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Abstract— Real-time information processing is critical to the
success of diverse applications from many areas. Age of Informa-
tion (AoI), as a new metric, has received considerable attention
to evaluate the performance of real-time information process-
ing systems. In recent years, edge computing is becoming an
efficient paradigm to reduce the AoI and to provide the real-
time services. Considering the substantial deployment cost and
the resulting resource limitation in edge computing, a proper
pricing mechanism is highly necessary to fully utilize edge
resources and then minimize the overall AoI of the whole system.
However, there are two challenges to design this mechanism:
1) the priorities (or values) of the real-time computing tasks,
critical to the efficient resource allocation, are usually private
information of users and may be manipulated by selfish users
for their own interests; 2) due to the time-varying property
of AoI, the values of the tasks discount with time, making
the traditional pricing mechanisms infeasible. In this paper,
we extend the classical Myerson Theorem to the online setting
with time discounting tasks values, and accordingly propose an
online auction mechanism, called PreDisc, including an allocation
rule and a payment rule. We leverage dynamic programming
to greedily allocate resources in each time slot, and charge the
winning user with a new critical price, extended from the classical
Myerson payment rule. A preemption factor is further employed
to make a trade-off between the newly arrived tasks and ongoing
tasks. We prove that PreDisc guarantees the economic property
of strategy-proofness and achieves a constant competitive ratio.
We conduct extensive simulations and the results demonstrate
that PreDisc outperforms the traditional mechanisms, in terms
of both weighted AoI and revenue of edge service providers.
Compared with the optimal solution in offline VCG mechanism,
PreDisc has much lower computation complexity with only a
slight performance loss.

Index Terms— Age of information (AoI), edge computing,
auction theory.
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I. INTRODUCTION

IN RECENT years, real-time information processing is
prevailing in many areas, such as autonomous vehicles [1],

online gaming [2], virtual reality (VR) [3] and multi-robot
systems [4]. In order to evaluate the performance of real-time
information processing systems, a new metric called age of
information (AoI) was proposed in [5], and has received con-
siderable attention recently [6]–[10]. Different from traditional
performance metrics like delay and throughput, the metric of
AoI takes the freshness of decision-making information into
account. For example, if the user sends tasks with a very
low frequency, the system performs well on delay but poorly
on AoI, because a lack of timely decision update makes the
received decision out of date. Thus, AoI is widely adopted as
a more reasonable metric in real-time computing applications.

The traditional centralized cloud computing mode does
not satisfy the stringent requirement of AoI in real-time
information processing system, because end devices have
to send data to remote cloud for processing with a high
network delay. Edge computing [11], as a new computing
paradigm, is quite attracted to further reduce the AoI in real-
time applications. In edge computing, edge servers (also called
cloudlets) are deployed near end devices, and such physical
proximity can significantly reduce transmission delay and also
AoI. For example, in autonomous vehicle systems with cloud
computing mode, the transmission time between the vehicle
and the remote cloud server is about 150 ms, while with the
assistance of edge servers, ultra-low latency (less than 1ms)
can be achieved [12], [13]. Many real-time applications like
online gaming and VR also have improvements in AoI and
hence in system performance and user experience by using
edge computing mode [2].

Although edge computing achieves attractive performance
improvement, it also introduces additional cost for distributed
deployment and maintenance [11], [14]. Due to this cost con-
straint, the computation resources of edge servers are usually
limited, which may result in the degradation of overall service
performance [15]. Therefore, on one hand, it is a promising
idea to consider the paradigm of edge-cloud collaboration,
combining the low latency of edge and the sufficient resources
of remote cloud [12], [16]. On the other hand, a proper
pricing mechanism is necessary to fully utilize the limited
edge resources and to compensate the cost of edge service
providers [17].
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There are several challenges to design a pricing mechanism
for edge services in real-time information processing systems.
The service provider would like to efficiently manage the lim-
ited edge resources by assigning large weights (or priorities)
to urgent tasks. We measure the extent of task urgency by a
metric of task value (please refer to Section II for a specific
definition), which is related to private information of users,
such as the driving speed and the surrounding environment
in self-driving systems. As the values of tasks are private to
users, they would manipulate this information, if doing so can
increase the priorities of their tasks, resulting in the chaos of
market and then the degradation of resource utilization. There-
fore, the pricing mechanisms should be carefully designed to
resist the strategic behaviors of users.

