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ABSTRACT
Online advertising platforms leverage a two-stage auction architec-

ture to deliver personalized ads to users with low latency. The first

stage efficiently selects a small subset of promising candidates out

of the complete pool of ads. In the second stage, an auction is con-

ducted within the subset to determine the winning ad for display,

using click-through-rate predictions from the second-stagemachine

learning model. In this work, we investigate the online learning

process of the first-stage subset selection policy, while ensuring

game-theoretic properties in repeated two-stage ad auctions. Specif-

ically, we model the problem as designing a combinatorial bandit

mechanism with a general reward function, as well as additional

requirements of truthfulness and individual rationality (IR). We es-

tablish an Ω(𝑇 ) regret lower bound for truthful bandit mechanisms,

which demonstrates the challenge of simultaneously achieving allo-

cation efficiency and truthfulness. To circumvent this impossibility

result, we introduce truthful 𝛼−approximation oracles and evaluate

the bandit mechanism through 𝛼−approximation regret. Two mech-

anisms are proposed, both of which are ex-post truthful and ex-post

IR. The first mechanism is an explore-then-commit mechanismwith

regret 𝑂 (𝑇 2/3), and the second mechanism achieves an improved

𝑂 (log𝑇 /Δ2

𝜙
) regret where Δ𝜙 is a distribution-dependent gap, but

requires additional assumptions on the oracles and information

about the strategic bidders.

CCS CONCEPTS
• Theory of computation→ Algorithmic game theory and
mechanism design; Online learning theory; • Information
systems→ Online advertising.
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1 INTRODUCTION
Modern online advertising platforms usually serve a vast number

of advertisers, who participate in ad auctions to compete for ad

impressions. In order to select highly relevant ads for users and to

maximize social welfare, the platforms typically rank the ads by

𝑏𝑖𝑐𝑖 , where 𝑏𝑖 is the bid reported by advertiser 𝑖 , and 𝑐𝑖 is the click

through rate (CTR) predicted by machine learning models of the

platform. However, executing complex CTR prediction models [6,

33, 34] for millions of candidate ads within a limited response time is

often infeasible due to the associated high inference cost. To be able

to deliver highly personalized ads to incoming users in real time, a

widely adopted approach is a two-stage structure [13, 25, 32], which

is also ubiquitous in large-scale online recommendation systems

[7, 10, 15, 20, 29]. The first stage focuses on efficiently generating a

subset of candidates that contains enough promising ads. To ensure

low latency, first-stagemachine learningmodels are lightweight and

less accurate [21, 26]. The selected subset then enters the second

stage, where a sophisticated CTR model provides accurate CTR

predictions. Using those predictions and the submitted bids, an ad

auction is conducted within the subset to determine the winning

ad for display, along with the corresponding payment.

Prior works on two-stage systems has primarily focused on the

performance of subset selection policy in the first stage [20, 24,

25, 32], i.e., how to efficiently select a promising subset of candi-

dates such that the ad allocation performance of the second stage is

guaranteed. Besides, as such two-stage procedures are repeatedly

executed upon sequential arrivals of users, online learning of CTR

in two-stage recommendation systems has also been considered

[16, 31]. However, advertising systems differ from recommenda-

tion systems by the involvement of money transfer, and hence the

requirement of game-theoretic properties, e.g., truthfulness and

individual rationality (IR) of auction mechanisms.
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In this work, we address the challenge of simultaneously incor-

porating online learning of the subset selection policy and game-

theoretic properties in repeated two-stage ad auctions. Concretely,

we consider a repeated auction with 𝑛 advertisers and 𝑇 rounds,

where, in each round, at most 𝑘 advertisers are selected to enter the

second stage. Advertisers report their bids before the first round

starts, to optimize their cumulative utility over 𝑇 rounds. In the

first stage of round 𝑡 , we select a subset of advertisers denoted

as 𝐾𝑡 to enter the second stage. Then for each advertiser 𝑖 inside

𝐾𝑡 , its second-stage CTR prediction 𝑐𝑖𝑡 , which we assume to be an

i.i.d. sample from a probability distribution 𝐷𝑖 , is observed. We fix

the second stage to be a second-price auction, a well-known truth-

ful mechanism prevalent in ad auctions. The second-price auction

only involves advertisers within 𝐾𝑡 , and determines the advertiser

with the highest 𝑐𝑖𝑡𝑏𝑖 to be displayed. Our goal is to maximize the

cumulative social welfare without knowing the second-stage CTR

distributions 𝐷1, · · · , 𝐷𝑛 beforehand, while preserving the truthful

and IR properties of the 𝑇 -round mechanism.

If we ignore the strategic behaviours of advertisers, this prob-

lem is equivalent to a combinatorial bandit with a general reward

function [5], where advertisers are treated as base arms, and in

each round we choose a super arm 𝐾𝑡 subject to the cardinality con-

straint |𝐾𝑡 | ≤ 𝑘 , and receive rewardmax𝑖∈𝐾𝑡 {𝑏𝑖𝑐𝑖𝑡 } 1. However, the
additional requirement of truthfulness makes our problem a non-

trivial extension of the original bandit problem. In fact, advertisers

could misreport their values to manipulate the outcome of both

stages in a round. The observed samples of one round will further

influence the bandit algorithm’s behaviour in subsequent rounds.

To reveal the challenge of simultaneously ensuring performance

and truthfulness, we present in Proposition 1 the impossibility to

design a stochastically truthful (please refer to Definition 5) mecha-

nism even if the CTR distributions are known beforehand. Building

upon this result, we establish an Ω(𝑇 ) regret lower bound on bandit
mechanisms that are stochastically truthful (Theorem 1).

To circumvent the impossibility result, we introduce truthful

approximation oracles, which are constant-factor approximation

algorithms for solving the offline optimization problem in a truth-

ful manner. These oracles allow us to preserve truthfulness at

the cost of sacrificing allocation efficiency. We use the notion of

𝛼−approximation regret to evaluate bandit algorithms which calls

an 𝛼−approximation oracle. We propose a bandit mechanism with

𝑂 (𝑇 2/3) regret and achieves ex-post truthfulness and ex-post IR.

The algorithm is based on a straightforward explore-then-commit

(ETC) strategy. The separation of exploration phase and exploita-

tion phase prevents strategic bidders from influencing the data

collection process, thereby ensuring truthfulness. Furthermore, we

discover that truthful approximation oracles often exhibit a typical

structure: scoring the arms by their CTR distributions, then select

the top-𝑘 arms according to the product of their bid and score.

By exploiting this structure and making additional assumptions

on prior knowledge of bidders’ private values, we propose an al-

gorithm that achieves an improved regret bound of 𝑂 (log𝑇 /Δ2

𝜙
),

1
This reward function is "general" in the sense that the expected value

E𝑐𝑖𝑡 ∼𝐷𝑖 [max𝑖∈𝐾𝑡 {𝑏𝑖𝑐𝑖𝑡 } ] not depend only on the means of random variables , i.e.,

E𝐷𝑖 [𝑐𝑖𝑡 ], but on the entire distributions of these variables.

while preserving ex-post truthfulness and ex-post IR, where Δ𝜙 is

a distribution-dependent gap.

To summarize, our major contributions in this work include:

• To the best of our knowledge, this is the first work that

jointly considers online subset selection and game-theoretic

properties in the setting of repeated two-stage auctions.

• We demonstrate the difficulty of the problem by establishing

a Ω(𝑇 ) regret lower bound for truthful bandit mechanisms.

• We introduce truthful 𝛼−approximation oracles, which al-

low us to design two ex-post truthful and ex-post IR bandit

mechanisms: one has 𝑂 (𝑇 2/3) 𝛼-approximation regret, and

the other one enjoys a better 𝑂 (log𝑇 /Δ2

𝜙
) 𝛼-approximation

regret but requires additional assumptions on both the oracle

and the bidders.

• We validate the efficiency and truthfulness of our proposed

mechanisms through experiments on both synthetic and real-

world data, with results aligning well with our theoretical

claims.

