
Delta: A Cloud-assisted Data Enrichment Framework
for On-Device Continual Learning

Chen Gong

Shanghai Jiao Tong University

Zhenzhe Zheng

Shanghai Jiao Tong University

Fan Wu

Shanghai Jiao Tong University

Xiaofeng Jia

Beijing Big Data Centre

Guihai Chen

Shanghai Jiao Tong University

Abstract
In modern mobile applications, users frequently encounter

various new contexts, necessitating on-device continual learn-

ing (CL) to ensure consistent model performance. While ex-

isting research predominantly focused on developing light-

weight CL frameworks, we identify that data scarcity is a

critical bottleneck for on-device CL. In this work, we explore

the potential of leveraging abundant cloud-side data to en-

rich scarce on-device data, and propose a private, efficient

and effective data enrichment framework Delta. Specifically,
Delta first introduces a directory dataset to decompose the

data enrichment problem into device-side and cloud-side

sub-problems without sharing sensitive data. Next, Delta
proposes a soft data matching strategy to effectively solve

the device-side sub-problem with sparse user data, and an

optimal data sampling scheme for cloud server to retrieve the

most suitable dataset for enrichment with low computational

complexity. Further, Delta refines the data sampling scheme

by jointly considering the impact of enriched data on both

new and past contexts, mitigating the catastrophic forget-

ting issue from a new aspect. Comprehensive experiments

across four typical mobile computing tasks with varied data

modalities demonstrate that Delta could enhance the over-

all model accuracy by an average of 15.1%, 12.4%, 1.1% and

5.6% for visual, IMU, audio and textual tasks compared with

few-shot CL, and consistently reduce the communication

costs by over 90% compared to federated CL.
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1 Introduction
Machine learning (ML) models have become the indispens-

able components in modern mobile applications and services,

such as image tagging in Google Smart Lens [3], speech

recognition in Siri [30], text summarization and rewriting in

Apple Intelligence [1] and etc. In a wide range of mobile appli-

cations, users encounter dynamic contexts in their daily lives

and exhibit varying behaviors, leading to a non-stationary

data distribution observed and collected by mobile devices.

Consequently, on-device ML models are expected to evolve

incrementally as new contextual data becomes available.

This evolution, known as continual learning (CL) [66, 70],
enables on-device ML models to gradually learn individual

user preferences in different contexts and behaviors, and

thus becoming more personalized and intelligent over time.

Unlike conventional ML built on the premise of learning

static data distributions, CL involves learning from dynamic

data distributions. A significant challenge in CL is balancing

the model’s learning plasticity (i.e. ability to assimilate new

knowledge from emerging context) and memory stability

(i.e. ability to preserve past knowledge from historical con-

texts). For cloud servers with abundant hardware and data

resources, many CL approaches have been proposed to ad-

dress this challenge, such as regularizing model parameter

updates [34, 82], replaying historical data [15, 42, 44] and

designing context-adaptive model architectures [38, 48, 60].

For resource-constrained devices, previous research focused
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on optimizing the usage of limited hardware resources to

facilitate the efficient on-device deployment of cloud-side CL

solutions [26, 36], such as saving storage through data quan-

tization [29, 56], accelerating data loading via hierarchical

memory management [39, 46], and speeding up computation

by optimizing the allocation of hardware resources [35, 40].

Data Bottleneck on Mobile Devices. However, we iden-
tify that the scarce data resource on mobile devices is the key

bottleneck for on-device CL. First, data scarcity is a pervasive
issue across various mobile applications. For example, for im-

age analysis applications, an average European citizen takes

only 4.9 photos daily [10]. For virtual assistant applications,

a mere 16% of iPhone users reports using Siri several times

a day [84]. Second, the utilization of data resources funda-
mentally determines the performance ceiling for on-device CL,
whereas the optimization of hardware resources only influ-

ences the efficiency with which this ceiling can be reached.

On one hand, limited data resources for a single context often

results in the well-known issue of model overfitting [25, 79].

On the other hand, the inadequate data resources for both

past and new contexts exacerbate the mutual interference

between their learning processes, which impedes knowledge

transfer for new context and deteriorates the model perfor-

mance on past contexts, a phenomenon commonly referred

to as catastrophic forgetting [20, 34, 50].

Limitation of Existing Work. To tackle the challenge
of data scarcity for CL, few-shot CL and federated CL are two

representative approaches to mitigate the issues of overfit-

ting and catastrophic forgetting from the aspects of model

initialization and training algorithms (elaborated in §2.2).

(1) Few-shot CL [49, 61, 69] involves pre-training ML models

on common contexts with extensive data to capture gen-

eral knowledge, which can be transferred to new contexts

throughmodel initialization and transfer learning techniques.

However, this approach is ineffective for on-device settings

due to the unpredictability and diversity of upcoming user

contexts. (2) Federated CL [19, 80] suggests leveraging a cloud
server to periodically aggregate the local models trained on

distributed devices, which mitigates the overfitting problem

on a single device and enables knowledge transfer across

multiple devices. However, the model performance and con-

vergence rate of federated CL are sensitive to device partici-

pation rate and data heterogeneity across devices [23, 41, 63],

leading to high communication overhead and unstable train-

ing process for real-world applications.

Our Motivation. The data bottleneck of mobile devices

coupled with the limitations of existing approaches motivate

us to consider leveraging the abundant cloud-side data re-

sources to enrich the sparse device-side data, fundamentally

addressing the data scarcity problem. As we will elaborate

in §2.2, simply increasing the training data size from 10 to 50

can yield a 10% improvement in model accuracy compared to

the best few-shot CL approach, while incurring less than 5%

communication costs compared with federated CL. The fea-

sibility of such a cloud-assisted data enrichment framework

is underpinned by two key observations: (1) Abundant cloud-
side data resource. Cloud servers typically possess exten-

sive datasets sourced from various channels, such as public

datasets released by organizations (e.g. ImageNet [59]), open-

source data crawled from the Internet webs (e.g. Common

Crawl [2]), crowdsourced data contributed by authorized

mobile users (e.g. DonateClient service of Huawei [54] and
learn from this app in Apple [6]). (2) Similarities among user
contexts and behaviors. Previous investigations have demon-

strated that the preferences and behaviors of different mobile

users in various contexts share similar patterns rather than

being entirely unique [7, 24, 45]. This indicates the existence

of a cloud-side data-subset that exhibits a similar distribution

with the device-side data, offering an opportunity to enhance

on-device CL performance.

Challenges. A feasible data enrichment framework for

practical on-device CL needs to be private, effective and effi-
cient, which are challenging to be achieved simultaneously.

• Privacy vs. Efficiency. In contemporary mobile applications,

user data stored on devices is subject to stringent privacy

regulations like GDPR [53]. However, to enrich device-side

data with an optimal data-subset from cloud, one must either

upload raw user data to the cloud for precise similarity com-

parison [76], or download numerous data-subsets from cloud

and conduct trial-and-error processes to identify the appro-

priate data-subset [14]. Therefore, achieving efficient data

enrichment without violating user privacy is challenging.

• Effectiveness vs. Efficiency for New Context. Given the di-

verse sources of cloud-side data, a randomly selected data-

subset is likely to deviate significantly from the device-side

data distribution, thereby degrading the CL performance

over personal contexts. However, to identify the data-subset

with the highest data enrichment performance for on-device

CL, the cloud server needs to evaluate an exponential number

of candidate data-subsets from the vast cloud-side dataset,

which introduces prohibitively high time complexity and

computational burden. Consequently, simultaneously reach-

ing high effectiveness and efficiency poses another challenge.

• Effectiveness for Both Past and New Contexts. As the data
distributions of new contexts encountered by mobile users

are dynamic, independently conducting data enrichment

for each emerging context would compromise the on-device

model’s memory stability over past contexts, as themutual in-

terference among different contexts’ learning processes can

be escalated. Additionally, there is a lack of theoretical analy-

sis or insight into the correlation between the enriched data

of new context and model performance over past contexts,

which further complicates the data enrichment problem for
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CL. Therefore, designing a data enrichment strategy that is

effective for both new and past contexts is challenging.