Other than the difficulty in guaranteeing the strategy-
proofness,1 the dynamic property and the time discounting
values of tasks also bring obstacles to the design of efficient
pricing mechanisms. On one hand, since the tasks arrive at the
edge in an online manner, the edge server needs to schedule
them online, without the knowledge of future tasks. The
classical Vickrey-Clarke-Groves (VCG) mechanism [18]–[20]
could not be directly applied into this online setting, as it needs
to calculate the optimal offline allocation. On the other hand,
since the AoIs of real-time decisions increase with time, the
values of tasks would discount if they are delayed for execu-
tion. The time changing value enables users to have a large
space to further manipulate the mechanisms, i.e., users can
win the resources at different time slots by misreporting their
values. The existing online mechanisms [21], [22], by which
each winning task is charged a predefined payment without
considering the time-discounting value, would be no longer
strategy-proof, and thus is inapplicable for AoI minimization
under strategic environments.

To address these challenges, in this paper, we adopt a cloud-
edge collaborative framework to optimize the weighted AoI
of real-time decision tasks. The edge servers are employed to
conduct urgent tasks, and the remote cloud server is considered
as a backup mode to make decisions for users when the
edge services are not available. We further propose an online
auction mechanism for weighted AoI minimization, where
users arrive at the auction dynamically, submit their tasks and
corresponding task values to the edge server, and wait for the
timely results of decisions before a certain deadline. Based on
the reported values, the edge service providers calculate the
reductions of weighted AoI for tasks at each time slot, and
schedule the tasks to execute, with the goal of minimizing the
overall weighted AoIs of all tasks. The edge service provider
also determines the prices for users to guarantee the property
of strategy-proofness, and then the users pay for the edge
service at the required price.

The main contributions of this paper are summarized as
follows.

• We deeply investigate two critical aspects of AoI opti-
mization in edge computing: the potential strategic
behaviors of users and the time-varying property of

1In a strategy-proof mechanism, the users would truthfully reveal their
private information, i.e., the values of tasks in our context. Please refer to
Section II for detailed definition.

AoI. Based on the appropriate models for these two
aspects, we then formulate the problem of weighted AoI
minimization as an online mechanism design with time
discounting values. The challenges in designing online
mechanisms due to the new property of time discounting
values have also been fully discussed.

• We extend the celebrated Myerson theorem [23] to the
online setting with time discounting values. Our algorith-
mic results and theoretical analysis provide a fundamental
tool for optimizing AoI within strategic environments.
This result would also have independent interests in
mechanism design literature, and the potential applica-
tions of this result are also discussed in this work.

• We propose a Preemption factor-based pricing mecha-
nism with time Discounting values PreDisc) to allocate
computing resources on the edge server. PreDisc assigns
a high virtual value to ongoing tasks to avoid unnecessary
preemptions of newly arrived tasks, making a desirable
tradeoff between preemption and non-preemption. Our
theoretical analysis shows that PreDisc guarantees both
strategy-proofness and constant competitive ratio.

• We evaluate the performance of our proposed mecha-
nism with extensive experiments. The evaluation results
demonstrate that PreDisc outperforms the existing First-
Come-First-Served (FCFS) and Last-Come-First-Served
(LCFS) mechanisms, and approaches to the optimal solu-
tion of offline VCG mechanism.

The paper is organized as follows. Section II introduces
the model and the basic background knowledge. Section III
characterizes the property of strategy-proofness. Section IV
and Section V focus on the detailed design of PreDisc.
In Section IV, we introduce the allocation and payment rules
in PreDisc for tasks with unit edge execution time, and then
give an analysis for the upper bound of competitive ratio
compared with the offline optimal solution. Section V extends
our mechanism to the general cases. In Section VI, we give
the simulation results on weighted AoI and the revenue of
edge service provider. Section VII reviews the related works.
Finally, we conclude this paper in Section VIII.

II. PRELIMINARIES

In this section, we introduce the model of online auction
mechanism with time discounting task values in the context of
edge computing, and briefly review related solution concepts
used in this paper from game theory.

A. System Model

We consider a cloud-edge collaborative computing frame-
work with two components: a cloud server and an edge server,
to facilitate users to make real-time decisions. A cloud server
with adequate computing resources is normally far away from
users, so the response time cannot be guaranteed if only
relying on the cloud server for decision making. In contrast,
a nearby edge server has a timely response for users, but can
only support a certain amount of tasks simultaneously due to
the limited edge resources. We consider the tasks that have to
be completed on either the cloud or the edge server, instead
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of the edge devices. A task may exceed the limitation of
computation capacity on local edge devices (e.g., CNN based
image recognition tasks [24]), or need some information from
other vehicles in auto-driving systems (e.g., connected vehicle
analytics [25]). We assume the task generation follows certain
pattern which could not be manipulated by the users. The goal
of each user is to minimize her Age of Information (AoI),
which is defined as follows.