2 MODEL AND PRELIMINARIES
We consider a repeated single-slot ad auction setting with 𝑛 ad-

vertisers
2 [𝑛] and 𝑇 rounds, where a two-stage auction is con-

ducted in each round.
3
The advertisers have their private values

v = (𝑣1, · · · , 𝑣𝑛) which is unknown to the auctioneer. Before the

first round starts, all advertisers submit their bids b = (𝑏1, · · · , 𝑏𝑛).
We assume that all values and bids are bounded in [0,𝑉 ], where
𝑉 > 0. The second-stage CTR prediction of each advertiser 𝑖 follows

distribution 𝐷𝑖 , where 𝐷𝑖 is a probability distribution over [0, 1].
We use 𝐷 = (𝐷1, · · · , 𝐷𝑛) to denote the product distribution of

each 𝐷𝑖 . To characterize the two-stage ad auction in each round,

we first define second-price auction within a subset.

Definition 1 (Second-price auction within a subset). Given
𝑛 advertisers, a subset 𝐾 ⊆ [𝑛] with cardinality constraint |𝐾 | ≤ 𝑘 ,
CTR {𝑐𝑖 }𝑖∈𝐾 , and a bid vector b ∈ [0,𝑉 ]𝑛 , a second-price auction
within 𝐾 determines the following allocation 𝑥𝑖 and payment 𝑝𝑖 for
each 𝑖 ∈ [𝑛]:

𝑥𝑖 =

{
1, if 𝑖 ∈ 𝐾 and 𝑖 = argmax𝑗∈𝐾 {𝑏 𝑗𝑐 𝑗 }
0, otherwise,

𝑝𝑖 =

{
max𝑗 ∈𝐾,𝑗≠𝑖 𝑐 𝑗𝑏 𝑗

𝑐𝑖
, if 𝑖 ∈ 𝐾 and 𝑖 = argmax𝑗∈𝐾 {𝑏 𝑗𝑐 𝑗 }

0, otherwise,

where ties are broken consistently. The output of the auction is an
allocation vector x = (𝑥1, 𝑥2, · · · , 𝑥𝑛) and a payment vector p =

(𝑝1, 𝑝2, · · · , 𝑝𝑛). Throughout the paper, we use x(b, {𝑐𝑖 }𝑖∈𝐾 , 𝐾) and
p(b, {𝑐𝑖 }𝑖∈𝐾 , 𝐾) to denote outcomes of second-price auctions 4.

In each round 𝑡 ∈ [𝑇 ], a two-stage auction is conducted as

follows:

2
We use the terms advertiser, bidder, and arm interchangeably.

3
For simplicity, we assume that the time horizon 𝑇 is known beforehand, but our

results can be extended to the case with unknown𝑇 using a standard "doubling trick"

[2, 19].

4
Sometimes we might slightly abuse notations and write x(b, c, 𝐾 ) and p(b, c, 𝐾 ) ,
where c = (𝑐1, · · · , 𝑐𝑛 ) is the full CTR vector, although x and p only depends on

{𝑐𝑖 }𝑖∈𝐾 .
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• First stage. The auctioneer selects a subset of advertisers

𝐾𝑡 with cardinality constraint |𝐾𝑡 | ≤ 𝑘 based on the bid

vector b and all observations from previous rounds. Only

the advertisers in 𝐾𝑡 enters the second stage.

• Second stage. For each 𝑖 ∈ 𝐾𝑡 , the auctioneer observes

the second-stage CTR prediction 𝑐𝑖𝑡 , which is an i.i.d. sam-

ple from distribution 𝐷𝑖 . Then a second-price auction is

run within 𝐾𝑡 (see Definition 1), using the predicted CTRs

{𝑐𝑖𝑡 }𝑖∈𝐾𝑡 and the submitted bid vector b. The allocation to

advertisers in this round is x𝑡 = x(b, {𝑐𝑖𝑡 }𝑖∈𝐾𝑡 , 𝐾𝑡 ), with
payment p𝑡 = p(b, {𝑐𝑖𝑡 }𝑖∈𝐾𝑡 , 𝐾𝑡 ).

Our goal is tomaximize the cumulative social welfare of𝑇 rounds.

The reward we obtain in each round 𝑡 is defined as the social welfare

of the second-price auction in that round, i.e., 𝑅𝑡 = max𝑖∈𝐾𝑡 {𝑏𝑖𝑐𝑖𝑡 }.
Since all bids are in [0,𝑉 ] and CTRs are in [0, 1], the reward 𝑅𝑡 is
in [0,𝑉 ]. The reward depends on sampled CTR predictions, and we

define its expectation with respect to distribution 𝐷 as 𝑅𝐷 (𝐾𝑡 ) =
E𝐷 [𝑅𝑡 ]. Then 𝑅𝐷 (𝐾𝑡 ) is a scalar that depends on 𝐾𝑡 , 𝐷, and b,
serving as a measure of how good 𝐾𝑡 is, given 𝐷 and b.

We define the offline optimal reward, i.e. the maximum ex-

pected reward one can achieve if 𝐷 (and b) is known, as OPT𝐷 =

max𝐾 𝑅𝐷 (𝐾).
To maximize the cumulative social welfare, we should select

proper advertisers to enter the second stage in each round. More-

over, we can only observe the second-stage CTR predictions of

advertisers that enters the second stage. This sequential subset

selection procedure with partial feedback can be viewed as a com-

binatorial (semi-)bandit, where we treat advertisers as base arms

and subsets as super arms. Following the convention of bandit

algorithms, we define regret as the performance measure.

Definition 2. The regret of an algorithm is

𝑅𝑒𝑔(𝑇 ) = 𝑇 · OPT𝐷 − E
[
𝑇∑︁
𝑡=1

𝑅𝐷 (𝐾𝑡 )
]
.

In our setting, a bandit algorithm also defines a 𝑇 -round mecha-

nism
5
, where we consider the total allocation , X = (𝑋1, · · · , 𝑋𝑛) =∑𝑇

𝑡=1 x𝑡 , and the total payment, P = (𝑃1, · · · , 𝑃𝑛) =
∑𝑇
𝑡=1 p𝑡 . We

refer to those mechanisms as bandit mechanisms. When a fixed

bandit algorithm runs on a fixed instance (𝐷, b) for several times,

the resulting allocation X and payment P may be different, because

the CTR predictions in each round are stochastic. We can consider

this 𝑇 -round interaction process as first drawing CTR predictions

𝑐𝑖𝑡 for all 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇 ] from the distributions 𝐷 , and then

running the bandit algorithm on these fixed samples. Specifically,

a 𝑛 ×𝑇 realization table C whose (𝑖, 𝑡)-th entry is the 𝑐𝑖𝑡 to reveal

when arm 𝑖 is played in the 𝑡-th round. When a table C is fixed,

there is no stochasticity in the mechanism, so the total allocation

X(C, b) and payment P(C, b) of a mechanism are also fixed. This

allows us to consider the utility function of advertiser 𝑖 with respect

to any table C, which is a deterministic function.

5
Since the second-stage auction mechanism is fixed to be second-price (See Defini-

tion 1), the allocation rule of a𝑇 -round mechanism is uniquely defined by a combina-

torial bandit algorithm which decides the subset selection 𝐾𝑡 in each round.

Definition 3. Bidder 𝑖’s utility function 𝑢𝑖 with respect to bid 𝑏𝑖
and other bidders’ bids b−𝑖 = (𝑏1, · · · , 𝑏𝑖−1, 𝑏𝑖+1, · · · , 𝑏𝑛) is

𝑢𝑖 (C, 𝑏𝑖 , b−𝑖 ) = 𝑣𝑖 · 𝑥𝑖 (C, 𝑏𝑖 , b−𝑖 ) − 𝑝𝑖 (C, 𝑏𝑖 , b−𝑖 ) .

We expect our mechanisms to be truthful, i.e., reporting the real

value is the utility-maximizing strategy for any bidder. We define

two notions of truthfulness. Ex-post truthfulness requires the mech-

anism to be truthful on any fixed realization table. Stochastically

truthfulness is a weaker notion, which only requires truthfulness

in expectation, i.e., the expected utility function is maximized by

truthful bidding.

Definition 4. A mechanism is ex-post truthful if for any 𝑖, 𝑣𝑖 , 𝑏𝑖 ,
b−𝑖 ,C,

𝑢𝑖 (C, 𝑣𝑖 , b−𝑖 ) ≥ 𝑢𝑖 (C, 𝑏𝑖 , b−𝑖 ) .

Definition 5. A mechanism is stochastically truthful if for any
𝐷, 𝑖, 𝑣𝑖 , 𝑏𝑖 , b−𝑖 ,

EC [𝑢𝑖 (C, 𝑣𝑖 , b−𝑖 )] ≥ EC [𝑢𝑖 (C, 𝑏𝑖 , b−𝑖 )] .

