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ABSTRACT
In online advertising, existing auto-bidding strategies for bid shad-

ing mainly adopt the approach of first predicting the winning price

distribution and then calculating the optimal bid. However, the

winning price information available to the Demand Side Platforms

(DSPs) is extremely limited, and the associated uncertainties make

it challenging for DSPs to accurately estimate winning price distri-

bution. To address this challenge, we conducted a comprehensive

analysis of the process by which DSPs obtain winning price infor-

mation, and abstracted two types of uncertainties from it: known

uncertainty and unknown uncertainty. Based on these uncertain-

ties, we proposed two levels of robust bidding strategies: Robust

Bidding for Censorship (RBC) and Robust Bidding for Distribution

Shift (RBDS), which offer guarantees for the surplus in the worst-

case scenarios under uncertain conditions. Experimental results

on public datasets demonstrate that our robust bidding strategies

consistently enable DSPs to achieve superior surpluses, both on

test sets and under worst-case conditions.
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• Applied computing→ Online auctions; • Information sys-
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Mathematical optimization.
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1 INTRODUCTION
In recent years, the landscape of auto-bidding in online advertising

has undergone a significant transformation, with the sale of vast

quantities of ad impressions shifting from the traditional second-

price auction to the first-price auction [8, 26, 33]. This shift has
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altered the bidding strategies of the auction participants, namely

Demand Side Platforms (DSPs), and has given rise to the issue of

bid shading [32, 34, 35] in the first-price auction context.

From the perspective of auction theory, in contrast to traditional

second-price auctions, first-price auctions do not possess the incen-

tive compatibility property [17, 18]. For DSPs, this indicates that

truthfully revealing their value of winning the auction may not

necessarily yield the maximal surplus for themselves. Therefore,

DSPs need to develop bidding strategies tailored to the first-price

auction environment in order to maximize their own surplus.

A natural bidding approach in first-price auction is firstly pre-

dicting the distribution of winning price for each auction, where

winning price is the minimal bid that could win the auction. Based

on this distribution, one can solve for the bid that maximizes the

expected surplus. This approach has been adopted by many works

on bid shading, and has led to the development of specialized works

that focus on the prediction of winning prices [19, 30, 31].

However, the uncertainty of winning price is a substantial chal-

lenge. In reality, the real distribution of winning prices is unattain-

able, and we can only estimate it from the sampled winning price

data within each auction. Moreover, a significant issue for DSPs

is that they can only access partial information from this sampled

data. For instance, a DSP may know the exact winning price only

upon winning an auction, whereas in the cases of not winning,

DSP would merely know that winning price is higher than her bid.

Additionally, the proportion of auctions that a DSP wins consti-

tutes a minor segment of all auctions. This dilemma is commonly

referred to as the censorship problem [2, 27, 32]. The impediments

in accessing winning price information result in uncertainties that

cannot be disregarded in the modeling of winning price.

Existing research endeavors to predict the distribution of win-

ning prices in the context of censorship, which inherently necessi-

tates the introduction of certain assumptions as criteria for evalu-

ating the quality of the predicted winning price distributions. For

example, the method of censored regression assumes that the distri-

bution of winning prices should remain consistent across auctions

that a DSP loses and those her wins. Such an assumption may

not correspond to actual conditions [32], thereby introducing an

intrinsic bias into the predicted distribution.

In our work, to address the challenges posed by uncertainties,

we propose two levels robust bidding strategies. More specifically,

we categorize the uncertainty within the winning price into two

levels: known uncertainty and unknown uncertainty, corresponding

respectively to the issue of censorship and the sampling process

of winning price. These two types of uncertainties collectively

describe the limited information on the winning price distribution

that the DSP can obtain.

Given that both types of uncertainties pertain to winning price

distribution, We draw inspiration from the idea of Distributionally
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Robust Optimization (DRO) [5, 16, 21] and model such uncertain-

ties on distribution by the concept of ambiguity sets. Subsequently,

we solve the distributionally robust optimization problem to select

the optimal bids. Following this approach, we propose two levels

robust bidding strategies—Robust Bidding for Censorship (RBC)

and Robust Bidding for Distributional Shift (RBDS)—for known

and unknown uncertainties, respectively, and design correspond-

ing algorithms to solve the bidding problem. Such robust bidding

strategies aim to optimize the worst-case surplus, thereby providing

lower bound guarantees for the DSP’s surplus in first-price auction

environments, where the winning price is fraught with uncertainty.

Our contributions in this work can be summarized as follows:

• We model the uncertainties of winning price, and propose

the corresponding distributionally robust bidding strategies.

Our robust strategy aims to optimize the worst-case surplus,

thereby achieving advanced performance in the bidding en-

vironments characterized by significant uncertainty.

• From the technical perspective, we designed the construction

of the ambiguity set and the algorithm for the RBC and RBDS

strategies. This approach can provide insights into solving

specialized distributionally robust optimization problems

under discrete distribution scenarios.

• We conduct comprehensive experiments on public datasets.

The experimental results show that our robust bidding strate-

gies outperform the existing strategies, especially exhibiting

better performance in the worst-case situations.

The rest of this work is organized as follows. In Section 2, we pro-

vide an overview of the existing works on bid shading and robust

optimization. In Section 3, we conduct a detailed analysis of the un-

certainty in bid shading, and introduce the robust bidding problem.

In Section 4, in correspondence to the two types of uncertainties

abstracted in the analysis, we specifically propose two levels robust

bidding strategies. In Section 5, we present the experimental results

on public datasets, and demonstrate the effectiveness of our robust

strategies. Finally, in Section 6, we briefly summarize the content

of this work and potential future works.

2 RELATEDWORK
In this section, we provide an overview of the existing auto-bidding

strategies in bid shading, and introduce the closely related series of

works on winning price prediction. Additionally, we briefly review

the relevant works on distributionally robust optimization, which

is the primary technique employed in this work.

2.1 Bid Shading
In bid shading, mainstream works adopt the idea of distribution-

based bidding strategies. According to whether the distribution type

of winning price is pre-assumed, we can roughly divide existing

works into two categories. One kind of work assumes that the

winning price follows a certain type of distribution, which is called

the parametric method. Existing work has tried various distribution

types to model winning price distribution [11, 20, 29]. Among them,

[35] compares several basic distribution types, and finds that the

lognormal distribution fits best in actual business.

Although the research on the parametric method is comprehen-

sive, the actual winning price distribution contains lots of detailed

information, which is difficult to be described by a certain type of

distribution. Based on this observation, another series of works

tries to directly fit the original distribution. This type of method

is called the non-parametric method. [34] uses a table-based algo-

rithm to record historical surplus and make bidding decisions based

on these records. At present, the main discussion of non-parametric

methods lies in the series of works about winning price prediction.

2.2 Winning Price Prediction
To deal with censorship problem, a series of works focused on the

winning price prediction model. [32] is the first to consider the

censorship problem in distribution prediction. In their work, they

introduce the traditional censored regression method and model

the winning price prediction as a linear fitting problem with normal

noise. [7] further models winning price as a mixture distribution

and uses the mixture density network corresponding. [14] focuses

on the design of feature engineering, and improves the loss function

of the network. Besides these works related to censored regression,

there is also a series of works that use survival analysis to deal with

censorship problem. [30] is the first to introduce survival analysis

into winning price prediction, and they consider combining it with

decision trees to apply to bid shading problem. [22, 28] further

consider combining survival analysis with recurrent neural network

and Markov network. In general, this series of works gradually

develops towards complex non-parametric methods.

2.3 Distributionally Robust Optimization
Distribution robust optimization is a burgeoning robust optimiza-

tion method that we mainly refer to. Its principal idea is to opti-

mize the worst-case performance within an uncertain environment,

where the optimized variables are distributions. This method can

probably be traced back to a study on the inventory problem [24],

and is widely known as distributionally robust optimization after

a more recent study on moment uncertainty [4]. Nowadays, this

optimization idea has been applied to various scenarios, such as

machine learning [13] and auction mechanism design [12].

In our work, since the bidding decision function of bid shading is

not a convex function, we need to consider non-convex distribution-

ally robust optimization. Recently, [10] and [9] have expanded the

inner optimization problem in DRO to rewrite the DRO problem as

a stochastic optimization problem. With this transformation, they

can naturally use existing algorithms to solve the original DRO

problem. However, the number of studies on this topic is small and

further exploration is still needed.