Definition 1 (Age of Information): The age of information
of a user at a specific time is the difference between the current
time slot and the generating time slot of the latest received
decision-making result of this user.

1) User-Cloud Communication: A user communicates with
the cloud server periodically in a normal mode. Each user j
regularly sends a task i, such as the real time diagnostics,
to the cloud server at each time interval Δt, and receives a
decision feedback after a processing time period T c

i,j (includ-
ing transmission delay and execution time). As the cloud
server is configured with ubiquitous and powerful computing
resources, we assume that the tasks do not need to wait for
execution. However, the communication time is quite large due
to the long transmission distance between users and cloud, and
hence the AoI fluctuates at a relatively high level without the
involvement of an edge server.

2) User-Edge Communication: When a user encounters an
emergency task (e.g., for a self-driving system, some urgent
situations need timely decisions), the user would send the task
to both the cloud and the edge server, and receive a quick
feedback from the edge server (also from the cloud server as a
backup). We assume the execution time on the edge is T e

i,j , and
the task would demand mi,j units of resources, which may not
necessarily be available immediately. Due to the property of
ultra-low communication latency of the edge server, we omit
the communication time to make the presentation clearer,
which will be discussed in the later section. We have that
T e

i,j is always smaller than T c
i,j due to the long distance of

the cloud [24], [25], and hence AoI can be reduced with the
help of edge server. Furthermore, as only emergency tasks are
uploaded to the edge server, we assume the emergency tasks
from the same user are non-overlapping with each other.

We illustrate the system model with an example in Fig. 1.
For easy presentation, we consider fixed values of T e and T c

for all tasks in this example. The users regularly send tasks
to the cloud server at each time interval Δt, and receive a
feedback after T c time slots. At time t3, we can calculate that
the AoI of user 1 is T c, since the newly received decision is
generated at time slot t1, which is T c time slots before the
current time slot. After time slot t3, the AoI increases over
time, reaches the highest AoI T c + Δt at time t4, and then
drops to T c since the next decision is received. At time t2,
user 2 sends a task to both the cloud and the edge servers,
and receives a response from the edge after T e time slots.
With the definition of AoI, we can plot the new AoI curve as
the red solid line. Hence, one can see that the AoI is reduced
with the help of the edge server (from the blue solid line to
the red solid line). At time t5, user 1 sends a task to the edge
server, and shortly after that, user 2 also sends a task to the
same edge server at time t6. However, the edge server does

Fig. 1. The illustration of system model for two users with three tasks. The
x-axis indicates time slots and the y-axis indicates the AoI. The blue solid
lines show the AoI generated by the cloud, and the red solid lines show that
of the edge. The shadow areas depict the reduction of the AoI with the help
of the edge server.

not have enough computing resources to satisfy the demands
for both users, so the task of user 2 has to wait until the
completion of the task of user 1.

As the timeliness of decisions is critical for the success
of real-time information processing applications, e.g., it may
influence the safety of self-driving cars or the user experience
in interactive gaming, the objective of each user j is to
minimize the weighted average AoI over time, denoted as Aj .
The weight captures the extent of emergency or value of
using edge services to execute a task, and also indicates the
minimum amount of money the user is willing to pay to
exchange for a unit decrease of AoI. For each urgent task
i, the value (i.e., weight) vi,j is reported by the user j, and
it may depend on many types of factors. For example, in an
autonomous vehicle system, the value of a task depends on
the driving speed, the vehicle performance, the surrounding
environment, the safety awareness and other preference of the
user. Since most of these factors are private information to
the user, she is able to misreport the value vi,j for her own
interest, e.g., declaring a large value to increase the priority of
her task, and reduce the weighted AoI. Such a selfish behavior
would degrade the system performance of the edge service,
as a more urgent task may be preempted by a non-urgent
task with a misreported high value. With such a consideration,
we leverage an auction mechanism to incentivize the users to
truthfully reveal their private information, and to efficiently
allocate the limited edge resources to optimize the weighted
average AoI of all users.