The mechanisms should also satisfy IR (Individual Rationality),

which ensures that advertisers have non-negative utility when

participating in the auction.

Definition 6. Amechanism is ex-post IR if for any 𝑖, 𝑣𝑖 , 𝑏𝑖 , b−𝑖 ,C,

𝑢𝑖 (C, 𝑣𝑖 , b−𝑖 ) ≥ 0.

3 IMPOSSIBILITY RESULT
In this section, we recognize the impossibility for any bandit mech-

anism to simultaneously achieve sublinear regret and stochastically

truthfulness, as shown in Theorem 1. This result reveals that in our

two-stage auction setting, it is challenging to design a mechanism

that enjoys both good performance and game-theoretic properties.

Theorem 1. There exists an instance set such that any stochasti-
cally truthful algorithm 𝜋 must incur Ω(𝑇 ) regret.

The proof of Theorem 1 relies on Myerson’s Lemma.

Lemma 1 (Myerson’s Lemma [23]). Amechanism is stochastically
truthful if and only if any bidder’s allocation EC [𝑋𝑖 (C, 𝑏𝑖 , b−𝑖 )] is
monotone(i.e. non-decreasing) with respect to her bid 𝑏𝑖 , and the
payment rule is given by an explicit formula.

Now we construct an offline problem instance such that the

social welfare-maximizing allocation is not monotone with respect

to one’s bid.

Proposition 1 (Optimal offline allocation is not mono-

tone). In the offline (full-information) setting, there exists 𝐷 =

(𝐷1, · · · , 𝐷𝑛), and an advertiser 𝑖 , such that her expected optimal
allocation Er∼𝐷 [𝑥𝑖 (r, b, 𝐾∗)], where 𝐾∗ = argmax𝐾 𝑅𝐷 (𝐾, b) is the
optimal super arm, is not monotone.

Proof. We present a counterexample with 𝑛 = 3 and 𝑘 = 2. The

CTR distributions 𝐷 = (𝐷1, 𝐷2, 𝐷3) are

𝑐1 =

{
0.8 with prob. 0.5

0.001 with prob. 0.5
, 𝑐2 =

{
0 with prob. 0.7

1 with prob. 0.3
, 𝑐3 = 0.32.

Consider bids b = (1, 1, 1) and b′ = (1.5, 1, 1), where advertiser 1
raises her bid.
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On𝐷 and b, on can easily compute that the optimal subset is𝐾∗ =
{1, 2}, and advertiser 1’s expected allocation E[𝑥1] = Pr[𝑐1𝑏1 >

𝑐2𝑏2] = 0.7; while on 𝐷 and b′, the optimal subset shifts to 𝐾∗
′
=

{1, 3} and advertiser 1’s expected allocation decreases to E[𝑥 ′
1
] =

Pr[𝑐1𝑏′
1
> 𝑐3𝑏

′
3
] = 0.5. □

In the proof of Proposition 1, the increase of bidder 1’s bid leads

to a change of the optimal subset, which introduces a stronger

competitor (bidder 3) to bidder 1 during the auction within the

subset and finally causes the expected allocation of bidder 1 to

decrease. This example reveals a fundamental difference between

two-stage and one-stage auctions: in two-stage auctions, one bidder

may change her competitors in the second stage by changing her

bid.

Goel et al. [13] also proved an impossibility result by a construc-

tion similar to our Proposition 1. They proved that ex-post truth-

fulness is not achievable in two-stage auctions, while we present a

stronger result, i.e. even stochastically truthfulness is impossible.

To finally prove Theorem 1, we still need the following simple

lemma from the bandit literature.

Lemma 2. Let 𝜋 be a combinatorial bandit algorithm, and I =

(𝐷, b) be an instance. Assume I has a unique optimal super arm
𝐾∗ = argmax𝐾 𝑅𝐷 (𝐾, b). Let 𝜏𝐾 (𝑇 ) =

∑𝑇
𝑡=1 I{𝐾𝑡 = 𝐾} denote the

times of 𝜋 playing 𝐾 from round 1 to𝑇 . If 𝜋 achieves sublinear regret
on I, then lim𝑇→∞ E[𝜏𝐾∗ (𝑇 )]/𝑇 = 1.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We consider two instances I = {𝐷, b}
and I′ = {𝐷, b′}, where 𝐷, b, b′ are the constructions in the proof

of Proposition 1.

Since algorithm 𝜋 is stochastically truthful, by Lemma 1, bid-

der 1’s expected allocation must be monotone with respect to

𝑏1. We use shorthand E[𝑋1] for E[𝑋1 (C, 𝑏1, b−1)], and E[𝑋 ′
1
] for

E[𝑋1 (C, 𝑏′
1
, b′−1)]. Let 𝜏𝐾 (𝑇 ) =

∑𝑇
𝑡=1 I{𝐾𝑡 = 𝐾} when 𝜋 is running

on I, and 𝜏 ′
𝐾
(𝑇 ) be its counterpart on I′.

We decompose the total allocation E[𝑋1] to the times when

different super arms containing arm 1 are pulled.

E[𝑋1]
=E

[
𝜏{1,2} (𝑇 )

]
Pr[𝑐1𝑏1 > 𝑐2𝑏2] + E

[
𝜏{1,3} (𝑇 )

]
Pr[𝑐1𝑏1 > 𝑐3𝑏3]

=0.7E
[
𝜏{1,2} (𝑇 )

]
+ 0.5E

[
𝜏{1,3} (𝑇 )

]
.

(1)

Similarly,

E[𝑋 ′
1
] = 0.85E

[
𝜏 ′{1,2} (𝑇 )

]
+ 0.5E

[
𝜏 ′{1,3} (𝑇 )

]
. (2)

If 𝜋 achieves sublinear regret on both I and I′, by applying

Lemma 2 to I and I′, we know that

lim

𝑇→∞
E

[
𝜏{1,2} (𝑇 )

]
/𝑇 = 1 and lim

𝑇→∞
E

[
𝜏 ′{1,3} (𝑇 )

]
/𝑇 = 1. (3)

Moreover,

lim

𝑇→∞
E

[
𝜏{1,3} (𝑇 )

]
/𝑇 = 0 and lim

𝑇→∞
E

[
𝜏 ′{1,2} (𝑇 )

]
/𝑇 = 0. (4)

Combining (3), (4) and (1), (2), we have

lim

𝑇→∞
E[𝑋1]/𝑇 = 0.7 and lim

𝑇→∞
E[𝑋 ′

1
]/𝑇 = 0.5,

which contradicts with E[𝑋1] ≤ E[𝑋 ′
1
] and finishes the proof. □

4 TRUTHFUL BANDIT MECHANISMS
In this section, we first introduce truthful approximation oracles,

which allows us to design truthful mechanisms at the cost of sacri-

ficing the performance. Then we present two mechanisms utilizing

truthful approximation oracles, both of which are ex-post truth-

ful and ex-post IR. The first mechanism achieves 𝑂 (𝑇 2/3) regret.
The second mechanism requires additional assumptions on the or-

acle and the bidders’ values, and achieves an improved regret of

𝑂 (log𝑇 /Δ2

𝜙
), where Δ𝜙 is a distribution-dependent gap.

4.1 Truthful Approximation Oracles
Theorem 1 states the impossibly to design a truthful bandit mecha-

nism that approaches the offline optimal allocation. To overcome

the difficulty, we introduce approximation oracles that solves the

offline optimization problem in a truthful manner.

Definition 7 (Truthful Approximation Oracle). An ora-
cle takes distributions 𝐷 and bid vector b as input, and outputs a
subset 𝐾 ← Oracle(𝐷, b), |𝐾 | ≤ 𝑘 . For 𝛼 ∈ (0, 1), an oracle is an
𝛼−approximation if for any 𝐷 and any b

𝑅𝐷 (Oracle(𝐷, b)) ≥ 𝛼OPT𝐷 .

An oracle is ex-post truthful if for any 𝐷 , v ∈ [0,𝑉 ]𝑛, r ∈ [0, 1]𝑛 ,
the following mechanism is truthful:

• Solicit bid vector b.
• Query the oracle for 𝐾 ← Oracle(𝐷, b).
• Run second-price auction within 𝐾 . Output x(b, c, 𝐾) and
p(b, c, 𝐾).