3 PRELIMINARIES
In this section, we conduct a comprehensive analysis of the process

by which DSPs acquire winning price information, and abstract two

types of uncertainties from it: known uncertainty and unknown

uncertainty. Based on this uncertain environment, we introduce

the robust bidding problem, which encapsulates the objectives of

robust strategies in the next section.

3.1 Uncertain Bidding Environment
The environment we consider is the context of first-price auction, in

which a DSP aims to devise a bidding strategy that could maximize
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her surplus. Formally speaking, from the DSP’s perspective, we

define her private value as 𝑣 , and she can submit a bid 𝑏 ∈ B to the

auction platform to compete for the advertisement slot, where B
denote the discrete bidding space with size𝑀 . Let𝑤 be the winning

price of the auction. The DSP wins the auction when her bid 𝑏 is

greater than or equal to𝑤 , at which point she incurs a cost equal to

her bid 𝑏, and gets the surplus 𝑣−𝑏. If DSP does not win the auction,

her surplus is 0. Hence, the objective of DSP can be expressed as

optimizing her surplus:

ℎ(𝑏,𝑤) = (𝑣 − 𝑏) · I{𝑏 ≥ 𝑤}, (1)

where I{𝑏 ≥ 𝑤} indicates whether DSP wins or not, and it con-

verts the logical judgment result to 0 or 1 accordingly. In practical

business scenarios, the private value 𝑣 is generally given. Hence,

similar to other bid shading studies, we focus our attention on the

modeling of winning price𝑤 .

To model winning price, we analyze its origins and the associated

uncertainty issues from the perspective of DSP. First, we assume

that winning price 𝑤 follows a distribution 𝒑. In this work, for

ease of discussion, we utilize this kind of probability vector 𝒑 to

discretely represent the winning price distribution. Specifically, we

define𝑏0 = 0, and set the bids inB to satisfy𝑏0 < 𝑏1 < ... < 𝑏𝑀 and

form an arithmetic sequence. Consequently, the probability vector

can be denoted as 𝒑 = (𝑝1, 𝑝2, ..., 𝑝𝑀 ), where for any 𝑗 ∈ [1, 𝑀], 𝑝 𝑗
corresponds to the probability of the winning price being in the

interval [𝑏 𝑗−1, 𝑏 𝑗 ).
In reality, the DSP cannot directly access the real winning price

distribution 𝒑. Instead, it indirectly acquires information about this

distribution through the following process:

• Sampling. Historical auctions contain sampled winning

price data {�̂�𝑖 |𝑖 ∈ A}, where 𝑖 is used to identify different

auctions in historical auctions set A. These sampled data

constitutes an sampling distribution �̂� = FB ({�̂�𝑖 |𝑖 ∈ A}).
In our work, we use the function FB to denote the function

that map the dataset to a distribution �̂� on B.
• Censorship. DSP can only obtain the sampled winning price

{�̂�𝑖 |𝑖 ∈ W} when her wins, whereW is the set of auctions

DSP won. For those losing auctions 𝑖 ∈ L = A \W, DSP

normally only knows that the sampledwinning price exceeds

her own bid. We abstract the situation of these auctions as

cases where the DSP only knows the interval [ˆ𝑙𝑖 , 𝑟𝑖 ] in which
�̂�𝑖 is located.

Here, the censorship problem has already been widely discussed

in related work [32], and we further explain the meaning of the

interval [ˆ𝑙𝑖 , 𝑟𝑖 ] in it. In the most general case, when DSP does not

win the auction, she only knows that the winning price is higher

than her bid, so the left end of the interval
ˆ𝑙𝑖 is DSP’s bid in that

auction, and the right end 𝑟𝑖 is infinite. However, some studies have

shown that the interval in which the winning price resides can be

empirically narrowed down [14]. Therefore, in order to make the

modeling of our problem more universal, we abstract the accessible

information when the DSP does not win as the winning price being

within a known interval �̂�𝑖 ∈ [ˆ𝑙𝑖 , 𝑟𝑖 ].
Since the sampling and censorship process introduces consid-

erable uncertainty to the bid shading problem, for further robust

Figure 1: The idea of uncertainty analysis and distribution-
ally robust optimization

strategies design, we divide the uncertainty into two types, corre-

sponding to the sampling and censorship process respectively:

• Known uncertainty. For any losing auction 𝑖 ∈ L, the
actual winning price �̂�𝑖 could be any value within the in-

terval [ˆ𝑙𝑖 , 𝑟𝑖 ]. Since the sampling distribution is comprised

of winning price data from the dataset, DSP can determine

that the sampling distribution �̂�𝑖 belongs to an ambiguity set

P𝑘𝑛 , where the uncertainty can be specified by the intervals.

• Unknown uncertainty. The difference between the sam-

pling distribution �̂� and the real distribution 𝒑, as well as
the potential changes of the real distribution 𝒑 over time,

constitutes the unknown uncertainty that DSP cannot be

certain about due to the limited information. Corresponding

to this uncertainty, we denote the ambiguity set in which

the real distribution 𝒑 could resides as P𝑢𝑛 .
The term “known uncertainty” here refers to the situation where

DSP is aware of the set P𝑘𝑛 but does not know which specific el-

ement from the set is the actual sampling distribution 𝑃 . In other

words, the DSP knows the range of possible distributions but can-

not pinpoint the exact one within that range. On the other hand,

“unknown uncertainty” implies that DSP cannot even accurately

grasp or define the ambiguity set P𝑢𝑛 itself.

3.2 Robust Bidding Strategies
In order to achieve the satisfied surplus of DSP in uncertain en-

vironments, we introduce the robust optimization [1] into the de-

sign of bidding strategies. Specifically, since uncertainty in bidding

problem arising from the winning price distribution, the bidding

decision can be formulated as the following distributionally robust

optimization problem:

max

𝑏∈B
min

𝒑∈P
E𝑤∼𝒑 [ℎ(𝑏,𝑤)], (2)

where the decision function ℎ is defined in (1). This minimax op-

timization process can be understood as follows: as the real dis-

tribution could be any element within the ambiguity set P, for
each bid 𝑏, there exists a range for the expected surplus obtained

by DSP, and we can denote its lower and upper bound as 𝐿 and 𝑈

respectively. In this case, distributionally robust hopes to take this

uncertainty into account and chooses the bid 𝑏 𝑗 that maximizes

the minimal surplus 𝐿𝑗 . Figure 1 provides a visual representation

of this process, where we adopt the known uncertainty and the

corresponding ambiguity set P = P𝑘𝑛 for illustrating.

To facilitate subsequent discussions, we denote the cumulative

distribution function (CDF) corresponding to the distribution 𝒑
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as 𝑃𝒑 , and present a more tractable form for the distributionally

robust optimization problem (2):

max

𝑏∈B
min

𝒑∈P
(𝑣 − 𝑏) · 𝑃𝒑 (𝑏). (3)

The distributionally robust problem (2) and (3), along with the am-

biguity set P𝑘𝑛 and P𝑢𝑛 considered within it, abstractly formulates

the mathematical problem in bid shading, and provides a general

description of the objective for our robust strategies design. Sub-

sequently, we will further elaborate on the design details of our

robust bidding strategies.

4 DESIGN
In this section, we further elaborate on the design of robust bidding

strategies. In response to the two types of uncertainties summa-

rized in the previous section, we propose two levels robust bidding

strategies: Robust Bidding for Censorship and Robust Bidding for

Distribution Shift, and further provide solutions for the robust

optimization problems within these strategies respectively.

