optimal

arm 1 is not in S𝑡 , there is a sub-optimal arm played. So the total

times that 1 ∉ S𝑡 should not be larger than the times that sub-

optimal arms are played. □

Proof of Lemma 4. We denote 𝑇 (𝑛) by the times that the op-

timal arm is not played in horizon 𝑛. Because 𝑇 (𝑛) ≤ 𝑛, this will

mean that

E[𝑇 (𝑛)] = E[I{𝐸}𝑇 (𝑛)] + E[I{𝐸𝑐 }𝑇 (𝑛)] ≤ 2(𝑘 − 1)𝑢 + P(𝐸𝑐 )𝑛.
(11)

Similarly, the regret can also be regarded as the composition of the

regret when 𝐸 occurs and when it does not.

𝑅(𝑛) ≤
𝑛∑︁
𝑡=1

Δ̄ · I{1 ∉ S𝑡 } + 𝑟2,𝑡I{1 ∈ S𝑡 } ≤ Δ̄ · E[𝑇 (𝑛)] + 𝑅2 (𝑛,ℎ) .

(12)

Equation (12) indicates that the regret can be decomposed into two

terms. The first term represents the upper bound of regret when

the first stage fails to filter the best arm into the candidate set. The

second term represents the complementary case. Since the event

that the best arm is in the candidate set should happen with a high

probability, we relax this probability to 1 to ease the analysis.

Substituting Equation (11) in Equation (12), then the result is

obtained. □

Proof of Theorem 1. By substituting Equation (8) into Equa-

tion (4), we get

𝑅(𝑛, 𝑘) ≤ Δ̄ ·
(
2(𝑘 − 1)𝑢 + 𝑛

(
𝑛𝛿1 + 𝛾 exp

(
−𝑢ℎ𝑐

2Δ̄2

2

)))
+ 𝑅2 (𝑛,ℎ) .

Let 𝑢 =

⌈
2

ℎ𝑐2Δ2
log

(
𝛾𝑛ℎ𝑐2Δ̄2

4(𝑘−1)

)⌉
+ 1,

𝑅(𝑛, 𝑘) ≤ Δ̄ ·
(
2(𝑘 − 1)

⌈
2

ℎ𝑐2Δ2
log

(
𝛾𝑛ℎ𝑐2Δ̄2

4(𝑘 − 1)

)⌉
+ 𝑘 + 4(𝑘 − 1)

ℎ𝑐2Δ̄2

)
+ 𝑅2 (𝑛,ℎ)

≤ 4(𝑘 − 1)
ℎ𝑐2Δ̄

(
1 + log

(
𝛾𝑛ℎ𝑐2Δ̄2

4(𝑘 − 1)

))
+ (2𝑘 − 1)Δ̄ + 𝑅2 (𝑛,ℎ)

≤
𝑐=1/2

16(𝑘 − 1)
ℎΔ̄

(
1 + log

(
𝛾𝑛ℎΔ̄2

16(𝑘 − 1)

))
+ (2𝑘 − 1)Δ̄ + 𝑅2 (𝑛,ℎ) .

Then we discuss the probability that the upper bound holds. The

right-hand side of Equation (9) can be viewed as 𝑅1 +𝑅2. We denote

the event that 𝑅𝑖 holds as 𝐽1 and the event that 𝑅2 holds as 𝐽2. The

probability of each event is 1 − 𝛿1 and 1 − 𝛿2, respectively. Then

the probability of 𝑅1 + 𝑅2 holds is P(𝐽2 ∧ 𝐽1) = 1 − P(𝐽𝑐
1
∨ 𝐽𝑐

2
) ≥

1 − (P(𝐽𝑐
1
) + P(𝐽𝑐

2
)) ≥ 1 − 𝛿1 − 𝛿2. □
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