Representation of Distributions. One may wonder how to rep-

resent distributions for the oracle’s input. In fact, our proposed

algorithms only call the oracles on empirical distributions, which

are discrete distributions with finite support. We represent such

distributions 𝐷 = {𝐷1, · · · , 𝐷𝑛} by their CDFs F = {𝐹1, · · · , 𝐹𝑛}.
Each 𝐹𝑖 is a piecewise constant function, which could be further

represented by a vector of supported points and the values of CDF

on those points. Throughout the paper, we may use 𝐷 and F inter-

changeably.

Note that we actually required truthful approximation oracles to

be ex-post truthful, rather than the weaker notion of stochastically

truthful. The following lemma provides a concrete example of such

an ex-post truthful approximation oracle.

Lemma 3 (Theorem 3 in Goel et al. [13]). For each distribution
𝐷𝑖 of 𝑐𝑖 , let𝜙𝑖 (𝜃 ) be the expectation above the quantile function𝑞𝑖 (𝜃 ):

𝑞𝑖 (𝜃 ) = sup{𝑥 | Pr[𝑐𝑖 ≥ 𝑥] ≥ 𝜃 },

𝜙𝑖 (𝜃 ) = E𝑐𝑖∼𝐷𝑖 [𝑐𝑖 I[𝑐𝑖 ≥ 𝑞𝑖 (𝜃 )]],
then the following oracle is a truthful 𝑒−1

2𝑒 -approximation oracle: Sort
all bidders by 𝑏𝑖𝜙𝑖 (1/𝑘), and choose the top 𝑘 bidders (ties are broken
consistently).

We leverage truthful approximation oracles in our design of

truthful online learning algorithms (mechanisms). In such cases,

it is not fair to compare our algorithm with the optimal algorithm

which always chooses the optimal super arm. Instead, we use the

𝛼−approximation regret to evaluate an algorithm.
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Definition 8. The 𝛼−approximation regret of an algorithm is
defined as

𝑅𝑒𝑔𝛼 (𝑇 ) = 𝛼𝑇 · OPT𝐷 − E
[
𝑇∑︁
𝑡=1

𝑅𝐷 (𝐾𝑡 )
]
.

4.2 𝑂 (𝑇 2/3) Mechanism
We present a mechanism that achieves 𝑂 (𝑇 2/3) gap-independent
regret and ex-post truthfulness. The mechanism consists of a fixed-

length exploration phase followed by an exploitation phase. In the

exploration phase, we collect𝑚 samples for each arm in a round-

robin manner, and calculate their empirical distributions in terms

of CDFs. With𝑚 i.i.d. samples 𝑋1, · · · , 𝑋𝑚 from distribution 𝐷 , the

empirical CDF is defined as 𝐹 (𝑥) = 1

𝑚

∑𝑚
𝑗=1 I(𝑋 𝑗 ≤ 𝑥). Based on

these empirical CDFs, a truthful approximation oracle decides the

super arm that is repeatedly played in the exploitation phase.

Algorithm 1 An ETC mechanism

1: 𝑚 ← ( 𝜋
2
)
1

3 (1 + 𝛼)
2

3𝑛
2

3𝑇
2

3

2: for round 𝑡 ≤ 𝑚𝑘 do ⊲ Exploration Phase

3: 𝐾𝑡 ← {1 + 𝑘𝑡 mod 𝑛, 2 + 𝑘𝑡 mod 𝑛, · · · , 𝑘 + 𝑘𝑡 mod 𝑛},
run second-price auction within 𝐾𝑡

4: Update 𝐹𝑖 for each 𝑖 ∈ 𝐾𝑡
5: end for
6: Query the oracle, get 𝐾 ← Oracle(F̂, b)
7: for each remaining round 𝑡 do ⊲ Exploitation Phase

8: 𝐾𝑡 ← 𝐾 , run second-price auction within 𝐾𝑡
9: end for

Theorem 2. Algorithm 1 achieves the following 𝛼−approximation
regret upper bound:

𝑅𝑒𝑔𝛼 (𝑇 ) ≤ 3(1 + 𝛼)
2

3 𝑘𝑉𝑛
2

3𝑇
2

3 .

The proof of Theorem 2 relies on several useful lemmas.

Lemma 4 (Dvoretzky-Kiefer-Wolfowitz ineqality[9, 22]).

Consider a distribution 𝐷 , and let 𝐹 (𝑥) be its CDF. With𝑚 i.i.d. sam-
ples𝑋1, · · · , 𝑋𝑚 from𝐷 , the empirical CDF is 𝐹 (𝑥) = 1

𝑚

∑𝑚
𝑗=1 I(𝑋 𝑗 ≤

𝑥), then for any 𝜖 > 0, we have

Pr[sup
𝑥∈𝑅
|𝐹 (𝑥) − 𝐹 (𝑥) | ≥ 𝜖] ≤ 2𝑒−2𝑚𝜖

2

Lemma 5. For random variable 𝑋 with non-negative support,

E[𝑋 ] =
∫ ∞

0

Pr[𝑋 > 𝜖]d𝜖.

Lemma 6 (Lemma 3 in Chen et al. [5]). If for any 𝑖 ∈ [𝑛], 𝑥 ∈
[0, 1], sup𝑥 |𝐹𝑖 (𝑥) − 𝐹 ′𝑖 (𝑥) | ≤ Λ, then for any super arm 𝐾 , we have
|𝑅𝐹 (𝐾) − 𝑅𝐹 ′ (𝐾) | ≤ 2𝑉𝑘Λ.

Lemma 4, i.e. the DKW inequality, is on concentration of empir-

ical distributions. Lemma 5 is a simple fact in probability theory,

bridging expectations and CDFs. Lemma 6 characterizes the con-

centration of super arms’ rewards based on the concentration of

base arms’ empirical distributions. Now we are ready to prove

Theorem 2.

Proof. Let 𝐾 be the super arm played in the exploitation phase.

Let �̂� = (�̂�1, · · · , �̂�𝑛) be the empirical distributions at round

𝑚𝑘 , with empirical CDFs F̂ = (𝐹1, · · · , 𝐹𝑛), and let 𝐷 be the real

distributions. Since we call an 𝛼−approximation oracle, we have

𝑅
�̂�
(𝐾) ≥ 𝛼OPT

�̂�
. Let 𝐾∗ = argmax𝐾 𝑅𝐷 (𝐾) be the real optimal

super arm. Then

𝑅
�̂�
(𝐾) ≥ 𝛼OPT

�̂�
≥ 𝛼𝑅

�̂�
(𝐾∗),

where the second inequality follows from the optimality of OPT
�̂�
,

i.e., OPT
�̂�
≥ 𝑅

�̂�
(𝐾 ′) for any 𝐾 ′. We then bound the probability

Pr[𝑅𝐷 (𝐾) < 𝛼OPT𝐷 − 𝜖] for any 𝜖 ∈ R+.
Pr[𝑅𝐷 (𝐾) < 𝛼OPT𝐷 − 𝜖]
≤ Pr[𝑅𝐷 (𝐾) < 𝛼OPT𝐷 − 𝜖 + (𝑅�̂� (𝐾) − 𝛼𝑅�̂� (𝐾

∗))]
= Pr[(𝑅

�̂�
(𝐾) − 𝑅𝐷 (𝐾)) − 𝛼 (𝑅�̂� (𝐾

∗) − 𝑅𝐷 (𝐾∗)) > 𝜖]
≤ Pr[|𝑅

�̂�
(𝐾) − 𝑅𝐷 (𝐾) | + 𝛼 |𝑅�̂� (𝐾

∗) − 𝑅𝐷 (𝐾∗) | > 𝜖]
:= Pr[E],

(5)

where the last inequality follows from |𝑎 − 𝑏 | ≤ |𝑎 | + |𝑏 | for any
𝑎, 𝑏 ∈ R, and in the last linewe define event E = {|𝑅

�̂�
(𝐾)−𝑅𝐷 (𝐾) |+

𝛼 |𝑅
�̂�
(𝐾∗) − 𝑅𝐷 (𝐾∗) | > 𝜖}.

Also, define good event

G =

{
∀𝑖 ∈ [𝑛], sup

𝑥∈[0,1]
|𝐹𝑖 (𝑥) − 𝐹𝑖 (𝑥) | ≤

𝜖

2𝑉𝑘 (1 + 𝛼)

}
.