4.1 Robust Bidding for Censorship
We first discuss the design of robust bidding strategy considering

only the known uncertainty. We refer to this as the Robust Bidding

for Censorship (RBC), which addresses a problem of the same form

as (2), but with the ambiguity set defined as follows:

P𝑘𝑛 = {FB ({�̂�𝑖 |𝑖 ∈ W} ∪ {𝑤𝑖 |𝑤𝑖 ∈ [ˆ𝑙𝑖 , 𝑟𝑖 ], 𝑖 ∈ L})}, (4)

where we use the sampled winning price set {�̂�𝑖 } to represent the

distribution. In this set, the data for subscript 𝑖 ∈ W is known,

while the data for subscript 𝑖 ∈ L is uncertain, where the data𝑤𝑖

can take any value within the interval [ˆ𝑙𝑖 , 𝑟𝑖 ].
Problem (2) with the ambiguity set P𝑘𝑛 appears complex, but it

can be transformed into a simple maximization problem, which is

tractable to some extent. We arrive at the following conclusion:

Remark 4.1. Given the ambiguity set P𝑘𝑛 , problem (2) is equiva-
lent to the following problem:

max

𝑏∈B
E𝑤∼𝒑

0

[ℎ(𝑏,𝑤)], (5)

with the distribution 𝒑
0
= �̂�𝑐 , where �̂�𝑐 ∈ P𝑘𝑛 represents the worst-

case winning price distribution, and it can be expressed as:

�̂�𝑐 = FB ({�̂�𝑖 |𝑖 ∈ W} ∪ {𝑟𝑖 |𝑖 ∈ L}). (6)

This result is quite intuitive. Similar to the equivalence between

problems (2) and (3), problem (5) can be equivalently transformed

into the following problem:

max

𝑏∈B
(𝑣 − 𝑏) · 𝑃𝒑

0

(𝑏) . (7)

By analyzing problem (3), for any given bid 𝑏, the worst-case sce-

nario corresponds to the smallest cumulative probability 𝑃�̂�𝑐
(𝑏).

Within the ambiguity set P𝑘𝑛 , the sampled data in �̂�𝑐 should be as

large as possible, meaning that for each auction 𝑖 ∈ L, selecting 𝑟𝑖
to form the sampling distribution �̂�𝑐 . Thus problem (3) with the

ambiguity set P𝑘𝑛 is equivalent to problem (7) with the worst-case

distribution �̂�𝑐 . A detailed proof can be found in Appendix A.1.

In fact, problem (5) is a highly versatile optimization problem,

which can be used in conjunction with the winning price distribu-

tion prediction model to formulate a bidding strategy, and we refer

to this expectation-based optimization as Stochastic Optimization

(SO) in the remaining parts. Broadly speaking, the crux of solving

problem (5) lies in obtaining the distribution 𝒑
0
that the winning

price𝑤 follows. In existing work, 𝒑
0
is the estimated winning price

distribution, which can be predicted using existing methods, such

as the works presented in Section 2.2; in our RBC strategy, 𝒑
0
is

the worst-case distribution, but it can also be predicted by emu-

lating existing methods. The detailed approach of predicting the

worst-case distribution is as follows.

Considering that DSP can obtain feature data �̂�𝑖 for each auc-

tion, we design a non-parametric distribution estimation model,

denoted as 𝑓𝑐 , which employs a simple two-layer fully connected

network and utilizes the Softmax function to process the outputs.

This network maps the input feature data �̂�𝑖 to a discrete distri-

bution �̂�𝑖 = 𝑓𝑐 (�̂�𝑖 ), whereby the output dimension corresponds to

the dimension 𝑀 of the discrete distribution, with the i-th output

corresponding to the value of 𝑝𝑀
𝑖
. This distribution �̂�𝑖 estimated

will serve as the worst-case distribution 𝒑
0
= �̂�𝑐 within the SO

problem (5) to obtain the robust bids. We denote the probability

density function (PDF) associated with the output distribution �̂�𝑖
as 𝑝�̂�𝑖

, and thus the loss function utilizing the concept of maximum

likelihood can be written as:

𝐿𝑠 = −
∑︁
𝑖∈W

log𝑝�̂�𝑖
(�̂�𝑖 ) −

∑︁
𝑖∈L

log𝑝�̂�𝑖
(𝑟𝑖 ) . (8)

In practice, the right end of the interval can be calculated based on

some empirical circumstances, such as the method in [14]. However,

in this work, we wish to consider a more general case, where the

DSP only knows that the winning price is higher than her own bid,

thus assuming that the upper bound of the winning price is infinity

in each auction. Under this assumption, the worst-case distribution

in (6) can be further rewritten as �̂�𝑐 = FB ({𝑤𝑖 |𝑖 ∈ W}), while
keeping the solution of problem (5) unchanged. The loss function

(8) now can be simplified to:

𝐿′𝑠 = −
∑︁
𝑖∈W

log𝑝�̂�𝑖
(�̂�𝑖 ) . (9)

This result is natural. Since all known uncertainty resides within

the auctions inL, the most conservative approach is to refrain from

utilizing the uncertain data from these auctions, that is, only using

data in winning auctionsW like loss function (9).

We would like to further discuss the significance of RBC from

the perspective of existing works. Since censorship issue was raised

by [32], the academic discussion on bid shading has mostly been

limited to the distribution prediction methods under censorship

scenarios, such as the censored regression and survival analysis

mentioned in Section 2.2. However, the results of RBC suggest that

using only the data in winning auctionsW has a certain degree

of robustness, and therefore, it may yield favorable results in an

environment with considerable uncertainty such as bid shading.

Our subsequent experiments have validated this. Moreover, since

RBC considers the worst-case distributions that are only composed

of deterministic data, RBC has the potential to bring in research

on conditional density estimation [23] beyond censorship, an area

that is currently lacking in the discussion of bid shading. We will

leave this potential direction for future work.
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4.2 Robust Bidding for Distribution Shift
In contrast to the RBC strategy, where the ambiguity set P𝑘𝑛 is

known, the Robust Bidding for Distribution Shift (RBDS) contem-

plates scenarios in which even the information about the ambiguity

set P𝑢𝑛 is unattainable. Analogous to the preceding analysis, the

DSP is restricted to obtaining sampled data of the winning prices,

and there may be a disparity between sampling distribution and

the real distribution of winning prices. Furthermore, the real distri-

bution of winning prices might undergo shifts over time, thereby

introducing an element of inevitable bias into the DSP’s predictions

that are based on the sampled data.

To address this kind of uncertainty, we consider employing the

conventional distributionally robust optimization approach, and

adopting the discrepancy-based ambiguity set. This approach as-

sumes that the discrepancy between the real distribution and the

sampling distribution lies within a certain range, and it ensures a

lower bound on the performance of the real distribution by opti-

mizing for the worst-case scenario among all distributions within

this range. The optimization problem can still be expressed in the

form of problem (2), where the ambiguity set is represented as:

P𝑢𝑛 (𝒑0
, 𝜖0) = {𝒑 | 𝑑 (𝒑,𝒑0

) ≤ 𝜖0}, (10)

where 𝒑
0
is the winning price distribution estimated by DSP, 𝜖0 is

the upper bound of the discrepancy between the real distribution

and estimated distribution, and 𝑑 is a function that measures the

discrepancy between distributions. Therefore, P𝑢𝑛 mathematically

describes our method of considering all distributions that differ

from the estimated 𝒑
0
within a certain range. Conversely, problem

(2) with the ambiguity set P𝑢𝑛 aims to optimize the worst-case

scenario within this distribution range.

After introducing the complete strategic framework, we will

further provide the definition of the ambiguity set P𝑢𝑛 and the

algorithm for problem (2) with P𝑢𝑛 in the following parts.

4.2.1 Ambiguity Set in RBDS. We firstly introduce the estimated

distribution 𝒑
0
, the discrepancy function 𝑑 , and the discrepancy

upper bound 𝜖 within the ambiguity set P𝑢𝑛 . The distribution 𝒑
0
is

the distribution estimated based on the sampled data. Similar to the

distribution 𝒑
0
in SO problem (5), 𝒑

0
in P𝑢𝑛 could be the estimated

winning price distribution, in which case problem (2) can be simply

interpreted as ensuring a lower bound on the bidding surplus by

optimizing the worst-case outcome when there is a discrepancy

between the estimated distribution and the real distribution. Alter-

natively, it could also be the worst-case distribution �̂�𝑐 estimated

in our RBC strategy (6). In this case, problem (2) can similarly be

understood as acknowledging that discrepancies exist between the

sampling worst-case distribution and the real worst-case distribu-

tion, and we likewise ensure a lower bound on bidding surplus by

optimizing for the “worst of the worst-case” distribution. From this

perspective, the RBDS strategy can be regarded as a robust form of

the SO problem (5).