Our Design. We propose Delta, a cloud-assisted data en-

richment framework designed for on-device CL with high

privacy protection, efficiency and effectiveness. First, we

provide a generic formalization of the data enrichment prob-

lem for on-device CL, and analyze its practical challenges

concerning user privacy and computation efficiency. Second,

to mitigate privacy concerns, we propose the construction

of a compact “directory” dataset for cloud-side data. This

approach helps to decompose the original data enrichment

problem into two sub-problems, which can be independently

solved by mobile device and cloud server without necessitat-

ing the exchange of sensitive raw data. Third, to achieve both

efficient and effective data enrichment for each new context,

we develop a soft data matching strategy to accurately solve

the device-side sub-problem with sparse on-device data, and

a theoretically optimal data sampling scheme for cloud-side

data selection, which can be computed with a constant time

complexity. Fourth, to maintain high effectiveness across

both new and past contexts, we theoretically analyze the im-

pact of new context’s enriched data on model performance

over all contexts, and re-optimize cloud-side data sampling

strategy from a holistic perspective.

Contributions of this work are summarized as follows:

• We identify the data bottleneck in on-device CL for dy-

namic user contexts, and explore the potential of utilizing

cloud-side abundant data to enrich device-side data.

•We formalize the data enrichment problem for on-device

CL and propose the first practical cloud-assisted data en-

richment framework that simultaneously achieves privacy

protection, effectiveness and efficiency.

•We evaluate Delta across four typical mobile computing

tasks with diverse data modalities and models, demonstrat-

ing its broad applicability and superior performance over

baselines in overall accuracy and communication efficiency.

2 Background and Motivation
2.1 On-Device Continual Learning
In mobile applications, users often encounter dynamic con-

texts and exhibit varying behaviors, leading to a non-stationary

distribution of data collected by devices. For example, mobile

users can encounter unseen objects, weather conditions and

digital corruptions in image analytics applications [9, 33],

experience new activities, physical conditions and device

placements in human activity recognition (HAR) applica-

tions [37], or come across articles on various topics and in

different languages in text analysis applications [32]. These

applications necessitate timely and accurate responses from

on-device ML models to ensure high service quality, driving

Figure 1: On-device continual learning pipeline.

the need for on-device CL. Figure 1 depicts the four stages a

new context undergoes in on-device CL.

• Context Detection: When a new context is experienced by

the user, it can be detected by mobile device through existing

human-involved or automatic approaches [9, 33, 78]. For

example, in HAR application, the former approach would

suggest users to confirm a new activity, whereas the latter

would detect a shift in sensor data distribution [78].

• Data Collection: For each new context, data samples fol-

lowing a new distribution are collected by mobile device as

training data for the subsequent on-device CL process. In

mobile applications, the data collected from an individual

user’s daily life is sparse, personalized and private, such as

photos taken by user or interactions with a virtual assistant.

• Enhancement: Prior to conducting on-device CL for a new

context, various enhancement techniques need to be applied

to mitigate the severe impact of data scarcity, such as few-

shot CL based on model initialization and federated CL ap-

proaches based on training algorithms. Our work focuses on
the design of this stage from the data perspective.
• Continual Learning: The training data of both new and past

contexts are mixed to update the on-device model, which

has been recognized as one of the most effective methods to

assimilate knowledge from new contexts without forgetting

the knowledge of past contexts
1
[11, 39, 44, 46, 55].

2.2 Limitation of Existing Approaches
In this section, we elaborate the limitations of existing few-

shot CL and federated CL approaches in mitigating device-

side data scarcity problem through preliminary experiments
2
.

Few-shot CL [49, 61, 83] proposes pretraining ML models

on base contexts with massive public data to capture gen-

eral knowledge, which is then transferred to new contexts

through transfer learning techniques. Representative meth-

ods include: 1) knowledge distillation [83] (FS-KD), which
distills past contexts’ knowledge to the new context’s model

by keeping the model outputs of historical data samples

unchanged, 2) robust optimization [61] (FS-RO), which con-

strains model parameters within the common flat minima of

1
It is noteworthy that our data enrichment framework can also benefit

other classic CL approaches, such as parameter regularization [34, 82] and

context-adaptive model architectures [48, 60], as illustrated in §7.

2
The detailed experimental settings are introduced in §6.1.
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(a) Performance of few-shot CL approaches without (■) and with (□) prior

information on user contexts, and performance of vanilla CL with different

amount of available training data (Vanilla-𝑛×).
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(b) Communication cost and accuracy of federated CL with varying

device participation rates and data heterogeneity degree (Fed-𝑝 denotes

that 𝑝×100% devices hold data from different contexts).

Figure 2: Preliminary experiments on image classification task to illustrate the limitations of existing solutions.

all contexts’ training objective functions, and 3) parameter

freezing [49] (FS-PF), which freezes the important parame-

ters with high value of the previously trained model.

However, most of these few-shot CL approaches depend

on a powerful model pre-training process, which pretrain

either a large model on data from diverse contexts to fully

capture the general knowledge, or a tiny model on a cus-

tomized dataset to learn personalized knowledge. Unfortu-

nately, both of them are impractical for on-device scenarios

due to limited hardware resources and unpredictable con-

texts. On one hand, the limited memory and computational

capabilities of mobile devices restrict the size and capacity

of deployed models, impeding effective model pretraining

over diverse data. On the other hand, the uncertainty of fu-

ture user contexts prevents the pre-selection of a tailored

data-subset for pretraining before model deployment. Our

preliminary experiments shown in Figure 2(a) reveal that the

performance of few-shot CL declines significantly without

prior information on user contexts, with model accuracy

reduction ranging from 8.6−15.3% for FS-PF, 1.9−7.9% for

FS-RO and 3.9−7.2% for FS-KD. In contrast, simply increasing

the training data size to 50 can outperform all few-shot CL

approaches, underscoring the potential of data enrichment.

Federated CL [19, 80] utilizes a cloud server to period-

ically aggregate the parameters of models trained on dis-

tributed devices, thereby mitigating the overfitting issue on

individual devices and facilitating knowledge transfer across

multiple devices. However, the substantial communication

overheads and unstable model training process render fed-

erated CL impractical for mobile devices. First, the frequent

exchange of model parameters between mobile devices and

the cloud server incurs significant communication costs and

prolongs the wall-clock training time for on-device models.

Second, the model performance of federated CL is relatively

sensitive to the device participation rate (or amount) and

the data heterogeneity across devices [41, 63]. Experimental

results shown in Figure 2(b) indicate that: 1) Federated CL

achieves superior performance only when ≥ 20% devices par-

ticipate in each round of model aggregation or when more

than ≥ 30% mobile users experience similar contexts, which

can be unrealistic in real-world settings; 2) In comparison

to federated CL, transmitting data with a suitable distribu-

tion from cloud to each device could reach the same target

accuracy with communication costs reduced to less than 1%.

3 Problem Definition
In this section, we present a generic formalization of the

cloud-assisted data enrichment problem for on-device CL.

We consider a scenario where a mobile user sequentially

encounters 𝑇 new contexts. Each context 𝑡 =1, . . . ,𝑇 has an

underlying data distribution D𝑡
𝑑𝑒

and the device collects an

empirical dataset D̂𝑡
𝑑𝑒

for training on-device model. Due to

the scarcity of user data, a similar data-subset S𝑡 is expected
to be retrieved from the cloud-side dataset D𝑐𝑙 to enrich the

on-device empirical dataset D̂𝑡
𝑑𝑒

and thereby enhance the

CL performance.