By Lemma 6, if G happens, then we have |𝑅
�̂�
(𝐾) − 𝑅𝐷 (𝐾) | ≤

𝜖
1+𝛼 and |𝑅

�̂�
(𝐾∗) − 𝑅𝐷 (𝐾∗) | ≤ 𝜖

1+𝛼 , which prevents E to happen.

Therefore, E implies ¬G, which gives us

Pr[E]
≤ Pr[¬G]

= Pr

[
∃𝑖 ∈ [𝑛], sup

𝑥∈[0,1]
|𝐹𝑖 (𝑥) − 𝐹𝑖 (𝑥) | >

𝜖

2𝑉𝑘 (1 + 𝛼)

]
≤

𝑛∑︁
𝑖=1

Pr

[
sup

𝑥∈[0,1]
|𝐹𝑖 (𝑥) − 𝐹𝑖 (𝑥) | >

𝜖

2𝑉𝑘 (1 + 𝛼)

]
≤2𝑛 exp

(
− 𝑚𝜖2

2𝑉 2𝑘2 (1 + 𝛼)2

)
,

(6)

where the second inequality is by taking a union bound, and the

third inequality follows from DKW inequality.

Combining (5) and (6) gives us

Pr [𝑅𝐷 (𝐾) < 𝛼OPT𝐷 − 𝜖] ≤ 2𝑛 exp

(
− 𝑚𝜖2

2𝑉 2𝑘2 (1 + 𝛼)2

)
.

Split the regret by exploration phase and exploitation phase,

𝑅𝑒𝑔𝛼 (𝑇 ) =𝑚𝑘𝑉 + (𝑇 −𝑚𝑘)E[𝛼OPT𝐷 − 𝑅𝐷 (𝐾)] . (7)

Calculate the expectation term with Lemma 5,

E[𝛼OPT𝐷 − 𝑅𝐷 (𝐾)]

=

∫ ∞

0

Pr[𝛼OPT𝐷 − 𝑅𝐷 (𝐾) > 𝜖]d𝜖

≤
∫ ∞

0

2𝑛 exp

(
− 2𝑚𝜖2

4𝑉 2𝑘2 (1 + 𝛼)2

)
d𝜖

=

√
2𝜋𝑛𝑉𝑘 (1 + 𝛼)
√
𝑚

.

(8)
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Plug (8) into (7) , and let𝑚 = min(⌈( 𝜋
2
)
1

3 (1+𝛼)
2

3𝑛
2

3𝑇
2

3 ⌉, ⌈𝑇 /𝑘⌉),
we have

𝑅𝑒𝑔𝛼 (𝑇 ) =𝑚𝑘𝑉 + (𝑇 −𝑚𝑘)E[𝛼OPT𝐷 − 𝑅𝐷 (𝐾)]

≤𝑚𝑘𝑉 +𝑇
√
2𝜋𝑛𝑉𝑘 (1 + 𝛼)
√
𝑚

=(2−
2

3 + 2−
1

3 ) (2𝜋)
2

3 (1 + 𝛼)
2

3 𝑘𝑉𝑛
2

3𝑇
2

3

≤3(1 + 𝛼)
2

3 𝑘𝑉𝑛
2

3𝑇
2

3 .

(9)

□

Beyond sublinear regret, Algorithm 1 also enjoys the following

truthful and IR properties.

Proposition 2. Algorithm 1 is ex-post truthful and ex-post IR.

The truthfulness of Algorithm 1 mainly follows from the prop-

erty of truthful oracles combined with the truthfulness of second-

price auctions. The IR property follows from that of second-price

auctions. The complete proofs are deferred to Appendix A.

4.3 𝑂 (log𝑇 /Δ2

𝜙
) Mechanism

Although Algorithm 1 guarantees ex-post truthfulness and ex-post

IR, its𝑂 (𝑇 2/3) regret is not satisfactory in some scenarios. To design

an algorithm with a better regret bound, we make an additional as-

sumption on the oracle. Beyond truthfulness and 𝛼−approximation,

we assume that the oracle determines 𝐾 by ranking the bidders

according to some score and choosing the top-𝑘 , and the scores

are accessible. The scores provide additional information about the

quality of the bidders, and can be leveraged by the bandit algorithm

to quickly determine the correct subset to exploit.

Definition 9 (Truthful Approximation Scoring Oracle). A
scoring oracle Score(·) assigns each bidder a score according to its
distribution, i.e., 𝜙𝑖 ← Score(𝐷𝑖 ), such that ranking the bidders by
𝑏𝑖𝜙𝑖 , and choosing the top-𝑘 as 𝐾 will ensure

𝑅𝐷 (𝐾) ≥ 𝛼OPT𝐷 .

It is easy to check that this scoring and ranking procedure is

always ex-post truthful for any score 𝜙 = (𝜙1, · · · , 𝜙𝑛).
We further make an assumption on the smoothness of Score(·):

There exists a Lipschitz constant 𝐿 > 0, such that if sup𝑥 |𝐹 (𝑥) −
𝐹 ′ (𝑥) | ≤ Λ, then

|Score(𝐹 ) − Score(𝐹 ′) | ≤ 𝐿Λ.
The following lemma tells us such scoring oracle exists. In fact,

the oracle presented in Lemma 3 is exactly a truthful
𝑒−1
2𝑒 − approx-

imation scoring oracle. The proof of its Lipschitz constant 𝐿 = 1 is

deferred to Appendix A.

Lemma 7. There exists a truthful 𝑒−1
2𝑒 -approximation scoring ora-

cle with Lipschitz constant 𝐿 = 1.

We denote the gap of an instance as Δ𝜙 = min𝑖, 𝑗∈[𝑛],𝑖≠𝑗 |𝑣𝑖𝜙𝑖 −
𝑣 𝑗𝜙 𝑗 |. For the truthful property of the mechanism, we assume that

the value 𝑣𝑖 of each arm 𝑖 is within an interval around a known

parameter 𝛽𝑖 ∈ [0,𝑉 ]:
𝑣𝑖 ∈

[
𝛽𝑖 − Δ𝜙/2𝜙𝑖 , 𝛽𝑖 + Δ𝜙/2𝜙𝑖

]
. (10)

This assumption is often satisfied in industrial scenarios where

advertisers’ valuation of a certain impression is static, and the ad

platform can estimate one’s value from one’s bidding history.

Based on an 𝛼−approximation scoring oracle, we design an ETC

mechanism with adaptive commitment time, i.e., the length of ex-

ploration phase depends on the collected data. The fixed prior

information of value 𝛽𝑖 , instead of submitted bid 𝑏𝑖 , is used in de-

ciding of commitment. This prevents the bidders from influencing

the commitment time by strategic bidding.

Algorithm 2 An ETC mechanism with adaptive commitment time

1: Throughout the exploration phase, for each arm 𝑖 ∈ [𝑛] we
maintain: (i) counter 𝑇𝑖 which stores the times that 𝑖 has been

selected so far (ii) CDF 𝐹𝑖 of the empirical distribution of the

observed outcomes of arm 𝑖 so far

2: repeat ⊲ Exploration Phase

3: 𝐾𝑡 ← {1 + 𝑘𝑡 mod 𝑛, 2 + 𝑘𝑡 mod 𝑛, · · · , 𝑘 + 𝑘𝑡 mod 𝑛},
run second-price auction within 𝐾𝑡

4: for each 𝑖 ∈ 𝐾𝑡 do
5: Update 𝑇𝑖 and 𝐹𝑖

6: Query the scoring oracle, get
ˆ𝜙𝑖 ← Score(𝐹𝑖 ), compute

𝜙𝑖 ← ˆ𝜙𝑖 + 𝐿
√︃

log𝑇

𝑇𝑖
and 𝜙𝑖 ← ˆ𝜙𝑖 − 𝐿

√︃
log𝑇

𝑇𝑖
7: end for
8: Rank all the arms by 𝛽𝑖 ˆ𝜙𝑖 , let 𝐻𝑖𝑔ℎ be the set of top-𝑘 arms,

let 𝐿𝑜𝑤 be the other 𝑛 − 𝑘 arms

9: 𝜙ℎ ← min𝑖∈𝐻𝑖𝑔ℎ 𝛽𝑖𝜙𝑖 , 𝜙𝑙 ← max𝑖∈𝐿𝑜𝑤 𝛽𝑖𝜙𝑖
10: until 𝜙ℎ ≥ 𝜙𝑙
11: for each remaining round 𝑡 do ⊲ Exploitation Phase

12: Pull 𝐾𝑡 ← 𝐻𝑖𝑔ℎ, run second-price auction within 𝐾𝑡 , using

bids b
13: end for

Theorem 3. Algorithm 2 achieves the following 𝛼−approximation
regret upper bound:

𝑅𝑒𝑔𝛼 (𝑇 ) ≤ 2𝑛𝑉 + 4𝑛𝐿2𝑉 3

𝑘Δ2

𝜙

log𝑇 .