For the discrepancy function 𝑑 , we adopt the Wasserstein dis-

tance function [25] to measure the discrepancy between distribu-

tions. This is a commonly used discrepancy function in distribu-

tionally robust optimization. Furthermore, when employing the

Wasserstein distance, the form of the worst-case winning price

Figure 2: Decision function for the bid shading problem

distribution has an intuitive interpretation, aligning with obser-

vations in some existing works [34]. This intuitive interpretation

is provided in the subsequent Section 4.2.2. Here, we first present

the method of calculating this discrepancy function. Specifically,

given any two distributions 𝒑 and 𝒒 with discrete representation

(𝑝1, 𝑝2, ..., 𝑝𝑀 ) and (𝑞1, 𝑞2, ..., 𝑞𝑀 ), the Wasserstein distance of

𝒑 and 𝒒 can be defined as the solution of problem:

min𝒅
∑
𝑖

∑
𝑗 𝑑𝑖 𝑗 |𝑖 − 𝑗 |

s.t. 0 ≤ ∑𝑁
𝑗=1 𝑑𝑖 𝑗 ≤ 𝑝𝑖

𝑝𝑖 +∑𝑁
𝑗=1 𝑑 𝑗𝑖 −

∑𝑁
𝑖=1 𝑑𝑖 𝑗 = 𝑞𝑖

𝒅 = {𝑑𝑖 𝑗 }, 𝑖 ∈ [1, 𝑀], 𝑗 ∈ [1, 𝑀],

(11)

where the matrix 𝒅 is the optimized variable, and each 𝑑𝑖 𝑗 repre-

sents the probability quantity transferred from 𝑝𝑖 to 𝑝 𝑗 , which is

non-negative and cannot be greater than the original probability

quantity 𝑝𝑖 in total. In addition, after all the transfer, the probability

distribution 𝒑 should become 𝒒. Then Wasserstein distance is the

minimum value of the sum of the product of the probability trans-

ferred and the distance under these constraints, and we denote the

result of problem (11) as the Wasserstein distance 𝑑 (𝒑, 𝒒).
Finally, 𝜖0 defines the distance between the estimated distribu-

tion 𝒑
0
and real distribution. In practice, DSP can never know the

real distribution of winning prices, but can only obtain sampled

data. Therefore, it is impossible for DSP to accurately determine

the value of 𝜖0, which is a specific manifestation of the unknown

uncertainty associated with 𝑃𝑢𝑛 . Given this, we adopt a second-best

approach, considering the integration of the DSP’s objective of max-

imizing surplus to choose 𝜖0. Of course, this method of selection

dilutes its physical meaning, making it more akin to a hyperpa-

rameter. Hence, we will not delve into an extensive discussion on

the selection of 𝜖0, but will only report the relationship between

the DSP’s surplus and 𝜖0 in experiments, as well as the maximum

surplus that can be achieved by adjusting 𝜖0.

4.2.2 Algorithm for RBDS. To solve problem (2) with the ambi-

guity set P𝑢𝑛 , we first consider whether we can use traditional

distributionally robust optimization algorithms, which requires the

analysis of the decision function ℎ. Given winning price value �̂� ,

the image of the function ℎ(·, �̂�) is shown in Figure 2. It can be

seen that it is a non-continuous and non-convex function, and its

mathematical properties are relatively poor.

In the existing works, the latest researches [10] and [9] have

studied the non-convex distributionally robust optimization algo-

rithm, but they still require the decision function to satisfy certain

continuous assumptions. Besides, since the decision variable 𝑏 is

discrete, the equivalence problem (3) is also similar to the form of

discrete minimax problem [36], but in this series of research, the set

of distributions is finite, while our ambiguity set is infinite. If we
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Figure 3: An example for the constructive approach

hope to apply these algorithms to our problem, we need to modify

our decision function to meet the requirements of their algorithms.

In our work, due to the particularity of our problem, we consider

designing an algorithm without changing the decision function.

Since the bid spaceB in bid shading problem is finite, we can further

write the problem (3) as:

max

𝑏∈B
{(𝑣 − 𝑏) min

𝒑∈P
𝑃𝒑 (𝑏)}, (12)

where the key point is to solve the min term on discrete domain B,
and we denote it as 𝑓P :

𝑓P (𝑏) = min

𝒑∈P
𝑃𝒑 (𝑏) . (13)

If we can obtain the values of function 𝑓P on B, problem (12)

becomes easy to solve, like problem (7) in previous section. Next,

givenP = P𝑢𝑛 (𝒑0
, 𝜖0), wewill elaborate on the approach to solving

𝑓P and provide a specific algorithm for it.

Let’s start with a simple example. Assuming B = {1, 2, 3} and 𝒑
0

can be discretely represented by (𝑝1
0
, 𝑝2

0
, 𝑝3

0
), where 𝑝1

0
= 0.6 and

𝑝2
0
= 𝑝3

0
= 0.2. In this case, distribution 𝒑

0
can be represented by

the left histogram in Figure 3. Assuming that given 𝜖0 = 0.6, we are

calculating 𝑓P (2) = min𝒑∈P 𝑃𝒑 (2), that is, finding a distribution

𝒒
0
∈ P𝑢𝑛 (𝒑0

, 𝜖0) with the minimal cumulative probability 𝑃𝒒
0

(2).
We consider a constructive approach, devising a certain proce-

dure to construct 𝒒
0
from 𝒑

0
. Let’s start with 𝒒

0
= 𝒑

0
. To make

𝑃𝒒
0

(2) = 𝑞1
0
+𝑞2

0
as small as possible, we need to decrease 𝑞1

0
and 𝑞2

0
,

and increase 𝑞3
0
. But which one should we decrease first? Given our

constraint 𝑑 (𝒑
0
, 𝒒

0
) ≤ 𝜖0 = 0.6, it would be sensible to reduce 𝑞2

0

first because reducing 𝑞2
0
by the same amount will lead to a smaller

𝑑 (𝒑
0
, 𝒒

0
) compared to reducing 𝑞1

0
. We decrease 𝑞2 to 0, which

results in an increase of 𝑞3 to 0.2. At this point, the distribution can

be represented by the middle histogram in Figure 3, where the red

shaded area indicates the probability reduced relative to 𝒑
0
, and the

blue shaded area indicates the probability increased relative to 𝒑
0
,

with the computed 𝑑 (𝒑
0
, 𝒒

0
) being 0.2. We continue to reduce 𝑞1

0

and increase 𝑞3
0
, and we find that after reducing 𝑞1

0
by 0.2, 𝑑 (𝒑

0
, 𝒒

0
)

becomes 𝜖0 = 0.6; this new distribution can be represented by the

histogram on the right side of Figure 3. At this point, 𝑃𝒒
0

(2) = 0.2

is the function value 𝑓P (2) that we are looking for.

An issue that this example doesn’t cover is, assuming we allow

for a bid amount of 4, and considering the same initial distribution

𝒑
0
above, should we increase the probability at 𝑞3

0
or 𝑞4

0
? This is

actually similar to the choice of decreasing 𝑞1
0
or 𝑞2

0
first. Since

increasing the same amount of probability, increasing 𝑞3
0
results

in a smaller distance 𝑑 (𝒑
0
, 𝒒

0
), we similarly choose to increase

𝑞3
0
. In fact, summarizing the previous example, we find that given

Algorithm 1 Algorithm for 𝑓P on Discrete Domain

Require: Distribution 𝒑
0
, discrepancy upper bound 𝜖0

1: for 𝑗 = 1 to𝑀 do
2: 𝒒

0
← 𝒑

0
;

3: 𝑘 ← 𝑗 ;

4: while 𝑑 (𝒑
0
, 𝒒

0
) ≤ 𝜖 and 𝑘 > 0 do

5: 𝑞 𝑗+1 ← 𝑞 𝑗+1 + 𝑞𝑘 ;
6: 𝑞𝑘 ← 0;

7: 𝑘 ← 𝑘 − 1;
8: end while
9: 𝑞𝑘+1 ← (𝑑 (𝒑

0
, 𝒒

0
) − 𝜖0)/( 𝑗 − 𝑘);

10: 𝑓P (𝑏 𝑗 ) ←
∑𝑗

𝑘=1
𝑞𝑘 ;

11: end for

bid 𝑏, the method to construct 𝒒
0
is to transfer the probabilities

from 𝑝𝑏
0
, 𝑝𝑏−1

0
, ..., 𝑝1

0
to 𝑝𝑏+1

0
in descending order of index, until the

distance from the original distribution reaches the upper bound

𝜖0. Based on this approach, we propose a procedural method as

shown in Algorithm 1, which provides the pseudo code for solving

the values of 𝑓P on the discretely defined domain. We have the

following conclusion:

Remark 4.2. Algorithm 1 provide the strictly optimal solution for
problemmin𝒑∈P 𝑃𝒑 (𝑏) on discrete domainB, hence provide the exact
values of function 𝑓P on B defined in (13).