To assess the effectiveness of data enrichment, we first de-

fine a metric to evaluate the similarity between two datasets

in terms of their impacts on the model training process. In

on-device CL, model parameters are typically fine-tuned by

on-device data via gradient descent methods. Therefore, the

similarity between two datasets D1 and D2 with respect

to the training process of model 𝜃 can be quantified by the

maximal difference between the average gradients ofD1 and

D2 within a nearby parameter space {𝜃 ′ | ∥𝜃 ′−𝜃 ∥≤ 𝜖}:

𝑆𝑖𝑚(D1,D2 |𝜃 ) ≜ − max

∥𝜃 ′−𝜃 ∥≤𝜖

����∇𝐿(D1, 𝜃
′) − ∇𝐿(D2, 𝜃

′)
����,

(1)

where 𝐿(D, 𝜃 ) = E(𝑥,𝑦) ∈D
[
𝑙 (𝑥,𝑦, 𝜃 )

]
denotes the expected

loss of model 𝜃 over dataset D. A high similarity between

two datasets D1 and D2 implies their comparable perfor-

mance in updating model parameters for multiple steps, re-

sulting in similar impacts on on-device model training.

Problem Formulation. For each new context 𝑡 , the cloud

server aims to select the most similar data-subset S𝑡,∗ ⊆D𝑐𝑙
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to update the current on-device model 𝜃 𝑡−1
in a similar way

with the device-side underlying data distributionD𝑡
𝑑𝑒
, which

means that S𝑡,∗ and D𝑡
𝑑𝑒

should exhibit high similarity as

measured by the metric in Equation (1). Consequently, the

data enrichment problem can be formally expressed as:

S𝑡,∗ = arg max

S𝑡 ⊆D𝑐𝑙 , |S𝑡 | ≤𝐵
𝑆𝑖𝑚(S𝑡 ,D𝑡

𝑑𝑒
| 𝜃𝑡−1)

≈ arg max

S𝑡 ⊆D𝑐𝑙 , |S𝑡 | ≤𝐵
𝑆𝑖𝑚(S𝑡 , D̂𝑡

𝑑𝑒
| 𝜃𝑡−1),

(2)

where 𝐵 represents the maximum allowable size of the se-

lected data-subset and is constrained by the communication

cost budget of each device. This formulation enables the

device to enhance model training performance by expand-

ing the training data from the collected dataset D̂𝑡
𝑑𝑒

to the

enriched larger-scale dataset S𝑡 , while ensuring that the

enriched data follows a similar distribution.

Practical Challenges. Directly solving the data enrich-

ment problem in Equation (2) brings severe privacy con-

cerns for mobile users and high computational burden for

cloud server. First, the mobile device needs to upload both

the current model 𝜃 𝑡−1
and raw user data D̂𝑡

𝑑𝑒
to the cloud

server, which poses a severe breach of user privacy. Sec-

ond, the cloud server has to compute the similarity score

𝑆𝑖𝑚(S𝑡 , D̂𝑡
𝑑𝑒
|𝜃 𝑡−1) for every possible data-subset S𝑡 ⊆D𝑐𝑙 ,

|S𝑡 | ≤𝐵, resulting in exponential computation complexity.

4 Framework Design
Delta incorporates three key components to render data

enrichment systematically practical: the construction of a

directory dataset to address privacy concerns (§4.1), device-

side soft data matching strategy coupled with a cloud-side

data sampling scheme to efficiently and effectively enrich

data for new contexts (§4.2), and a re-optimization of the

cloud-side data sampling to further enhance its effectiveness

across both past and new contexts (§4.3). Each component is
inspired and supported by theoretical analysis presented in §5
and the overall design rationale is illustrated in Figure 3.

4.1 Directory Dataset Construction
To address privacy concerns, Delta introduces the concept
of “directory” dataset, which facilitates decomposing the

data enrichment problem (2) into two sub-problems, and

allows the device and cloud to collaboratively solve the sub-

problems without the need to share raw user data.

Design Rationale. Inspired by the directory structures in
storage systems [16], Delta constructs a compact directory

dataset consisting of a few data samples to represent the ex-

tensive cloud-side dataset, denoted asD𝑑𝑖𝑟
𝑐𝑙

=
{
(𝑥𝑐 , 𝑦𝑐 )

} |D𝑑𝑖𝑟
𝑐𝑙
|

𝑐=1
.

This directory dataset can be pre-downloaded by mobile de-

vices along with the model deployment. As illustrated in

Figure 3: Design Rationale of Delta.

Figure 3 and supported in Theorem 1, the objective function

(2) of the data enrichment problem can be decomposed into

the sum of two sub-objective functions:

• Sub-objective (2a): similarity between the device-side dataset

D𝑡
𝑑𝑒

and the weighted directory dataset 𝑤𝑡D𝑑𝑖𝑟
𝑐𝑙

, where

each data sample (𝑥𝑐 , 𝑦𝑐 ) ∈D𝑑𝑖𝑟
𝑐𝑙

is assigned a weight 𝑤𝑡
𝑐 .

The weight vector𝑤𝑡
is a variable to be optimized.

• Sub-objective (2b): similarity between the weighted direc-

tory dataset 𝑤𝑡D𝑑𝑖𝑟
𝑐𝑙

and the cloud-side data-subset S𝑡 ,
where S𝑡 is the variable to be optimized.

These two two sub-objective functions can be optimized se-

quentially and independently by the mobile device and cloud

server through the exchange of non-sensitive information:

1) Mobile device optimizes sub-objective (2a) by computing

the optimal weight 𝑤𝑡,∗
for the directory dataset D𝑑𝑖𝑟

𝑐𝑙
to

represent the device-side data distribution D𝑡
𝑑𝑒
.

2) Cloud server optimizes sub-objective (2b) by searching

for the optimal cloud-side data-subset S𝑡,∗ ⊆ D𝑐𝑙 to align

with theweighted directory dataset𝑤𝑡,∗D𝑑𝑖𝑟
𝑐𝑙

, with𝑤𝑡,∗
being

uploaded by the mobile device after device-side optimization.

3) Device-cloud communication involves the cloud-side direc-

tory dataset D𝑑𝑖𝑟
𝑐𝑙

and the device-side optimized weight𝑤𝑡,∗
,

which do not involve any raw user data and thus protect

user privacy akin to classic federated learning [51]. Detailed

discussion and comparison are presented in §8.

Practical Implementation. The practical effectiveness
of the above decomposition process relies on an appropriate

directory dataset that accurately represents the cloud-side

public dataset. While classical data clustering methods can

be used to select cluster centroids as the directory dataset el-

ements, we observe that directly clustering raw data samples

may not fully capture the influence of data on model training,

due to the diverse sources, wide-ranging distributions and

varying dimensions of cloud-side data. To address this is-

sue, we take advantage of the typical paradigm of on-device

model training [12, 13, 17], where the feature extractor 𝜙 is

pre-trained on extensive cloud-side data for generalization
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ability and the classifier𝜓 is trained on device-side data for

personalization performance. We propose clustering data

samples (𝑥,𝑦) ∈D𝑐𝑙 based on the feature extractor outputs

𝜙 (𝑥) rather than raw input 𝑥 , and selecting the cluster cen-

troids as elements of the directory dataset, which offers two

advantages: 1) features as model’s intermediate outputs have

a consistent dimension and are more relevant to model train-

ing than raw inputs, 2) the features of most cloud-side data

samples are already available from the pre-training process

of feature extractor, incurring minimal additional costs.

4.2 Data Enrichment for New Context
While the directory dataset safeguards user privacy by de-

composing the data enrichment problem into device-side

and cloud-side sub-problems, it is non-trivial to solve them

in an effective and efficient manner due to the scarcity of

on-device data and diversity of cloud-side data.

• Device-side ineffectiveness: Solving sub-problem (2a) re-

quires determining the optimal weight 𝑤𝑡,∗
to align the

weighted directory dataset 𝑤𝑡D𝑑𝑖𝑟
𝑐𝑙

with the device-side

data distributionD𝑡
𝑑𝑒
. However, the underlying data distri-

bution is typically approximated by the sparse empirical

dataset D̂𝑡
𝑑𝑒

stored by mobile device, which can cause con-

ventional gradient descent algorithms to converge to local

optima. Consequently, the derived weight becomes over-

fitted to the limited empirical dataset and ineffective in

representing the device-side data distribution.