Proof. Let 𝐹𝑖,𝑢 (𝑥) be the empirical distribution of arm 𝑖 when

𝑢 samples from 𝑖 are observed. Define event

E =

{
∃𝑖 ∈ [𝑛], ∃𝑢 ∈ [𝑇 ], sup

𝑥∈[0,1]

��𝐹𝑖,𝑢 (𝑥) − 𝐹𝑖 (𝑥)�� ≥ √︂
log𝑇

𝑢

}
.

From the DKW inequality, for ∀𝑖 ∈ [𝑛],∀𝑢 ∈ [𝑇 ],

Pr

[
sup

𝑥∈[0,1]
|𝐹𝑖,𝑢 (𝑥) − 𝐹𝑖 (𝑥) | ≥

√︂
log𝑇

𝑢

]
≤ 2𝑒−2𝑢

log𝑇

𝑢 =
2

𝑇 2
.

Taking an union bound gives Pr[E] ≤ 2𝑛
𝑇
.

Let
ˆ𝜙𝑖,𝑡 , 𝜙𝑖,𝑡 , 𝜙𝑖,𝑡

be the value of
ˆ𝜙𝑖 , 𝜙𝑖 , 𝜙𝑖

at time 𝑡 . On event ¬E,
by definition, for any arm 𝑖 , any time 𝑡 in the exploration phase,

|𝜙𝑖 − ˆ𝜙𝑖,𝑡 | ≤ 𝐿
√︃

log𝑇

𝑇𝑖
, therefore 𝜙

𝑖,𝑡
≤ 𝜙𝑖 ≤ 𝜙𝑖,𝑡 . When condition

𝜙ℎ ≥ 𝜙𝑙 is satisfied, for ∀𝑖 ∈ 𝐻𝑖𝑔ℎ, ∀𝑗 ∈ 𝐿𝑜𝑤 , 𝛽𝑖𝜙𝑖,𝑡 ≥ 𝛽 𝑗𝜙 𝑗,𝑡 , thus
𝛽𝑖𝜙𝑖 ≥ 𝛽 𝑗𝜙 𝑗 . This implies that 𝐻𝑖𝑔ℎ is the top-𝑘 subset according
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to {𝛽𝑖𝜙𝑖 }. By Equation (10), 𝐻𝑖𝑔ℎ is also the top-𝑘 subset according

to {𝑏𝑖𝜙𝑖 }.
Let𝑚 be the last round inwhich𝜙ℎ < 𝜙𝑙 . Let 𝑖 = argmin𝑖∈𝐻𝑖𝑔ℎ 𝛽𝑖𝜙𝑖 ,

𝑗 = argmax𝑗∈𝐿𝑜𝑤 𝛽 𝑗𝜙 𝑗 , we know 𝛽𝑖𝜙
𝑖
< 𝛽 𝑗𝜙 𝑗 . By the exploration

rule, till round𝑚, we have observed
𝑚𝑘
𝑛 samples for each arm. Since

𝛽𝑖𝜙
𝑖
< 𝛽 𝑗𝜙 𝑗 ,

𝛽𝑖

(
𝜙𝑖 − 𝐿

√︂
𝑛 log𝑇

𝑚𝑘

)
< 𝛽 𝑗

(
𝜙 𝑗 + 𝐿

√︂
𝑛 log𝑇

𝑚𝑘

)
.

Rearranging the terms, we have

Δ𝜙 ≤ 𝛽𝑖𝜙𝑖 − 𝛽 𝑗𝜙 𝑗 ≤ (𝛽𝑖 + 𝛽 𝑗 )𝐿
√︂
𝑛 log𝑇

𝑚𝑘
≤ 2𝐿𝑉

√︂
𝑛 log𝑇

𝑚𝑘
.

Solving𝑚 from the first and last term gives𝑚 ≤ 4𝑛𝐿2𝑉 2
log𝑇

𝑘Δ2

𝜙

.

On event E, each round incurs regret of at most 𝑉 . On event

¬E, we know that 𝐻𝑖𝑔ℎ is the top-𝑘 subset according to {𝑏𝑖𝜙𝑖 }.
By definition of the 𝛼−approximation scoring oracle, playing 𝐻𝑖𝑔ℎ

incurs non-positive regret. Therefore, the regret of the algorithm is

𝑅𝑒𝑔𝛼 (𝑇 ) ≤ Pr[E]𝑇𝑉 + Pr[¬E]E[𝑚 |¬E]𝑉

≤ 2𝑛

𝑇
𝑇𝑉 + 4𝑛𝐿2𝑉 2

log𝑇

𝑘Δ2

𝜙

𝑉

= 2𝑛𝑉 + 4𝑛𝐿2𝑉 3

𝑘Δ2

𝜙

log𝑇 .

□

Algorithm 2 also achieves ex-post truthfulness and ex-post IR.

The proofs are deferred to Appendix A.

Proposition 3. Algorithm 2 is ex-post truthful and ex-post IR.

By the design of adaptive commitment time, Algorithm 2 achieves

a better regret than Algorithm 1 on most instances, except for the

cases when Δ𝜙 is extremely small. A potential way to further im-

prove the regret bound is to adopt UCB-based [5] or successive-

elimination style [27] algorithms. However, these algorithms are

much more data sensitive than ETC algorithms, thus may be prone

to strategic bids.

5 EXPERIMENTS
In this section, we evaluate our two mechanisms through experi-

ments on both synthetic data and real-world data.

For the experiments, instead of 𝛼−approximation regret (Defini-

tion 8), we compare the cumulative rewards achieved by our mech-

anisms against𝑇 ·𝑅𝐷 (𝐾Oracle), where𝐾Oracle is the subset returned
by an 𝛼−approximation oracle. By definition of 𝛼−approximation

oracles (Definition 7), 𝑅𝐷 (𝐾Oracle) ≥ 𝛼OPT𝐷 , so 𝑅𝐷 (𝐾Oracle) is a
more challenging reference value, and all of our theoretical results

still holds under this notion of regret. This choice is based on two

reasons: (i) computing OPT𝐷 is often computationally infeasible,

(ii) the value of 𝛼OPT𝐷 can be much lower than 𝑅𝐷 (𝐾Oracle) prac-
tically, and comparing the mechanisms’ cumulative reward against

𝛼OPT𝐷 often leads to negative regret.

Beyond regret, we also test the truthfulness of our mechanisms,

by computing a bidder’s utility with different bids.

(a) Ex-post truthfulness of Algo-
rithm 1.

(b) Ex-post truthfulness of Algo-
rithm 2.

Figure 1: Ex-post truthfulness of our two algorithms evalu-
ated on synthetic data. Each line represents a bidder’s utilities
with respect to different submitted bids on one random seed.

5.1 Experiments with synthetic data
5.1.1 Experiment Setup. We construct an environment with 𝑛 = 7

bidders, from which 𝑘 = 3 bidders are selected in each round. All

bidders have the same uniform CTR distribution, i.e., 𝑐𝑖 ∼ 𝑈 ( [0, 1]).
The bidders’ values are [1 + Δ, 1 + Δ, 1 + Δ, 1, 1, 1, 1], where Δ is a

gap parameter that we control through the experiments. By the

truthful property of our mechanisms, the input bids are equal to

the values. We run experiments for different time horizons 𝑇 ∈
{2×104, 4×104, 6×104, 8×104, 105}. For each time horizon, we run

experiments for Δ ∈ {0.5, 1, 1.5, 2}. The result of each experiment

is averaged over 80 independent runs.