A detailed proof can be found in Appendix A.2. In addition to

outlining the algorithm, the example in Figure 3 vividly demon-

strates the worst-case scenario considered in distributionally robust

optimization problems. It can be seen that given bid 𝑏 = 2 and the

initial distribution 𝒑
0
, in the worst-case scenario, the distribution

𝒒
0
forms a spike right after the bid 𝑏 = 2, specifically at 𝑞3

0
. Exist-

ing literature indicates that such spikes are common in real-world

settings [34], therefore, employing Wasserstein distance in distribu-

tionally robust optimization can be interpreted as a robust bidding

strategy that accounts for the occurrence of these spikes.

After obtaining the algorithm for solving 𝑓P (𝑏 𝑗 ), the optimiza-

tion problem (12) of RBDS becomes as easy to solve as the SO

problem (5). In summary and comparison, the RBDS method is

equivalent to performing a robust treatment on the original distri-

bution, and then solving the optimization problem (5) to obtain a

robust bid against unknown uncertainty.

5 EXPERIMENT RESULTS
5.1 Experimental Setup
Firstly, we introduce the experimental datasets we used, the experi-

mental procedures, and the models utilized in the experiments.

5.1.1 Datasets. Our experiments use two public datasets including

the iPinYou dataset [15] and the Criteo dataset [6]:

• The iPinYou dataset is a widely used dataset in bid shading

related research. It contains 10 days of real-world data from

auctions in which the iPinYou DSP participates. We follow

the existing work [30] and use the data in the first 7 days as

training data, and the remaining data as test data.
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Figure 4: The main process of the experiments

• The Criteo dataset contains 30 days of real-world data from

auctions that the Criteo DSP participates. We use the first

24 days’ data as the training set, and the remaining 6 days’

data as the test set.

The datasets above have provided the feature 𝑥𝑖 and winning

price �̂�𝑖 in each auction 𝑖 . However, there is no censored data in the

original datasets, so we need to simulate the censorship problem

on the training set. In this work, we adopt the same method of

simulating censored data as in [28], which firstly simulates the

DSP bid
ˆ𝑏𝑖 , and then divides the training set into the setW and L

according to the relationship between
ˆ𝑏𝑖 and �̂�𝑖 .

In addition, we also need the estimated value data 𝑣𝑖 of the DSP.

However, since the value is confidential for DSP, public datasets do

not include this data, and we can only obtain it through simulation.

In our paper, we assume that the DSP uses a common strategy,

where in each auction, the DSP uses the value multiplied by a shad-

ing rate as her bid [8]. We further assume that the shading rate is

randomly selected by DSP, that is, the bid
ˆ𝑏𝑖 is generated in random

proportion according to the value 𝑣𝑖 . From these assumptions, we

are able to simulate the data 𝑣𝑖 for our experiments.

5.1.2 Experimental Procedure. Our experiment simulates the real

process of the DSP participating in auctions, as shown in Figure

4. In this process, DSP first predicts the distribution �̂�𝑖 based on

feature �̂�𝑖 using the prediction model. This distribution could be

the winning price distribution or the worst-case distribution in

RBC strategy, corresponding to different prediction models utilized.

After obtaining the distribution, DSP derives the bid
ˆ𝑏𝑖 according

to the optimization problem where the optimization corresponds

to the aforementioned distribution and could be the SO problem (5)

or the RBDS problem (12). Once the bid is determined, the DSP’s

surplus is calculated based on the actual winning price �̂�𝑖 and the

decision function ℎ.

5.1.3 Prediction Models. In our experiments, we primarily employ

the following bidding strategies:

STM is a winning price distribution prediction method that

combines survival analysis with decision trees [30]. We integrate it

with SO problem (5) as a traditional bidding strategy that utilizes

survival analysis.

MCN is a parametric distribution prediction method where the

winning prices are modeled as a mixture of Gaussian distributions

[7]. By integrating this approach with SO problem (5), it is utilized

as a traditional parametric method bidding strategy.

KMMN is a winning price distribution prediction method that

combines survival analysis with Markov network [28]. We integrate

it with SO problem (5) to serve as an enhanced survival analysis-

based bidding strategy.

NPM is a non-parametric distribution prediction method that

employs the same network as depicted in RBC strategy. It is similar

to the method described in [14], but we utilize a simpler network

architecture and loss function. We integrate it with SO problem (5)

to serve as a non-parametric bidding strategy.

RBC is the robust bidding strategy we have proposed for known

uncertainty. Unless otherwise stated, we employ the network de-

picted in previous section and train our model using the loss func-

tion (9) to predict the worst-case distribution. This prediction is

then incorporated into SO problem (5) as the robust bidding strat-

egy. The selection of the distribution prediction model and loss

function will be discussed in subsequent experimental sections.

RBDS is our proposed robust bidding method designed for un-

known uncertainty. It necessitates the integration with the afore-

mentioned distribution prediction model and supersedes the origi-

nal SO problems (5). In our experiments, we denote the combination

of this bidding strategy with any distribution prediction method M

as M+R.

5.2 Performance of RBC Strategy
5.2.1 Overall Performance. We initially conduct experiments on

the surplus performance of each strategy without employing RBDS

strategy, with the results displayed in Table 1. The distribution

prediction model is trained on the training set, and the resulting

bidding strategy is tested on the test set. The first column of Table

1 lists different Campaigns, comprising nine campaigns from the

iPinYou dataset and the overall Criteo dataset. Within the iPinYou

dataset, the winning price distributions vary among different cam-

paigns, hence existing works provide independent results for each

campaign, a practice we also continue. The main body of the table

presents the surplus obtained through different strategies, and it

can be observed that the RBC strategy we propose achieves the

highest surplus in the majority of the campaigns.

Table 1: Overall Surplus of Different Strategies (106)

Camp. STM MCN KMMN NPM RBC

1458 11.29 11.61 11.03 12.06 12.31
2259 4.988 5.442 5.278 5.436 5.590
2261 4.959 5.602 5.802 6.021 6.152
2821 8.191 8.803 8.548 8.784 9.095
2997 2.460 2.939 2.832 2.876 3.005
3358 3.309 3.327 2.961 3.610 3.451

3386 9.253 9.659 9.491 10.34 10.42
3427 7.295 7.767 7.783 8.441 8.486
3476 7.202 7.470 7.389 7.899 8.051
Criteo 101.8 104.0 103.6 109.2 109.3

A natural question arises as to why the robust bidding strategy

RBC, being a conservative approach, can perform better than the

strategy based on direct prediction of winning price distribution.

The primary reason is likely due to the fact that direct prediction of

winning price distribution requires the introduction of assumptions

that may not necessarily hold in practice, leading to an inherent bias

in the predicted winning price distribution. From the experimental

results, it appears that the surplus loss caused by these biases is

greater than the loss due to robustness.
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Figure 5: Relation between the upper bound parameter 𝜖0
and surplus on some campaigns

5.2.2 Worst-case Performance. Subsequently, we compare the per-

formance of different strategies under the worst-case scenario.

Here, the worst-case refers to the most adverse situation within the

known uncertainty, corresponding to the case where �̂�𝑖 = 𝑟𝑖 for

𝑖 ∈ L. We set the winning price in the auctions lost by the DSP in

the training set to infinity, and test the surplus of different models

under this worst-case training set. The results are shown in Table

2. It can be observed that our robust approach exhibits the best

worst-case performance across all campaigns.