• Cloud-side inefficiency: Exactly solving sub-problem (2b)

involves evaluating the similarity score for each potential

cloud-side data subset, which requires exploring a vast fea-

sible region of candidate data-subsetsS𝑡 ⊆D𝑐𝑙 , |S| ≤𝐵 and

results in exponential computation and time complexity

for cloud server, leading to low efficiency.

To achieve an efficient and effective data enrichment process

for each coming context, we propose a soft data matching

strategy formobile device to derive a representative directory

weight by fully leveraging the limited on-device data, and a

data sampling scheme for cloud server to sample an optimal

data-subset with constant time complexity.

Device-Side: Soft Data Matching. To prevent the direc-

tory weight𝑤𝑡
from overfitting to scarce on-device data, we

propose to assign physical meanings to𝑤𝑡
by interpreting

each element 𝑤𝑡
𝑐 as the fraction of on-device data that ex-

hibits high similarity with the cloud-side cluster centroid

(𝑥𝑐 , 𝑦𝑐 ) ∈D𝑑𝑖𝑟
𝑐𝑙

. Thus, for each data sample (𝑥,𝑦) ∈ D̂𝑡
𝑑𝑒

col-

lected by mobile device, its similarities with all the cluster

centroids are computed, and the weight of the most similar

one is incremented by one step:

𝑐∗ = arg max

𝑐
𝑆𝑖𝑚

(
(𝑥,𝑦), (𝑥𝑐 , 𝑦𝑐 ) | 𝜃𝑡−1

)
,

𝑤𝑡
𝑐∗ ← 𝑤𝑡

𝑐∗ + 1. (Hard Matching)

However, in our experiments, we observe that each on-device

data sample can exhibit high similarity with more than one

cloud-side cluster centroids, which is influenced by the gran-

ularity of cloud-side data clustering (i.e. the number of data

clusters) during the directory construction process. However,

the “hard” matching function 𝑎𝑟𝑔𝑚𝑎𝑥 is incapable of cap-

turing the correlation between one device-side sample and

multiple cloud-side clusters. Thus, we propose to employ a

“soft” matching function 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 , allowing each data sample

to contribute to the weights of more than one clusters:

∀𝑐,𝑤𝑡
𝑐 ← 𝑤𝑡

𝑐 + 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑆𝑖𝑚

(
(𝑥,𝑦), (𝑥𝑐 , 𝑦𝑐 ) | 𝜃𝑡−1

)
𝜏

)
, (3)

where 𝜏 is a temperature hyperparameter to control the

weight increments of clusters with different degrees of simi-

larity. As 𝜏 → 0, 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 gradually degrades to 𝑎𝑟𝑔𝑚𝑎𝑥 .

Cloud-Side: Optimal Data Sampling. To enhance effi-

ciency and reduce the computational overhead on the cloud

server, we propose transforming the “hard” data selection

process into a “soft” data sampling process. The key differ-

ence is that the former seeks to find an exact data-subset

S𝑡,∗ to optimize sub-problem (2b), whereas the latter aims to

compute a data sampling policy 𝑃
𝑡,∗
D𝑐𝑙

such that the sampled

data-subset is optimal for sub-problem (2b) in expectation:

max

S𝑡 ⊆D𝑐𝑙

𝑆𝑖𝑚(S𝑡 ,𝑤𝑡D𝑑𝑖𝑟
𝑐𝑙
|𝜃𝑡−1) (Hard Selection)

⇒ max

𝑃𝑡
D𝑐𝑙

ES𝑡∼𝑃𝑡
D𝑐𝑙

[
𝑆𝑖𝑚(S𝑡 ,𝑤𝑡D𝑑𝑖𝑟

𝑐𝑙
|𝜃𝑡−1)

]
. (Soft Sampling)

This transformation allows the cloud server to directly iden-

tify an appropriate data-subset through data sampling policy,

which can be computed with constant time complexity.

We outline the specific operations of cloud-side data sam-

pling scheme, with theoretical foundation provided in §5.2.

The scheme involves inter-cluster size allocation and intra-
cluster data sampling, which determine how many and which
data samples to select from each cloud-side data cluster:

• Inter-cluster size allocation. Given that the size of the se-

lected data-subset is limited by the communication cost bud-

get, the cloud server needs to allocate distinct sampling sizes

to different data clusters to maximize the overall similarity

between the sampled data-subset and the weighted directory

dataset, i.e. sub-objective (2b). As demonstrated in Lemma

1, the optimal sampling size |S𝑡,∗𝑐 | for each cluster D𝑐𝑙,𝑐 de-

pends on its directory weight𝑤𝑡
𝑐 and the dispersion degree

of intra-cluster feature distribution E𝑥 | |𝜙 (𝑥)−𝜙 (𝑥) | |:

|S𝑡,∗𝑐 | ∝ 𝑤𝑡
𝑐 · E(𝑥,𝑦) ∈D𝑐𝑙,𝑐

����𝜙 (𝑥) − 𝜙 (𝑥𝑐 )����. (4)

For each cluster, a higher weight suggests a higher similarity

with the device-side data for on-device CL, and a wider fea-

ture distribution indicates the need for more data samples to

comprehensively represent the cluster .
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Figure 4: Overall Workflow of Delta Framework. Delta serves as a plug-in for on-device continual learning.

• Intra-Cluster Data Sampling.Within each cloud-side data

cluster D𝑐𝑙,𝑐 , the optimal sampling probability for each data

sample (𝑥,𝑦) is proportional to the feature distance between
such data sample and the cluster centroid (𝑥𝑐 , 𝑦𝑐 ):

𝑃
𝑡,∗
D𝑐𝑙,𝑐
(𝑥,𝑦) =

����𝜙 (𝑥) − 𝜙 (𝑥𝑐 )����∑
(𝑥 ′,𝑦′ ) ∈D𝑐𝑙,𝑐

����𝜙 (𝑥 ′) − 𝜙 (𝑥𝑐 )���� . (5)

Theoretically, our analysis in Lemma 1 demonstrates that

this sampling probability could maximize the expected simi-

larity between each data clusterD𝑐𝑙,𝑐 and the corresponding

selected data-subset S𝑡𝑐 , thereby optimizing sub-objective

(2b) in expectation given fixed directory weights 𝑤𝑡
. Intu-

itively, this sampling strategy favors data samples that are

farther from the cluster centroid, which enhances the diver-

sity and informativeness of the selected data-subset while

ensuring unbiasedness and representativeness through data

re-weighting technique like importance sampling [31].

4.3 Data Enrichment for All Contexts
Although the previous components ensure a private, efficient

and effective data enrichment process for each new context,

the notorious issue of catastrophic forgetting (i.e. inferior
memory stability) is also exacerbated. First, as model param-

eters 𝜃 continually adapt to the enriched data {S𝑖 }𝑡𝑖=1
, the

similarity between each past context 𝑖’s enriched data S𝑖
and the underlying distribution D𝑖

𝑑𝑒
gradually diminishes,

hindering the use of {S𝑖 }𝑡𝑖=1
for retaining past knowledge.

Second, independently enriching data solely for the new

context will exacerbate the mutual interference between the

model training processes of new and past contexts.

To address these issues, we take the first step to theoreti-

cally analyze the correlation between new context’s enriched

data and the model performance on both new and past con-

texts. Further, we re-optimize the data sampling scheme for

cloud server to identify a data-subset that could contribute

to the learning processes of both new and past contexts.

Theoretical Analysis. Theorem 3 reveals that the overall

CL performance, quantified by the average loss of model

over all contexts, is primarily determined by three terms:

1) New-context representativeness, which is quantified by the

feature distance between the enriched dataset S𝑡 and the

underlying data distribution of new context D𝑡
𝑑𝑒
.

2) Past-contexts proximity, which is measured by the feature

distance between the enriched datasetS𝑡 and the underlying
data distributions of all the past contexts {D𝑖

𝑑𝑒
}𝑡−1

𝑖=1
.

3) Cross-Context Heterogeneity, which is a fixed term and

determined by the heterogeneity between the new context

and the past contexts encountered by the mobile user.