We leverage the oracle presented in 3 for both Algorithm 1 and

Algorithm 2. The difference is that for Algorithm 1, the oracle only

returns a subset it chooses, while for Algorithm 2, it returns all the

scores 𝜙𝑖 (1/𝑘) for 𝑖 ∈ [𝑛].
To test the ex-post truthfulness of our mechanisms, we fix Δ to

be 1, so bidders’ the values are [2, 2, 2, 1, 1, 1, 1]. Since ex-post truth-
fulness requires the mechanism to be truthful on any random seed,

we pick 100 random seeds for evaluation. For each fixed random

seed, we adjust the bid of bidder 1 to 𝑏1 ∈ {1.25, 1.50, 1.75, 2.00,
2.25, 2.50, 2.75, 3.00}, while keeping other bidders’ bids unchanged.

We report bidder 1’s utility when different bids are reported. If

the mechanism is ex-post truthful, then for any random seed, the

utility-maximizing bid should be equal to the value. During the test

of truthfulness, we fix 𝑇 = 10000.

5.1.2 Results and Discussions. Figure 2a presents a comparison of

regret between Algorithm 1 and Algorithm 2. For any time hori-

zon 𝑇 and gap Δ, the regret of Algorithm 2 is significantly lower

than that of Algorithm 1. The low regret is due to the design of

adaptive commitment time in Algorithm 2. Besides, when the gap

Δ decreases, Algorithm 1 achieves lower regret, while Algorithm 2

suffers from higher regret. This phenomenon is demonstrated more

clearly in Figure 2b and Figure 2c. Figure 2b depicts the regret

of Algorithm 1 with different 𝑇 and Δ in a log-log plot. The grey

dashed lines represent 𝑅𝑒𝑔 = 𝑎𝑇
2

3 with different values of 𝑎. We

observe that the regret curves are almost parallel with the grey

lines, which indicates Θ(𝑇 2/3) regret, matching Theorem 2. More-

over, Algorithm 1 shows higher regret when Δ gets high. This is

because the regret accumulated in the exploration phase grows

as the gap between optimal and suboptimal super arms expands.
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(a) Comparison of the regret of two mecha-
nisms. Regret is displayed on a log scale.

(b) The regret of Algorithm 1. To demon-
strate the order of𝑇 2/3, both Regret and T
are displayed on a log scale.

(c) The regret of Algorithm 2. To demon-
strate the order of log𝑇 , T is displayed on a
log scale.

Figure 2: Regret of our two algorithms evaluated on synthetic data.

Figure 3: Regret of our two algorithms evaluated on Movie-
Lens dataset. Both Regret and T are displayed on a log scale.

Figure 2c shows the regret of Algorithm 2. We observe that the

regret almost grows linearly with respect to log𝑇 . Besides, the re-

gret grows quadratically with decreasing Δ. Note that in the case

of our experiment, Δ is proportional to Δ𝜙 , as the distributions are
identical and fixed. The dependence of regret on 𝑇 and Δ𝜙 nicely

matches our theoretical result (Theorem 3).

In the test of truthfulness, on all 100 random seeds, bidding the

true value achieves highest utility among 8 different bids. Figure 1

shows the utility curve of two mechanisms on five random seeds

{1, 2, 3, 4, 5}. The curves on all 100 seeds actually look similar, with

𝑏 = 2 being their common maximum point, and the fives seeds are

arbitrarily picked only for demonstration.

5.2 Experiments with real-world data
We evaluate the Algorithm 1 and Algorithm 2 on the MovieLens

1M [14] dataset.

5.2.1 Experiment Setup. We treat eachmovie as an arm and convert

the ratings into a CTR-like metric. The top 7 arms, determined by

the highest number of ratings in the original dataset, are selected as

the base arms. From these base arms, a super arm consisting of𝑘 = 3

arms is chosen in each round. To construct the CTR distribution, we

manually set a rating threshold 𝑟𝑡 = 3.5, such that ratings 𝑟 > 3.5 are

converted to 1, and otherwise to 0. Subsequently, we calculate the

mean and variance of the converted ratings for each arm, denoted as

the mean and variance of the CTR distribution, respectively. These

CTR distributions are modeled as truncated Gaussian distributions,

with support restricted to [0, 1]. The bid of each arm is sampled

from a uniform distribution 𝑈 ( [0, 5]) and remains constant after

the experiment begins. We conduct experiments for different time

horizons 𝑇 ∈ {1250, 2500, 5000, 1 × 10
4, 2 × 10

4, 4 × 10
4, 6 × 10

4}.
The setting of the oracle is the same as Section 5.1.1.

5.2.2 Results and Discussions. Figure 3 presents a comparison of

the regret between Algorithm 1 and Algorithm 2. When the horizon

𝑇 is small, both algorithms exhibit linear regret, as𝑚𝑘 > 𝑇 for a

small 𝑇 , leading to a predominantly exploratory phase within the

limited horizon. As 𝑇 increases, both algorithms demonstrate im-

provements by incorporating an exploitation phase. In comparison

with the dashed grey line, it is evident that Algorithm 1 achieves

𝑂 (𝑇 2/3) regret, while Algorithm 2 attains 𝑂 (log𝑇 ) regret. Notably,
with a large horizon𝑇 , Algorithm 2 achieves lower regret compared

to Algorithm 1.

6 RELATEDWORKS
Two-stage Advertising Systems. Previous studies on two-stage

advertising systems have primarily focused on two aspects: allo-

cation efficiency and incentives. Both Wang et al. [25] and Zhao

et al. [32] addressed the learning objectives of machine learning

models in the first stage, in order to align with the second stage and

enhancing the overall ad allocation performance. While Wang et

al. [25] also discussed incentives, they considered a non-standard

value-maximizer utility model. On incentives in two-stage auctions,

Goel et al. [13] provided an insightful characterization of first-stage

mechanisms that ensures overall truthfulness when composed with

any truthful second-stage auction mechanism. However, their work

was limited to single-round mechanisms, whereas we considered

incentives in multi-round bandit mechanisms.
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Two-stage Recommendation Systems. Research on two-stage struc-
tures in recommendation is rather abundant than advertising. A gen-

eral approach is cooperative training of both stages [12, 15, 17, 18]

to improve the overall recommendation performance, and particu-

lar attention has been paid to off-policy correction [20] and fairness

issues [24]. Closer to our setting is synchronized two-stage explo-

ration, studied under both linear [16] and neural [31] bandit settings.

Although these studies share some similarities with our setting,

there are significant differences due to the presence of incentives

in ad auctions.

Truthful Bandit Mechanisms. A line of research has focused on

designing truthful mechanisms for multi-round ad auctions, where

a multi-armed bandit algorithm acts as the allocation rule. Babaioff

et al. [4] provided a Ω(𝑇 2/3) regret lower bound for any determin-

istic truthful multi-armed bandit mechanisms, and provided a ETC

algorithm that matches this lower bound. Devanur and Kakade

[8] obtained a similar Ω(𝑇 2/3) lower bound under the revenue-

maximizing setting. Babaioff et al. [3] further extended to ran-

domized mechanisms, and provided a black-box reduction from

any monotone bandit algorithm to a truthful mechanism, which

gives rise to𝑂 (
√
𝑇 ) regret. Recent works have considered extended

settings in different directions, such as utility models [11] and con-

textual information [1, 28, 30]. Our work is based on a novel setting

of two-stage ad auctions which is formulated as designing combi-

natorial bandit mechanisms.

7 CONCLUSION
In this paper, we investigate the problem of designing truthful

bandit mechanisms for two-stage online ad auctions. We prove

an Ω(𝑇 ) lower bound for truthful mechanisms, and introduce

truthful 𝛼−approximation oracles which give rise to sublinear

𝛼−approximation regret mechanisms.

We leave it as an open problem to potentially design 𝑂 (
√
𝑇 )

bandit mechanisms within the approximation regret setting, or

to establish an Ω(𝑇 2/3) lower bound. Moreover, the impossibility

result may also be circumvented by other approaches, e.g., relaxing

the notion of truthfulness by considering high-probability truthful

mechanisms.
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A PROOFS
Proof of Lemma 2. Decompose the regret to super arms,

𝑅𝑒𝑔(𝑇 ) = 𝑇 · OPT𝐷 − E
[
𝑇∑︁
𝑡=1

𝑅𝐷 (𝐾𝑡 )
]

=
∑︁
𝐾

(𝑅𝐷 (𝐾∗) − 𝑅𝐷 (𝐾))E [𝜏𝐾 (𝑇 )] .