Table 2: Worst-case Surplus of Different Strategies (107)

Camp. STM MCN KMMN NPM RBC

1458 5.952 5.996 6.107 6.324 6.626
2259 1.145 1.264 1.304 1.277 1.425
2261 0.973 1.076 1.103 1.117 1.215
2821 1.947 2.074 2.125 2.137 2.310
2997 0.479 0.558 0.529 0.540 0.570
3358 2.156 2.273 2.267 2.391 2.584
3386 5.223 5.262 5.475 5.679 5.967
3427 3.704 3.815 3.951 4.100 4.339
3476 2.862 2.907 3.002 3.085 3.271
Criteo 41.05 39.70 40.15 41.68 41.72

5.3 Performance of RBDS Strategy
5.3.1 Relationship between Upper Bound Parameter and Surplus.
We first give a certain relationship between the upper bound 𝜖0
and the surplus on the test set. The results on the test set of some

campaigns with KMMN+R strategy are shown in Figure 5. We

can observe that with the increase of 𝜖0, the surplus on the test

set basically increases first and then decreases. But in different

campaigns, the specific shape of the relation curve between surplus

and 𝜖0 is different. In practice, we combine this insight with binary

search to find the maximum surplus that can be obtained on the

test set by adjusting 𝜖0.

5.3.2 Overall Performance. In this section, we report on the upper

bound of surplus attainable through the adjustment of 𝜖0 in the

RBDS strategy. Taking RBC as an example, we compare the surplus

generated by the RBC strategy with the upper bound of surplus that

can be obtained through the RBC+R strategy, as illustrated in Table

3. It can be observed that RBDS has delivered a notable increase in

surplus for DSP in parts of campaigns. At this juncture, a question

similar to that regarding RBC may naturally arise: why does the

employment of the robust strategy RBDS lead to an enhancement

in surplus? This is primarily due to the divergence in the winning

price distribution between the training and testing datasets, which

leads to the model derived from the training set failing to accurately

predict the winning price distribution on the testing set. This may

result in an increased surplus when an appropriate robustness

parameter 𝜖0 is selected.

Table 3: Surplus of RBC and RBC+R Strategies (106)

Camp. RBC RBC+R

1458 12.31 12.40

2259 5.590 5.596

2261 6.152 6.161

2821 9.095 9.175

2997 3.005 3.008

3358 3.451 3.484

3386 10.42 10.44

3427 8.486 8.490

3476 8.051 8.130

Criteo 109.3 110.5

5.3.3 Worst-case Performance. To verify the robustness of our

RBDS strategy, we simulate the case where the real winning price

distribution is different from the predicted distribution, and then

compare the expected surplus of the SO strategy and our RBDS

strategy. In this context, the SO strategy refers to obtaining optimal

bids by solving problem (5), whereas RBDS strategy derives opti-

mal bids by solving problem (12). Specifically, we assume that the

value of DSP is evenly distributed on [50, 200]. We take the overall

winning price distribution on some campaigns as the predicted

distribution 𝒑
0
, and construct the worst-case distributions as the

real distributions subject to different Wasserstein distances. For

the RBDS strategy, we set the upper bound 𝜖0 = 0.02. Under these

settings, we calculate the expected surplus for SO and the worst-

case expected surplus for RBDS in some of the campaigns, and the

results are shown in Figure 6. We can observe that the performance

of SO strategy is generally better than RBDS strategy when the

distance is small. However, as the distance increases, our RBDS

strategy gradually outperforms the SO strategy. Compared to SO

strategy, it is easy to find that the surplus of our RBDS strategy de-

creases less as the distance increases, which means that the surplus

of RBDS is less affected by the distribution shift in the worst-case

situations. This verifies the robustness of our RBDS strategy.

5.3.4 Further Discussion of RBDS strategy. To better understand
the robustness of RBDS strategy, we specifically construct an ex-

ample to analyze how the SO and RBDS strategies bid for a given
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Figure 6: Worst-case performance of RBDS on some cam-
paigns

Figure 7: An example for the bid selection process in SO and
RBDS strategies

value 𝑣 . We use the overall winning price distribution on the 2821

campaign as the predicted distribution of SO problem (5) and RBDS

problem (12) respectively. Assuming that the Wasserstein distance

between the real (worst-case) distribution and the predicted distri-

bution, as well as the upper bound 𝜖0 in RBDS are both 0.2, and we

set the DSP’s value 𝑣 = 101. At this point, for different bids, the pre-

dicted surplus considered by the SO strategy, the worst-case surplus

considered by the RBDS strategy, and the real surplus are shown

in Figure 7. Among them, the real surplus is corresponding to the

specially constructed worst-case distribution, and it overlaps with

the predicted surplus for most bids, as shown in Figure 7. For better

illustration, we mark the bid prices selected by the SO and RBDS

strategies with dashed lines, which are the values corresponding to

the highest points in the two curves. Based on these selected bids,

we further mark out the surplus of these two strategies under the

real distribution to give an intuitive comparison.

As can be observed from Figure 7, there is a sharp increase in the

predicted surplus when the bid price is around 30, which means that

the probability of winning price at this point is very high, forming

a spike in the probability distribution. In this case, compared with

the steep predicted surplus curve of SO strategy, RBDS strategy

considers a smoother worst-case surplus curve in order to prevent

this spike from moving within a small range. Therefore the bid of

RBDS strategy is farther from the spike than SO strategy. In the

worst case, the probability around the spike is shifted, and RBDS can

deal with this situation more robustly and obtain a better surplus.

6 CONCLUSION
In this work, we model the uncertain environment inherent in the

design of auto-bidding strategies within the context of bid shading,

and propose two levels robust bidding strategies to achieve better

surplus in such environments with considerable uncertainty. The

experimental results on public dataset validate the effectiveness

and robustness of our robust bidding strategies.

Since this work is the first to consider the uncertainty issue in

bid shading, there are still many aspects to explore in both the-

ory and experiment. For instance, one could attempt using the

chance-constrained [3] surplus instead of worst-case surplus as the

optimization objective, introduce techniques of advanced condi-

tional density estimation [23] into RBC, and validate the results of

robust strategies in real bidding environments, etc. We leave these

promising directions to future works.
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A PROOFS
A.1 Proof of Remark 4.1
We firstly show that for any 𝑏 ∈ B:

min

𝒑∈P𝑘𝑛
𝑃𝒑 (𝑏) = 𝑃�̂�𝑐

(𝑏), (14)

where P𝑘𝑛 and �̂�𝑐 are defined in (4) and (6). Since B is finite:

(a) If 𝑏 = 0, 𝑃𝒑 (𝑏) = 0 for any 𝒑, thus (14) holds.
(b) If 𝑏 ≠ 0, we denote 𝑏 = 𝑏 𝐽 ∈ B. For rigor, we formally

provide the definition of the probability vector 𝒑 in the paper. For

a probability vector constructed from a winning price dataset 𝒑 =

FB ({𝑤𝑖 |𝑖 ∈ A}), the j-th element 𝑝 𝑗 is defined as:

𝑝 𝑗 =
1

|A|
∑︁
𝑖∈A
I{𝑏 𝑗−1 ≤ 𝑤𝑖 < 𝑏 𝑗 }, (15)

where |A| denotes the size of set A. Then the cumulative distribu-

tion function (CDF) value for any 𝑏 𝐽 is:

𝑃𝒑 (𝑏 𝐽 ) =
𝐽∑︁
𝑗=1

𝑝 𝑗 =
1

|A|
∑︁
𝑖∈A
I{𝑤𝑖 < 𝑏 𝑗 }. (16)

Defined in (4), P𝑘𝑛 contains all 𝒑 = FB ({𝑤𝑖 |𝑖 ∈ A}) that satisfies
𝑤𝑖 ∈ T𝑖 , where T𝑖 = {�̂�𝑖 } for 𝑖 ∈ W and T𝑖 = {𝑤 |ˆ𝑙𝑖 ≤ 𝑤 ≤ 𝑟𝑖 } for
𝑖 ∈ L. Hence the left-hand side in (14) equals to:

min

𝒑∈P𝑘𝑛
𝑃𝒑 (𝑏 𝐽 ) = min

{𝑤𝑖 ∈T𝑖 |𝑖∈A}
1

|A|
∑︁
𝑖∈A
I{𝑤𝑖 < 𝑏 𝐽 }

=
1

|A|
∑︁
𝑖∈A

min

𝑤𝑖 ∈T𝑖
I{𝑤𝑖 < 𝑏 𝐽 }

=
1

|A|
∑︁
𝑖∈W

min

𝑤𝑖 ∈T𝑖
I{𝑤𝑖 < 𝑏 𝐽 }+

1

|A|
∑︁
𝑖∈L

min

𝑤𝑖 ∈T𝑖
I{𝑤𝑖 < 𝑏 𝐽 }

(17)