Consequently, the original intra-cluster data sampling strat-

egy in Equation (5) can be seen as focusing only on the first

term (i.e. effectiveness for new context), while overlooking

the second term (i.e. effectiveness for past contexts.)
Practical Implementation. Guided by the theoretical

results, we further derive the analytical expression for the re-

optimized cloud-side data sampling policy, with the detailed

mathematical derivation provided in §5.3. Specifically, for

intra-cluster data sampling, the optimal sampling probability

for each data sample is proportional to the weighted sum of

new-context representativeness and past-contexts proximity:

𝑃
𝑡,∗
D𝑐𝑙,𝑐
(𝑥,𝑦) ∝

������𝜙 (𝑥) − 𝜙 (𝑥𝑐 )������ + 𝛼 �����
�����𝜙 (𝑥) −

∑𝑡−1

𝑖=1
𝜙 (𝑤𝑖,∗D𝑑𝑖𝑟

𝑐𝑙𝑜𝑢𝑑
)

𝑡 − 1

�����
�����,

where 𝛼 is a hyperparameter determined by the device to bal-

ance the model performance over the new context and past

contexts when conducing cloud-assisted data enrichment.

4.4 Overall Framework
We illustrate the overall workflow of Delta framework in

Figure 4, which comprises four stages. ➊ Directory Con-
struction: Initially, the cloud server utilizes the pre-trained

feature extractor to extract features from diverse datasets and

performs data clustering to construct the directory dataset.

The directory dataset is then distributed to mobile devices

along with the model deployment. ➋ Soft Data Matching:
For each coming new context 𝑡 , the mobile device solves

sub-problem (2a) through the soft data matching strategy

outlined in Equation (3), and uploads the optimal directory

weights for both the new and past contexts to the cloud
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server. ➌ Optimal Data Sampling: Upon receiving the di-

rectory weights, the cloud server computes the analytical

expressions for the optimal data sampling scheme, which

includes inter-cluster size allocation in Equation (4) and

intra-cluster data sampling in Equation (5). The optimal data-

subset is then sampled according to the scheme and trans-

mitted back to the mobile device. ➍ On-Device Continual
Learning: The mobile device conducts CL process using the

enriched datasets of both new and past contexts. Generally,
Delta serves as a plug-in module to enhance on-device CL per-
formance with privacy protection, effectiveness and efficiency.

5 Theoretical Analysis
In this section, we provide theoretical foundations for the

key components of Delta framework. Detailed proofs are

provided in supplementary material [22] due to limited space.

5.1 Theory for Directory Construction
To facilitate data enrichment as outlined in Equation (2)

without disclosing raw user data, we introduce the direc-

tory dataset to decompose the original objective function

into two sub-objective functions. The performance of this

decomposition is theoretically guaranteed by Theorem 1,

which elucidates the relation between the original objective

function and two sub-objective functions.

Theorem 1. Given directory dataset D𝑑𝑖𝑟
𝑐𝑙

, the maximal
similarity between the device-side dataset D𝑡

𝑑𝑒
and the cloud-

side data-subset S𝑡 ⊆D𝑐𝑙 for model 𝜃 𝑡−1 can be bounded by

max

S𝑡 ⊆D𝑐𝑙

𝑆𝑖𝑚(D𝑡
𝑑𝑒
,S𝑡 |𝜃𝑡−1)︸                             ︷︷                             ︸

original objective

≥ max

𝑤𝑡
𝑆𝑖𝑚(D𝑡

𝑑𝑒
,𝑤𝑡D𝑑𝑖𝑟

𝑐𝑙
|𝜃𝑡−1)︸                                 ︷︷                                 ︸

sub−objective (2a) for optimal weight

+ max

S𝑡 ⊆D𝑐𝑙

𝑆𝑖𝑚(S𝑡 ,𝑤𝑡,∗D𝑑𝑖𝑟
𝑐𝑙
|𝜃𝑡−1)︸                                    ︷︷                                    ︸

sub−objective (2b) for optimal subset

,

where𝑤𝑡D𝑑𝑖𝑟
𝑐𝑙

represents the weighted directory dataset.
This theorem shows that the optimal value of the original ob-

jective function (2) is bounded from below by the sum of the

optimal values of the two sub-objective functions (2a) and

(2b). Consequently, Delta essentially optimizes the worst-

case performance of data enrichment for diverse contexts.

The practical gap between the original and decomposed ob-

jective functions is determined by the representativeness

of the cloud-side directory dataset. In §6.3, we empirically

show that a directory dataset with around 10
2
elements is

sufficient to represent a cloud-side dataset consisting of 10
6

data samples across 10
2
contexts.

5.2 Theory for New Context’s Enrichment
To provide theoretical guarantees for the optimality of the

cloud-side data sampling scheme outlined in Equations (4)

and (5), we first present Theorem 2 to partition the on-device

model 𝜃 into a feature extractor 𝜙 and a classifier 𝜓 with

a Lipstchiz continuity constant 𝐿𝜓 . The feature extractor is

typically pre-trained by cloud server and remains unchanged

during the on-device model training process.

Theorem 2. The expected similarity between the weighted
directory dataset𝑤𝑡D𝑑𝑖𝑟

𝑐𝑙
and the data-subset S𝑡 selected ac-

cording to sampling scheme 𝑃𝑡D𝑐𝑙
is bounded by:

ES𝑡∼𝑃𝑡
D𝑐𝑙

[
𝑆𝑖𝑚(S𝑡 ,𝑤𝑡D𝑑𝑖𝑟

𝑐𝑙
| 𝜃𝑡−1)

]
≥ − ES𝑡∼𝑃𝑡

D𝑐𝑙
𝐿𝜓

������E(𝑥,𝑦) ∈S𝑡 [𝜙 (𝑥)] −∑︁
𝑐

𝑤𝑡
𝑐𝜙 (𝑥𝑐 )

������.
Further, in Lemma 1, we demonstrate that the expected value

of sub-objective function (2b) (i.e., the lower bound of the

above inequality) is determined by two terms: inter-cluster

sampling size |S𝑡𝑐 | and intra-cluster sampling probability

𝑃𝑡D𝑐𝑙,𝑐
(𝑥,𝑦) for each cloud-side data cluster 𝑐 .

Lemma 1. The expected similarity between the sampled
data-subset S𝑡 and the weighted directory dataset𝑤𝑡D𝑑𝑖𝑟

𝑐𝑙
is

determined by each cluster 𝑐’s sampling size |S𝑡𝑐 | and intra-
cluster data sampling probability 𝑃𝑡D𝑐𝑙,𝑐

(𝑥,𝑦):

min

𝑃𝑡
D𝑐𝑙

ES𝑡∼𝑃𝑡
D𝑐𝑙

������E(𝑥,𝑦) ∈S𝑡 [𝜙 (𝑥)] −∑︁
𝑐

𝑤𝑡
𝑐𝜙 (𝑥𝑐 )

������
= min

|S𝑡𝑐 |,𝑃𝑡
D𝑐𝑙,𝑐

∑︁
𝑐

( (𝑤𝑡
𝑐 )2

|S𝑡𝑐 |
·

∑︁
(𝑥,𝑦) ∈D𝑐𝑙,𝑐

����𝜙 (𝑥) − 𝜙 (𝑥)����2
|D𝑐𝑙,𝑐 |2 · 𝑃𝑡D𝑐𝑙,𝑐

(𝑥,𝑦)

)
By leveraging Cauchy-Schwarz inequality, we can derive the

analytical expressions of the optimal data sampling policy

(i.e. |S𝑡,∗𝑐 | and 𝑃𝑡,∗D𝑐𝑙
), which can be computed directly using

the directory weights uploaded by mobile device:{
|S𝑡,∗𝑐 | ∝ 𝑤𝑡

𝑐 · E(𝑥,𝑦) ∈D𝑐𝑙,𝑐

����𝜙 (𝑥) − 𝜙 (𝑥𝑐 )����
P𝑡,∗D𝑐𝑙,𝑐

(𝑥,𝑦) ∝
����𝜙 (𝑥) − 𝜙 (𝑥𝑐 )����, ∀(𝑥,𝑦) ∈ D𝑐𝑙,𝑐 .