By sublinear regret,

0 = lim

𝑇→∞
𝑅𝑒𝑔(𝑇 )
𝑇

=
∑︁
𝐾

(𝑅𝐷 (𝐾∗) − 𝑅𝐷 (𝐾)) lim

𝑇→∞
E[𝜏𝐾 (𝑇 )]

𝑇
.

Since the optimal super arm is unique, for every𝐾 ≠ 𝐾∗,𝑅𝐷 (𝐾∗)−
𝑅𝐷 (𝐾) > 0, thus we have lim𝑇→∞ E[𝜏𝐾 (𝑇 )]/𝑇 = 0. Note that

𝑇 =
∑
𝐾 E[𝜏𝐾 (𝑇 )]. Therefore lim𝑇→∞ E[𝜏𝐾∗ (𝑇 )]/𝑇 = 1.

□

Proof of Proposition 2. For truthfulness, fix any realization

table C, and consider the cumulative utility 𝑈𝑖 (C, 𝑏𝑖 , b−𝑖 ) of bidder
𝑖 . We separate𝑈𝑖 to the cumulative utility in exploration phase and

exploitation phase,

𝑈𝑖 (C, 𝑏𝑖 , b−𝑖 ) =
𝑚𝑘∑︁
𝑡=1

𝑢𝑖𝑡 (C, 𝑏𝑖 , b−𝑖 ) +
𝑇∑︁

𝑡=𝑚𝑘+1
𝑢𝑖𝑡 (C, 𝑏𝑖 , b−𝑖 )

where 𝑢𝑖𝑡 (C, 𝑏𝑖 , b−𝑖 ) is bidder 𝑖’s utility in round 𝑡 .

In the exploration phase, bidder 𝑖 only participates in the subset

auction in certain fixed rounds, and its competitors in these rounds

is not influenced by 𝑏𝑖 . For each of these rounds, by the truthfulness

of second-price auctions, bidder 𝑖 optimizes its utility with truthful

bid 𝑣𝑖 .

For the exploitation phase, the empirical distributions F̂ in line 6

only depend on C, and are not influenced by 𝑏𝑖 . The exploitation

phase consists of repeated second-price auctions on a fixed subset𝐾 ,

which is selected by the oracle. From the truthfulness of the oracle,

for fixed F̂, the combination of selecting 𝐾 and running second-

price auction within 𝐾 is truthful, with respect to any realization

c. This implies that the combination of selecting 𝐾 and running

any one of the auctions in rounds 𝑚𝑘 + 1 ≤ 𝑡 ≤ 𝑇 is truthful.

Therefore 𝑣𝑖 is the maximizer of any of the objectives𝑢𝑖𝑡 (C, 𝑏𝑖 , b−𝑖 )
for𝑚𝑘 + 1 ≤ 𝑡 ≤ 𝑇 .

To conclude, the truthful bid 𝑣𝑖 maximizes any of 𝑢𝑖𝑡 (C, 𝑏𝑖 , b−𝑖 )
for 1 ≤ 𝑡 ≤ 𝑇 , and thus maximizes 𝑈𝑖 (C, 𝑏𝑖 , b−𝑖 ).

For IR, the total utility 𝑈𝑖 of bidder 𝑖 is defined as the sum of

utility in each round,

𝑈𝑖 (C, 𝑣𝑖 , b−𝑖 ) =
𝑇∑︁
𝑡=1

𝑢𝑖𝑡 (C, 𝑣𝑖 , b−𝑖 )

Fix any realization table C. For any 𝑡 , if 𝑖 ∈ 𝐾𝑡 , then 𝑖 participates
a second-price auction in round 𝑡 . By the IR property of second-

price auctions, 𝑢𝑖𝑡 (C, 𝑣𝑖 , b−𝑖 ) ≥ 0. If 𝑖 ∉ 𝐾𝑡 , both allocation 𝑥𝑖𝑡 and

payment 𝑝𝑖𝑡 are zero, thus 𝑢𝑖𝑡 = 0. Since each round produces non-

negative utility when truthful bidding, the total utility𝑈𝑖 (C, 𝑣𝑖 , b−𝑖 )
is non-negative, therefore the mechanism is IR. □

Proof of Lemma 7. The oracle in Lemma 3 is a truthful
𝑒−1
2𝑒 -

approximation scoring oracle. Now we prove that its Lipschitz

constant is 𝐿 = 1.

For distributions 𝐷 and 𝐷′, with CDFs 𝐹 and 𝐹 ′,

Score(𝐹 ) = 𝜙
(
1

𝑘

)
= E𝑟∼𝐷

[
𝑟 · I

[
𝑟 ≥ 𝑞( 1

𝑘
)
] ]

=

∫
1

𝑞( 1𝑘 )
𝑟d𝐹 (𝑟 )

=

∫ 𝑞( 1𝑘 )

0

1

𝑘
d𝑟 +

∫
1

𝑞 ( 1
𝑘
)
(1 − 𝐹 (𝑟 ))d𝑟

Define

𝑧 (𝑟 ) :=

1

𝑘
0 ≤ 𝑟 < 𝑞

(
1

𝑘

)
1 − 𝐹 (𝑟 ) 𝑞

(
1

𝑘

)
≤ 𝑟 ≤ 1

,

we have Score(𝐹 ) =
∫
1

0
𝑧 (𝑟 )d𝑟 .

For the difference of scores,

|Score(𝐹 ) − Score(𝐹 ′) | ≤
∫

1

0

|𝑧 (𝑟 ) − 𝑧′ (𝑟 ) |d𝑟 (11)

Now we prove that for any 𝑟 ∈ [0, 1],

|𝑧 (𝑟 ) − 𝑧′ (𝑟 ) | ≤ |𝐹 (𝑟 ) − 𝐹 ′ (𝑟 ) |. (12)

Without loss of generality, assume 𝑞( 1
𝑘
) ≤ 𝑞′ ( 1

𝑘
). Consider three

cases:

Case 1. 𝑟 < 𝑞( 1
𝑘
). In this case 𝑧 (𝑟 ) = 𝑧′ (𝑟 ) = 1

𝑘
, 𝑧 (𝑟 ) − 𝑧′ (𝑟 ) = 0.

Case 2. 𝑞( 1
𝑘
) ≤ 𝑟 < 𝑞′ ( 1

𝑘
). By 𝑞( 1

𝑘
) ≤ 𝑞′ ( 1

𝑘
) we know 𝐹 ′ (𝑟 ) <

1 − 1

𝑘
. Thus 𝑧 (𝑟 ) − 𝑧′ (𝑟 ) = 1 − 𝐹 (𝑟 ) − 1

𝑘
≤ 𝐹 ′ (𝑟 ) − 𝐹 (𝑟 )

Case 3. 𝑟 ≥ 𝑞′ ( 1
𝑘
). In this case 𝑧 (𝑟 ) − 𝑧′ (𝑟 ) = 𝐹 ′ (𝑟 ) − 𝐹 (𝑟 )

Concluding the three cases finishes the proof of (12). Plugging

(12) into (11) gives us

|Score(𝐹 ) − Score(𝐹 ′) | ≤
∫

1

0

|𝐹 (𝑟 ) − 𝐹 ′ (𝑟 ) |d𝑟 ≤
∫

1

0

Λd𝑟 ≤ Λ

□
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Proof of Proposition 3. For truthfulness, fix any realization

table C. In the exploration phase, the selected subset do not de-

pend on the bids. Moreover, the output super arm 𝐻𝑖𝑔ℎ is also not

influenced by the bids. In the exploitation phase, we repeatedly

run second-price auctions within 𝐻𝑖𝑔ℎ. Since a bidder cannot influ-

ence the selected subset 𝐾𝑡 in any round 𝑡 , the truthfulness of our

mechanism follows from the truthfulness of second-price auction.

For IR, again fix any realization table C. For any round 𝑡 , and any
bidder 𝑖 , if 𝑖 ∈ 𝐾𝑡 , then 𝑖 participates a second-price auction in round
𝑡 . By the IR property of second-price auctions, 𝑢𝑖𝑡 (C, 𝑣𝑖 , b−𝑖 ) ≥ 0.

If 𝑖 ∉ 𝐾𝑡 , both allocation 𝑥𝑖𝑡 and payment 𝑝𝑖𝑡 are zero, thus 𝑢𝑖𝑡 =

0. Since each round produces non-negative utility when truthful

bidding, the total utility 𝑈𝑖 (C, 𝑣𝑖 , b−𝑖 ) is non-negative. □
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