For 𝑖 ∈ W, T𝑖 = {�̂�𝑖 } and min𝑤𝑖 ∈T𝑖 I{𝑤𝑖 < 𝑏 𝐽 } = I{�̂�𝑖 < 𝑏 𝐽 }; for
𝑖 ∈ L, T𝑖 = {𝑤 |ˆ𝑙𝑖 ≤ 𝑤 ≤ 𝑟𝑖 } and min𝑤𝑖 ∈T𝑖 I{𝑤𝑖 < 𝑏 𝐽 }) = I{𝑟𝑖 <

𝑏 𝐽 }. Hence from (17) we have:

min

𝒑∈P𝑘𝑛
𝑃𝒑 (𝑏 𝐽 ) =

1

|A| (
∑︁
𝑖∈W

I{�̂�𝑖 < 𝑏 𝐽 } +
∑︁
𝑖∈L
I{𝑟𝑖 < 𝑏 𝐽 }), (18)

which is exactly 𝑃�̂�𝑐
(𝑏 𝐽 ) for �̂�𝑐 defined in (6), thus (14) holds.

We have thus proven that equation (14) holds for any𝑏 ∈ B. Now,
we further provide the proof of Remark 4.1. Since problems (2) and

(3) are equivalent, we only need to prove that given 𝑣 , problem (3)

with ambiguity set (4) is equivalent to problem (5) with distribution

(6). According to (14), the problem (3) with ambiguity set (4) can be

written as:

max

𝑏∈B
min

𝒑∈P𝑘𝑛
(𝑣 − 𝑏) · 𝑃𝒑 (𝑏) = max

𝑏∈B
{(𝑣 − 𝑏) min

𝒑∈P𝑘𝑛
{𝑃𝒑 (𝑏)}}

= max

𝑏∈B
(𝑣 − 𝑏) · 𝑃�̂�𝑐 (𝑏),

(19)

which is equivalent to problem (5) with distribution (6). Hence, the

conclusion of Remark 4.1 is established.
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A.2 Proof of Remark 4.2
For convenience, we introduce some additional notations. Firstly,

since both 𝒑
0
and 𝜖0 are given values, we will use P𝑢𝑛 to denote

P𝑢𝑛 (𝒑0
, 𝜖0) in the subsequent proof. Besides, we additionally ap-

pended an element of zero to the end of the probability vector,

that is, 𝒑
0
= (𝑝1

0
, 𝑝2

0
, ..., 𝑝𝑀

0
, 𝑝𝑀+1

0
= 0). This addition does not alter

the probability distribution of 𝒑
0
, hence it does not affect the cor-

rectness of our conclusions. Next, we will prove that Algorithm 1

obtains the optimal solution to problem (12) on domain B.
Firstly, since B is a finite set, we only need to prove that for any

𝑏 ∈ B/{0}, Algorithm 1 can provide the accurate value of 𝑓P𝑢𝑛 (𝑏)
(clearly 𝑓P𝑢𝑛 (0) = 0). Therefore, in the subsequent proof, we fix 𝑏

and denote it as 𝑏 = 𝑏 𝐽 ∈ B, where 𝐽 ∈ [1, 𝑀].
Next, for the problem of 𝑓P𝑢𝑛 (𝑏 𝐽 ) = min𝒑∈P𝑢𝑛 𝑃𝒑 (𝑏 𝐽 ), we pro-

vide the form of the probability vector that could attains the op-

timal value, that is, the form of 𝒑∗ ∈ P𝑢𝑛 that could satisfies

𝑃𝒑∗ (𝑏 𝐽 ) = min𝒑∈P𝑢𝑛 𝑃𝒑 (𝑏 𝐽 ) for any 𝒑0
, 𝜖0 and 𝐽 . We subsequently

refer to 𝒑∗ as the "worst-case form".

We show that for any 𝒑
0
, 𝜖0 and 𝐽 , there exists some 𝑡 ∈ [1, 𝐽 ]

and 𝑝𝑡 ≤ 𝑝𝑡
0
such that the worst-case probability vector 𝒑∗ can be

constructed as:

• 𝑝𝑡∗ = 𝑝𝑡

• 𝑝𝑘∗ = 0,∀𝑘 ∈ [𝑡 + 1, 𝐽 ] (if 𝑡 < 𝐽 )

• 𝑝
𝐽 +1
∗ = 𝑝

𝐽 +1
0
− 𝑝𝑡 +∑𝐽

𝑘=𝑡
𝑝𝑘
0

• 𝑝𝑘∗ = 𝑝𝑘
0
,∀𝑘 ∉ [𝑡, 𝐽 + 1] (that is, for the rest element of 𝒑∗)

This is consistent with the construction results considered in Fig. 3

of our paper. For the proof of correctness regarding the worst-case

form, we conduct a classification discussion:

(a) If for 𝑡 = 1 and 𝑝𝑡 = 0 we have 𝑑 (𝒑
0
,𝒑∗) ≤ 𝜖0, then since

𝑃𝒑∗ (𝑏 𝐽 ) =
∑𝐽

𝑘=1
𝑝𝑘∗ = 0, it attains the optimal value (since the

probability value should not be negative).

(b) If for 𝑡 = 1 and 𝑝𝑡 = 0 we have 𝑑 (𝒑
0
,𝒑∗) > 𝜖0:

(b.1) We first need to demonstrate that there exists 𝑡 = 𝑡0 and

𝑝𝑡 = 𝑝𝑡0 such that the worst-case form can satisfy 𝑑 (𝒑
0
,𝒑∗) = 𝜖0.

This is because the distribution distance can be represented as:

𝑑 (𝒑
0
,𝒑∗) = (𝑝𝑡0 − 𝑝

𝑡 ) (𝐽 + 1 − 𝑡) +
𝐽∑︁

𝑘=𝑡+1
𝑝𝑘
0
(𝐽 + 1 − 𝑘), (20)

in which the summation term equals 0 if 𝑡 = 𝐽 . Note that when 𝑡 = 𝐽

and 𝑝𝑡 = 𝑝𝑡
0
, we have 𝒑∗ = 𝒑

0
such that 𝑑 (𝒑

0
,𝒑∗) = 0. Besides, this

expression is continuous with respect to 𝑡 and 𝑝𝑡 . Therefore, there

must exist some 𝑡0 and 𝑝
𝑡0
such that 𝑑 (𝒑

0
,𝒑∗) = 𝜖0.

(b.2) Fix 𝑡0 and 𝑝
𝑡0
, among all 𝒑 within the constraint 𝑑 (𝒑

0
,𝒑) ≤

𝜖0, we show that 𝒑∗ attains the optimal value of 𝑃𝒑 (𝑏 𝐽 ). Note that:

𝑃𝒑 (𝑏 𝐽 ) =
𝐽∑︁

𝑘=1

𝑝𝑘 , (21)

we show that if there is some �̂� such that 𝑃�̂� (𝑏 𝐽 ) < 𝑃𝒑∗ (𝑏 𝐽 ), we
have 𝑑 (𝒑

0
, �̂�) > 𝜖0 such that �̂� ∉ P𝑢𝑛 . We first construct �̂�∗ from

�̂� that satisfies:

• 𝑝𝑘∗ = 𝑝𝑘 ,∀𝑘 ∈ [1, 𝐽 ]
• 𝑝

𝐽 +1
∗ = 𝑝

𝐽 +1
0
+∑𝑀+1

𝑘=𝐽 +1 (𝑝
𝑘 − 𝑝𝑘

0
)

• 𝑝𝑘∗ = 𝑝𝑘
0
,∀𝑘 ∈ [𝐽 + 2, 𝑀 + 1] (if 𝐽 < 𝑀)

We have 𝑃�̂�∗
(𝑏 𝐽 ) = 𝑃�̂� (𝑏 𝐽 ) and 𝑑 (𝒑

0
, �̂�) ≥ 𝑑 (𝒑

0
, �̂�∗). The proof

of the latter result, although intuitive, is somewhat verbose. Intu-

itively, for the parts with indexes greater than 𝐽 , the probability of

�̂� being different from 𝒑
0
is concentrated at 𝑝

𝐽 +1
∗ . This reduces the

probability transfer within the indexes greater than 𝐽 and decreases

the distance for the remaining parts to transfer probabilities to this

portion. Here, for brevity, we skip the intricate proof.