(6)

5.3 Theory for All Contexts’ Enrichment
In §4.3, we propose to refine the cloud-side data sampling

scheme to ensure that the enriched data for new context

can contribute to the learning processes of both new and

past contexts. To achieve this, we first analyze the impact

of new context’s enriched data on the model performance

over all contexts in Theorem 3, which consists of three key

terms: representativeness to new context, proximity to past

contexts and the data heterogeneity across different contexts.

Theorem 3. In𝑚-th training round for context 𝑡 , when the
model parameters are updated from 𝜃 𝑡,𝑚 to 𝜃 𝑡,𝑚+1 using the
enriched data 𝑆𝑡 sampled by policy 𝑃𝑡D𝑐𝑙

, the expected reduction
in model loss (or improvement in model performance) over all
contexts’ data distribution D1:𝑡

𝑑𝑒
can be bounded by:
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ES𝑡∼𝑃𝑡
D𝑐𝑙

[
𝐿 (D1:𝑡

𝑑𝑒
, 𝜃𝑡,𝑚+1 ) − 𝐿 (D1:𝑡

𝑑𝑒
, 𝜃𝑡,𝑚 )︸                                      ︷︷                                      ︸

loss reduction in 𝑚−th model update

]
≤ 1

2

(𝐻𝜂2 − 𝜂 )𝐿𝜓 VS𝑡∼𝑃𝑡
D𝑐𝑙

[
𝜙 (D𝑡

𝑑𝑒
) − 𝜙 (S𝑡 )

]
︸                                   ︷︷                                   ︸

representativeness to new context 𝑡

+

𝜂𝐿𝜓

2

VS𝑡∼𝑃𝑡
D𝑐𝑙

[
𝜙 (D1:𝑡−1

𝑑𝑒
) −𝜙 (S𝑡 )

]
︸                                     ︷︷                                     ︸

proximity to past contexts 1∼𝑡−1

+
𝜂𝐿𝜓

2

����𝜙 (D𝑡
𝑑𝑒
) −𝜙 (D1:𝑡−1

𝑑𝑒
)
����2︸                           ︷︷                           ︸

heterogeneity across contexts

,

where V𝑥 [𝑓 (𝑥)] denotes the variance of function 𝑓 (𝑥).
Building on this analysis, we observe that to improve the

overall CL performance and reduce the model loss across all

contexts, the cloud-side sampling scheme 𝑃𝑡D𝑐𝑙
should take

both the representatievess to new context and the proximity

to past contexts into consideration. From a theoretical per-

spective, we further derive the analytical expression of the

re-optimized data sampling scheme 𝑃
𝑡,∗
D𝑐𝑙

in Lemma 2.

Lemma 2. To optimize the model performance on the overall
data distribution of all encountered contexts, the intra-cluster
data sampling probability 𝑃𝑡,∗D𝑐𝑙

needs to be refined as:

𝑃
𝑡,∗
D𝑐𝑙
(𝑥,𝑦) ∝

√︃����𝜙 (𝑥) − 𝜙 (𝑥𝑐 )����2+𝛼 ����𝜙 (𝑥) − 𝜙 (D1:𝑡−1

𝑑𝑒
)
����2,

where 𝛼 = 1

𝐿𝜓𝜂−1
can be regarded as a hyper-parameter to

balance the model performance over new and past contexts.

6 Evaluation
6.1 Experimental Setup
Tasks, Datasets andModels.To demonstrate Delta’s broad
applicability, we evaluate Delta on four typical mobile com-

puting tasks with diverse data modalities, model structures

and categories of user contexts (summarized in Table 1).

• Image Classification (IC). The Cifar10-C dataset [28] con-

tains around 750, 000 images of 10 objects across four context

categories: weather, noise, blur and digital corruptions. For

each context category, the dataset is processed into 5 subsets

with 2 new objects and 1 new context per subset. ResNet-

18 [27] is trained for this 10-class image classification task.

• Human Activity Recognition (HAR). HHAR [68], UCI [58],

MotionSense [47] and Shoaib [64] are four public datasets

collected from 73 users performing 6 basic activities (still,

walking, upstairs, downstairs, jogging, bike) with 5 device

placements (pocket, belt, arm, wrist, waist). For each context

category, the dataset is processed into 6 subsets with 1 new

activity in a new context. A lightweight CNN-based model

DCNN [77] is trained for this 6-class classification task.

• Audio Recognition (AR). Google Speech command [73] com-

prises 100,000 sound files of 20 commands from over 2,000

users with varied tones and environmental conditions. The

dataset is processed into 5 subsets for each context category,

each containing 4 new commands in 1 new context. A deep

neural network VGG-11 [67] is deployed for this task.

• Text Classification (TC). The NC corpus in XGLUE bench-

mark [43] is a cross-lingual understanding dataset consisting

of 50, 000 articles on 10 topics and in 5 languages (German,

English, Spanish, French, Russian). For each context cate-

gory, the dataset is processed into 5 subsets with 2 new topics

and 1 new context. A transformer-based model BERT [18] is

fine-tuned for this 10-class classification task.

Note that we standardize the total number of on-device con-

texts to approximately 5 to ensure a consistent evaluation of

Delta across various tasks, models and modalities, and thus

the class number per context may vary for different datasets.

Configurations. For each task, we collect data from 50%

users (or randomly select 50% samples for IC and TC tasks)

to form the cloud-side public dataset, with the remaining

data used to simulate the on-device empirical data across

different contexts. For cloud server, data samples from dif-

ferent users and contexts are mixed to reflect the typical

scenario where the specific context of each raw data sam-

ple is unknown. For mobile device, we use 5 samples per

class in each context as empirical data for model fine-tuning,

consistent with the statistics that an average European cit-

izen takes over around 4.9 photos daily [10] and uses Siri

several times a day [84]. The remaining data samples are

used as testing data for each context. For Delta, the tem-

perature 𝜏 for device-side soft matching is set to 0.1 and

the number of cloud-side data clusters is 20×𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠 (i.e.

200/120/400/200 for IC/HAR/AR/TC). The hyperparame-

ter 𝛼 is set to 1.0 to balance the effects of cloud-side data

sampling on new and past contexts. The default communica-

tion budget is set to 25 samples/class for each new context,

and an in-depth analysis of the impacts of such budget and

on-device data amount is presented in §6.3.

Baselines. To our best knowledge, Delta is the first data

enrichment framework for on-device CL, and we compare it

against the model- and algorithm-based baselines (few-shot

CL and federated CL) and a random data enrichment base-

line. 1) Few-shot CL pre-trains model on cloud-side data in

advance to capture the general knowledge, which is trans-

ferred to device-side new contexts through knowledge dis-

tillation [83] (FS-KD), robust optimization [61] (FS-RO) and
parameter freezing [49] (FS-PR). 2) Federated CL leverages

the cloud server to periodically aggregate the models trained

on multiple devices per 10 local model updates. In our ex-

periments, the default device number is 50, except for 35

for HAR task. We use Fed-𝑝 to denote different settings of

device participation rate 𝑝 . For IC and TC tasks, the data

samples from each user are from the same context category

to simulate the common data heterogeneity across users (e.g.

W/N/B/D for IC and L for TC). The CL performance is evalu-

ated on an independent test dataset, constructed according
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Task Modality Context Category Dataset Model(#params)
IC Image Object (O), Weather (W), Noise (N), Blur (B), Digital Corruption (D) Cifar10-C ResNet18(11.2M)

HAR IMU Activity (A), Physical Condition (P), Device Placement (D) HHAR, UCI, Motion, Shoaib DCNN(17.3K)

AR Audio User Command (C), Tone (T), Environmental Noise (N) Google Speech VGG11(9.75M)

TC Text Article Topic (T), Language (L) XGLUE BERT(0.178B)

Table 1: Summary of tasks, modalities, contexts, datasets and models.

to the user contexts specified by the experimental setting. 3)

Random method selects a random cloud-side data-subset to

enrich device-side empirical data.

Metrics.We assess the on-device CL performance using

four metrics. Overall performance measures the inference ac-

curacy of the final model across all the encountered contexts.

Learning plasticity is the average of each new context’s high-

est accuracy during its learning process. Memory stability is

the average ratio between each context’s final accuracy to

its maximal accuracy. System overheads include the compu-

tation latency, communication costs, memory footprint and

energy consumption for both the device side and cloud side.

Deployments.We use a cloud server with one NVIDIA

3090Ti GPU and onemobile platformNVIDIA JetsonNano [52].

6.2 End-to-End Performance
Webegin by comparing the end-to-end performance of Delta
against the baselines across all four tasks.

Delta significantly improves the overall performance
of on-device CL. Table 2 summarizes the average accuracy

of the final model across all contexts. Compared with the

best-performing few-shot CL method, Delta achieves a no-
table improvement, with accuracy increases of 13−16% higher

accuracy on IC, 10−14% on HAR, 0.2−2.5% on AR, and 4−7.3%

on TC. Note that Delta’s improvement onAR task is minimal

because its data heterogeneity across contexts is relatively

low (i.e. different tones and background noises) and vanilla

CL could perform well. When compared to federated CL,

Delta consistently achieves the highest overall performance

across all settings, and reduces total communication costs

by 91−99%, demonstrating its superior effectiveness and

efficiency in enhancing CL performance. Furthermore, we

observe that for most tasks (IC, HAR and TC), all methods

tend to perform better on contexts with mixed categories

(last line of each task in Table 2). The potential reason is

that data samples with different context categories exhibit

a greater distribution divergence, making it easier for the

on-device model to learn the decision boundary.

Delta enhances the learning plasticity of on-device
CL with various new contexts. Figure 5 reports the aver-
age value of each new context’s peak accuracy during the

learning process, a metric widely adopted to assess the learn-

ing plasticity. A key observation is that Delta consistently

outperforms the baselines across various tasks, data modali-

ties and context categories, demonstrating high robustness

and applicability to diverse new contexts. For example, Delta
achieves around 90% and 100% accuracy for new context in

IC and HAR tasks regardless of context categories and fluctu-

ates less than 3% accuracy on the other two tasks. The high

accuracy for new contexts can be attributed to the limited

classes within each new context and the enriched data from

cloud side. In contrast, the performance of baselines on new

contexts is sensitive to the diversity of context categories,

such as few-shot CL dropping from 95% to 90% on AR task

and federated CL reducing from 93% to 87% on TC task. The

rationale behind these is that few-shot CL depends on the

high relevance between the on-device context and the base

contexts during pre-training to facilitate effective knowledge

transfer. Similarly, the performance of federated CL is largely

influenced by the data heterogeneity across different users’

ongoing contexts. Conversely, Delta can consistently iden-

tify an appropriate cloud-side data-subset that contributes

to the device-side CL process, making it relatively robust.

Delta consistently achieves a low accuracy drop on
past contexts and exhibits high memory stability. Fig-
ure 6 plots the average ratio between each context’s final

accuracy and its peak accuracy, which indicates that Delta
can maintain over 90% relative performance for past contexts.

The superior memory stability is due to the consideration of

the impact of new context’s enriched on all contexts’ overall

performance during the cloud-side data sampling process.

We also observe that few-shot CL methods can slightly out-

perform Delta in some cases. This is because they achieve

significantly lower peak accuracy for new contexts compared

to Delta (e.g. a 10% accuracy gap in IC task shown in Figure

5), and thus the accuracy drop might be less pronounced.

Delta incurs marginal system overheads for both
mobile device and cloud server, as depicted in Figure 7.

• Device-Side. The soft matching solution for sub-problem

(2a) requires computing the feature of each local data sample

and its distance to each element of directory dataset. This

results in additional latency of 23.8/1.05/ 4.25/109ms and

energy consumption of 0.49/0.30/0.42/2.47J per sample for

IC/HAR/AR/TC tasks, respectively. Moreover, Figure (7(c))

shows that soft matching process has a lower memory foot-

print than CL process for avoiding model backpropagation,
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Tasks Context Vanilla Few-Shot CL Federated CL Data Enrichment
ΔAcc. ΔComm.Category CL FS-KD FS-RO FS-PF Fed-0.1 Fed-0.2 Fed-0.4 Random Delta

IC

O+W 32.7±1.49 41.7±1.78 39.2±2.13 36.9±2.87 31.8±0.24 46.4±1.65 55.1±0.42 42.5±2.42 57.7±0.54 16.0% ↑ 93.7% ↓
O+N 31.3±1.74 36.2±2.34 35.5±1.65 32.3±1.25 31.1±0.04 40.4±0.51 45.0±0.12 35.8±1.00 50.9±1.66 14.8% ↑ 93.5% ↓
O+B 35.6±0.94 43.7±1.12 40.6±0.24 39.2±0.06 32.6±0.16 39.6±0.24 50.1±0.31 39.9±1.69 57.7±0.98 14.0% ↑ 91.1% ↓
O+D 45.0±2.57 55.1±1.17 51.5±2.66 52.2±3.10 36.9±0.04 49.0±0.51 61.7±0.34 53.7±2.24 72.3±2.27 17.1% ↑ 92.2% ↓

O+W+N+B+D 77.3±0.49 81.2±1.53 80.4±0.81 75.3±0.41 30.0±0.05 39.8±0.71 50.8±0.41 47.8±6.64 94.8±2.74 13.6% ↑ 95.3% ↓

HAR

A 52.4±3.67 55.0±3.93 52.9±2.55 48.3±2.69 54.0±0.64 60.0±0.21 61.3±0.55 58.4±0.35 69.3±1.96 14.3% ↑ 99.6% ↓
A+P 51.2±4.53 53.3±3.20 50.1±3.52 49.4±2.95 60.5±1.28 61.1±1.89 63.1±0.85 58.5±0.75 66.6±1.78 13.3% ↑ 99.8% ↓

A+P+D 81.0±4.75 80.3±2.35 78.7±4.37 71.0±4.27 62.2±3.58 66.8±3.97 70.1±4.28 61.1±3.25 90.3±5.09 10.0% ↑ 99.7% ↓

AR

C 93.6±0.16 93.5±0.07 92.9±0.65 94.2±0.28 88.1±1.65 88.3±0.83 88.5±1.78 90.4±0.19 94.3±0.17 0.2% ↑ 99.9% ↓
C+T 89.0±0.41 89.4±0.57 89.4±0.38 90.3±0.79 86.5±0.24 88.5±0.62 88.7±0.25 90.3±0.26 91.1±1.17 0.8% ↑ 99.9% ↓

C+T+N 84.7±0.64 84.8±1.52 86.2±0.79 86.9±0.40 87.5±0.54 87.7±0.31 88.0±0.61 88.5±1.45 89.2±1.60 2.3% ↑ 99.9% ↓

TC

T 73.2±2.15 73.5±1.35 75.7±4.07 73.3±2.56 79.6±0.37 79.6±0.19 79.8±0.14 73.9±2.69 83.1±2.26 7.3% ↑ 99.8% ↓
T+L 77.7±3.19 82.2±0.29 80.1±3.02 80.0±1.89 84.3±0.14 84.4±0.18 84.7±0.09 79.7±2.21 86.2±2.16 4.0% ↑ 99.4% ↓

Table 2: Summary of overall CL performance (average accuracy of final model on all contexts). We also mark
Delta’s improvement on accuracy (over few-shot CL) and reduction in communication costs (over federated CL).
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Figure 5: Comparison of learning plasticity (maximummodel accuracy for each new context during CL).
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Figure 6: Comparison of memory stability in the set-
tings of mixed context categories for each task.

indicating that Delta does not increase peak memory usage

due to the sequential execution of Delta and on-device CL.

• Cloud-Side. The analytical solution for optimal cloud-side

data sampling can be computed within 2.56−7.15 ms using a

single 10-core Intel CPU with a memory footprint of 0.12−7.8
MB. This high computational efficiency allows for parallel

cloud-side operations for numerous devices simultaneously.