Hence we only needs to prove that 𝑑 (𝒑
0
, �̂�∗) > 𝜖0. Note that

𝑃�̂�∗
(𝑏 𝐽 ) = 𝑃�̂� (𝑏 𝐽 ) < 𝑃𝒑∗ (𝑏 𝐽 ), and 𝑝𝑘∗ = 𝑝𝑘∗ = 𝑝𝑘

0
for all 𝑘 ∈ [𝐽 +

2, 𝑀 + 1] (if 𝐽 < 𝑀), we have 𝑝
𝐽 +1
∗ > 𝑝

𝐽 +1
∗ . Assuming that the

optimal transfer quantities in problem (11) are
ˆ𝒅 and 𝒅 for �̂�∗ and

𝒑∗ respectively. Then according to the definition of the Wasserstein

distance, by expanding the expression of the Wasserstein distance

between distributions 𝒑
0
and �̂�∗, we can obtain:

𝑑 (𝒑
0
, �̂�∗) =

𝑀+1∑︁
𝑖=1

𝑀+1∑︁
𝑗=1

ˆ𝑑𝑖 𝑗 |𝑖 − 𝑗 |

≥
𝐽∑︁

𝑖=1

ˆ𝑑𝑖 ( 𝐽 +1) (𝐽 + 1 − 𝑖)

≥
𝐽∑︁

𝑖=𝑡+1

ˆ𝑑𝑖 ( 𝐽 +1) (𝐽 + 1 − 𝑖) +
𝑡∑︁
𝑖=1

ˆ𝑑𝑖 ( 𝐽 +1) (𝐽 + 1 − 𝑡),

(22)

where the first ≥ hold since we only consider a subset of the transfer
quantities, that is, the probabilities transferred from indexes in [1,J]

to index J+1, and the second ≥ hold for 𝐽 + 1− 𝑖 ≥ (𝐽 + 1− 𝑡),∀𝑖 ≤ 𝑡 .

For the first term, according to the definition of �̂�∗, we can expand

it and obtain:

𝐽∑︁
𝑖=𝑡+1

ˆ𝑑𝑖 ( 𝐽 +1) (𝐽 + 1 − 𝑖)

=

𝐽∑︁
𝑖=𝑡+1

𝑝𝑖
0
(𝐽 + 1 − 𝑖) +

𝐽∑︁
𝑖=𝑡+1
( ˆ𝑑𝑖 ( 𝐽 +1) − 𝑝𝑖0) (𝐽 + 1 − 𝑖)

≥
𝐽∑︁

𝑖=𝑡+1
𝑝𝑖
0
(𝐽 + 1 − 𝑖) +

𝐽∑︁
𝑖=𝑡+1
( ˆ𝑑𝑖 ( 𝐽 +1) − 𝑝𝑖0) (𝐽 + 1 − 𝑡),

(23)

where the ≥ holds for ˆ𝑑𝑖 ( 𝐽 +1)−𝑝𝑖0 ≤ 0,∀𝑖 . Organizing the derivation
of (22) and (23), We now obtain a lower bound for the Wasserstein

distance between distributions 𝒑
0
and �̂�∗:

𝑑 (𝒑
0
, �̂�∗) ≥

𝐽∑︁
𝑖=𝑡+1

𝑝𝑖
0
(𝐽+1−𝑖)+(

𝐽∑︁
𝑖=1

ˆ𝑑𝑖 ( 𝐽 +1)−
𝐽∑︁

𝑖=𝑡+1
𝑝𝑖
0
) (𝐽+1−𝑡), (24)

where the remaining transfer quantities to consider is only those

from indexes in [1,J] to index J+1, and our goal is to compare the

size of the right-hand expression in (24) with that of 𝑑 (𝒑
0
,𝒑∗). Note

that we only need to consider the sum of these transfer quantities,

which is easy to compare:

𝐽∑︁
𝑖=1

ˆ𝑑𝑖 ( 𝐽 +1) = 𝑝
𝐽 +1
∗ − 𝑝 𝐽 +1

0
> 𝑝

𝐽 +1
∗ − 𝑝 𝐽 +1

0
=

𝐽∑︁
𝑖=𝑡

𝑑𝑖 ( 𝐽 +1) , (25)

and according to the definition of 𝒑∗, we have 𝑑𝑖 ( 𝐽 +1) = 𝑝𝑖
0
for any

𝑖 ∈ [𝑡 + 1, 𝐽 ]. We now can further derive the right-hand expression
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in inequality (24) as follows:

𝐽∑︁
𝑖=𝑡+1

𝑝𝑖
0
(𝐽 + 1 − 𝑖) + (

𝐽∑︁
𝑖=1

ˆ𝑑𝑖 ( 𝐽 +1) −
𝐽∑︁

𝑖=𝑡+1
𝑝𝑖
0
) (𝐽 + 1 − 𝑡)

>

𝐽∑︁
𝑖=𝑡+1

𝑝𝑖
0
(𝐽 + 1 − 𝑖) + (

𝐽∑︁
𝑖=𝑡

𝑑𝑖 ( 𝐽 +1) −
𝐽∑︁

𝑖=𝑡+1
𝑝𝑖
0
) (𝐽 + 1 − 𝑡)

=

𝐽∑︁
𝑖=𝑡

𝑑𝑖 ( 𝐽 +1) (𝐽 + 1 − 𝑖)

=𝑑 (𝒑
0
,𝒑∗)

=𝜖0,

(26)

where the penultimate equation is because only when 𝑗 = 𝐽 + 1
and 𝑖 ∈ [𝑡, 𝐽 ] we have 𝑑𝑖 𝑗 ≠ 0. Combining (24) and (26) we have

𝑑 (𝒑
0
, �̂�∗) > 𝜖0. Hence the “worst-case form” 𝒑∗ attains the optimal

value of 𝑃𝒑 (𝑏 𝐽 ) in case (b).

Combining (a) and (b), we have proven that for any 𝒑
0
, 𝜖0 and 𝐽 ,

the “worst-case form” 𝒑∗ satisfies 𝑃𝒑∗ (𝑏 𝐽 ) = min𝒑∈P𝑢𝑛 𝑃𝒑 (𝑏 𝐽 ).
Finally, we can prove the correctness of Remark 4.2 by demon-

strating that for each 𝑏 𝐽 , Algorithm 1 provides the correct 𝑡0 and

𝑝𝑡0 in the previous discussion.

For 𝑡0, note that at each end of the step in the “while” loop, 𝒒
0

satisfies the “worst-case form” with 𝑡 = 𝑘 and 𝑝𝑡 = 0, and the loop

stops for the first time 𝑑 (𝒑
0
, 𝒒

0
) > 𝜖 , hence 𝑡0 = 𝑘 upon exiting the

“while” loop because 𝑑 (𝒑
0
, 𝒒

0
) increases as 𝑡 = 𝑘 decreases.

For 𝑝𝑡0 , since we have got 𝑡0, we can calculate its value through

the Wasserstein distance, as shown in line 9 in Algorithm 1.

Therefore, at this point, we have the accurate value of 𝑓P𝑢𝑛 (𝑏 𝐽 ) =∑𝑡0−1
𝑘=1

𝑞𝑘
0
+𝑝𝑡0 , as shown in line 10 in Algorithm 1 (note that 𝑞𝑘

0
= 0

for 𝑘 ∈ [𝑡0 + 1, 𝐽 ]).
Thus, Algorithm 1 obtains the optimal solution to problem (12)

on domain B, and the conclusion in Remark 4.2 have been proven.
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