• Device-cloud Communication. For each context, the commu-

nication overhead includes the uploading of device-side direc-

tory weight, which consists of only several vectors (≤ 1KB),

and the downloading of cloud-side enriched data, which re-

quires a total of 30.4/2.89/23.5/6.43 KB for IC/HAR/ AR/TC

tasks under default settings.

6.3 Component-Wise Analysis
We further delve into the functionality and sensitivity of

each key component within Delta framework.

Device-Side Data SoftMatching. To illustrate the impor-

tance of soft matching strategy, we assess the performance of

Delta using various strategies to address sub-objective (2a),

including gradient descent (𝐺𝐷), hard matching (𝑎𝑟𝑔𝑚𝑎𝑥)

and soft matching (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥) with varying temperatures 𝜏 .

Figure 8(a) indicates that 𝐺𝐷 underperforms across most

tasks, while 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 consistently outperforms 𝑎𝑟𝑔𝑚𝑎𝑥 . The

reasons are twofold: 1)𝐺𝐷 is susceptible to getting trapped

in local optima and leads to the overfitted directory weight;

2) 𝑎𝑟𝑔𝑚𝑎𝑥 fails to exploit the similarities between one device-

side sample and multiple cloud-side clusters, which is essen-

tial when the cloud-side data is finely clustered. We also

note that the optimal 𝜏 differs by task due to varying feature

distributions, and we set 𝜏 =1.0 for stable performance.

Device-Side Data Size. Figure 8(b) shows the impact

of user data amount on Delta and baseline performances,

where we present testing loss instead of accuracy for clearer

comparison. Delta demonstrates relatively high robustness,
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Figure 7: System overheads of Delta.
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which is attributed to 1) the effective solution of the device-

side sub-problem with scarce on-device data through our

soft matching strategy, and 2) the substantial performance

improvement brought by the abundant cloud-side enriched

data compared to additional device-side user data. Also, we

observe that baselines show greater sensitivity to on-device

data quantity, highlighting the critical role of on-device data

enrichment and further motivates our work.

Cloud-Side Directory Dataset. Figure 9(b) plots the per-
formance of Delta with varying numbers of cloud-side data

clusters for directory dataset construction, where we replace

the cloud-side data sampling scheme with random sampling

to isolate the effects of directory dataset. We observe that a

slight increase in cluster number can improve Delta’s per-
formance by making directory dataset more representative

and aligning the cloud-side sub-objective (2b) more closely

with the overall objective (2). However, an excessively large

cluster number can result in numerous similar clusters, lead-

ing to the selection of redundant data for enrichment. For

stable performance, we set cluster number per label to 20.

Cloud-Side Optimal Data Sampling. To evaluate the

importance of cloud-side optimal data sampling, we assess

Delta’s performance with different sampling schemes, in-

cluding random sampling, optimal sampling for solely new

context (𝛼 = 0) and optimal sampling considering all con-

texts (𝛼 =1). Figure 9(a) indicates that optimal data sampling

for only new context improves overall model accuracy by

5.3/0.9/1.0/5.7% for IC/HAR/AR/TC tasks. Considering past

contexts further enhances accuracy by 0.9/3.9/1.5/1.7%. No-

tably, he most significant improvements are observed in IC

and TC tasks, as the visual and textual data we used are more

diverse, making random sampling less stable and effective.

Device-Cloud Communication Budget. We further

evaluate Delta’s performance with varying sizes of cloud-

side enriched data to simulate different communication bud-

gets. Figure 10 shows that Delta’s performance improves

significantly as the enriched data size per context increases

from 50 to 100, and then stabilizes with larger data sizes. This

robustness highlights Delta’s applicability for real-world de-
vices with diverse network conditions.

7 Related Work
Cloud-Side Continual Learning aims to train ML models

over non-stationary data streams to acquire new contextual

knowledge without forgetting past contexts. This approach
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is inspired by the capability of biological neural networks

to modulate synaptic memory and plasticity in response to

dynamic inputs [72, 82]. Existing solutions include: 1) sta-

bilizing previously-learned synaptic changes by penalizing

parameter changes of the past optimal model [34, 82]; 2)

expanding and pruning synaptic connections to form new

synaptic memory via creating additional parameter space

for new contexts and re-normalizing them with past con-

texts [48, 60]; 3) consolidating synaptic memory by storing

the important data of past contexts and replaying them dur-

ing learning new contexts [42, 44], where the data impor-

tance can be measured by representativeness [57, 62], diver-

sity [81] or uncertainty [5]. Previous studies [26, 37, 39] have

found that data replay methods provides the best trade-off

between model performance and system efficiency, and thus

our experiments are mainly conducted in this case. Delta
framework serves as a plug-in component to enrich on-device
data and enhance performance for all these methods.

Device-Side Continual Learning focuses on optimizing

the utilization of hardware resources to implement cloud-

side CL algorithms on resource-constrained devices. This

includes saving storage cost through data quantization tech-

niques [29, 56], reducing memory overhead through context-

aware parameter sparsity [38, 74], accelerating data loading

via hierarchical memory management [39, 46], and acceler-

ating computation with adaptive computing resource [35, 36,

40, 71]. However, most of these works overlook the data bot-

tleneck on mobile device (scarce, personal and unpredictable

user data), and thus Delta is complementary to existing on-
device CL works focusing on hardware bottleneck.

On-Device Data Augmentation is a powerful technique

to improve model training performance by generating di-

verse data from existing user data, such as leveraging geo-

metric and color space transformation and random erasing

for visual images [65], using techniques grounded in phys-

ical principles for IMU signal [75], as well as employing

language rule-based transformations and synonym replace-

ment for textual data [8]. However, a significant limitation

of data augmentation is that each data modality and task

necessitates specifically designed augmentation techniques

to accommodate unique data characteristics, making the data

augmentation process cumbersome and inefficient. Delta
serves as a generally solution to complement these works by
directly expanding the on-device available data.

8 Discussion
Privacy Consideration. In Delta framework, the infor-

mation uploaded by devices includes the directory weights,

which excludes any raw user data and protects privacy like

FL [51]. Unlike FL, where the transmitted model updates

inherently encode specific features of training data, Delta’s

transmitted weights only indicate the similarity between

user data and directory dataset (e.g. likelihood of weather

conditions rather than pixels in IC task, probability of device

placement rather than specific IMU signals in HAR task),

which reveals rough context information and makes the re-

covery or identification of raw data more challenging. To

further enhance privacy, secure aggregation techniques like

secure multi-party computation [21] and homomorphic en-

cryption [4] can be integrated into the communication and

computation processes in Delta.
Comparisonwith FL.The intuitions behind Delta frame-

work and FL paradigm are distinct. FL aims to leverage

device-side data to develop a global model that can gener-

alize well across diverse user contexts, i.e. global knowledge
aggregation. In contrast, Delta utilizes cloud-side data to

enhance the personalization of local models for individual

user contexts, i.e. local knowledge augmentation. As a result,
the applicability of FL is primarily limited by device-side con-

straints, including the vast number of devices, high participa-

tion rates, cross-device data heterogeneity and tolerance for

communication overheads. Delta, on the other hand, seeks

to shift the limitations to the cloud, assuming that cloud

server can collect abundant public data to match different

users. This aligns with the recent success of training billion-

scale models over sufficiently diverse datasets for various

tasks. Additionally, when confronted with extremely rare

user contexts, Delta could still identify the most helpful and

relevant cloud-side data-subsets to provide data foundation

for existing model or algorithm-based augmentation meth-

ods. In conclusion, FL and Delta are applicable for different

scenarios and could potentially be complementary.

9 Conclusion
In this work, we explore the potential of leveraging cloud-

side abundant data resource to address the data bottleneck

in on-device CL. We formalize the data enrichment problem

and propose Delta, a private, efficient and effective cloud-

assisted data enrichment framework for on-device CL. On

extensive experiments, Delta shows superior model perfor-

mance and system efficiency across various mobile comput-

ing tasks, data modalities and model structures.
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