B. Problem Formulation

We consider the edge server with W units of reusable
homogeneous resources in a finite time horizon, which can
be further divided into T time slots with equal length: T =
{1, 2, · · · , T }. Suppose the set of tasks2 produced by user j
is Uj , task i ∈ Uj arrives at time slot ai,j , and then it should
be completed before a deadline di,j = ai,j + T c

i,j . This is
because the decision made by the edge server becomes useless

2As we focus on the emergency tasks on the edge, we do not distinguish
“task” and “emergency task” in the following sections.
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when the decision from the cloud server is received after T c
i,j

time slots. We denote Ti,j as the set of all time slots during
[ai,j , di,j ] for task i of user j, and denote the set of other time
slots t /∈ ∪i∈Uj Ti,j by T̃j . To calculate the weighted average
AoI Aj of user j, we denote the age at time t as Aj(t), the
age produced by the cloud server (i.e., the blue solid line in
Fig. 1) as Cj(t), and the age produced by the edge server (i.e.,
the red solid line in Fig. 1) as Ej(t). If the AoI at time slot
t is not produced by the edge server, we set Ej(t) = +∞.
With these definitions, we can have

Aj(t) = min{Ej(t), Cj(t)}.
We then separate the time slots as the slots with cloud
produced age and slots with edge produced age, and get the
weighted average AoI,

Aj =
1
T

⎛⎝∑
t∈�Tj

1×Aj(t) +
∑
i∈Uj

∑
t∈Ti,j

vi,j ×Aj(t)

⎞⎠
=

1
T

⎛⎝∑
t∈�Tj

Cj(t) +
∑
i∈Uj

∑
t∈Ti,j

vi,j × Cj(t)

−
∑
i∈Uj

∑
Ej(t)<Cj(t)

vi,j × (Cj(t)− Ej(t))

⎞⎠ .

As the first two items in the brackets are constants and the
tasks are non-overlapping, we only need to maximize the
third item

∑
Ej(t)<Cj(t)

vi,j × (Cj(t) − Ej(t)) for each task
independently, which represents the reduction of the weighted
AoI during the current interval, i.e., each of the shadow areas
in Fig. 1. For easy presentation, we duplicate each user, also
called as an agent, for each of her task, and hence omit the
subscript j for all notations. (e.g., we use vi directly to denote
vi,j). Suppose the edge server starts to execute the task i at
time ti without an interruption in the following T e

i time slots,
we can then obtain the following weighted AoI reduction,∑
Ei(t)<Ci(t)

vi × (Ci(t)− Ei(t))=vi ×
∑

t>ti+T e
i

t<ai+T c
i

(Ci(t)− Ei(t))

which is a function with respect to the starting time ti. Thus,
we define the task value as

vi(t) = vi × fi(t)

= vi ×
∑

t′>t+T e
i

t′<ai+T c
i

(Ci(t′)− Ei(t′)), (1)

if the task starts to execute at time slot t, with
ai ≤ t ≤ ai + T c

i − T e
i . It should be noted that we do not

restrict Ci(t′) and Ei(t′) to any specific format. Since we have
Ei(t) < Ci(t) during the considered time interval, we can get
that fi(t) is non-negative and non-increasing, meaning that the
task value is discounting over time. Some possible function
fi(t) could be fi(t) = η(t−ai) or fi(t) = 1 − β(t− ai),
where the parameters could be different for all task. Without
loss of generality, we normalize fi(ai) = 1.

With the metric of task value, we can further formulate
the problem of weighted AoI minimization as follows. There
are N agents N = {1, 2, · · · , N} arriving at the system
in a random order. Each agent i ∈ N arrives at time ai,
and demands for mi resources to execute her task before a
departure time di. For simplicity of notations, we also denote
d′i = ai + T c

i − T e
i as the latest starting time for task i

to be able to be completed in time. Each agent i has an
intrinsic task value vi and a time-varying task value vi(t)
once she is allocated mi units of resources from the time
t for T e

i consecutive time slots. We denote vi = vi(ai) as
vi(ai) = vi × fi(ai) and fi(ai) = 1. As discussed above, the
agent i’s time-varying value function can be expressed as

vi(t) =

{
vi × fi(t), t ∈ [ai, d

′
i],

0, otherwise,
(2)

where fi(t) is a time discounting value function defined in (1).
We note that the arrival time ai is critical for the edge to make
the correct decision. For example, if a self-driving car uploads
a task with an incorrect timestamp, it may receive a false
driving command, which endangers the safety. Thus, once an
agent i ∈ N enters the system, the information of arrival time
ai and the resource demand mi are truthfully revealed. The
agent submits a declared intrinsic value (bid) v̂i, which may
not be necessarily equal to her true intrinsic value vi, to a
trusted auctioneer (the edge server). We call the true value vi

of agent i as her type as in mechanism design, and use vector
v̂ = (v̂1, v̂2, · · · , v̂N ) to denote the declared types (i.e., the
bidding profile) of all agents.

The procedure of online auction mechanism for edge
resource allocation is described as follows. We denote Na

as the set of active agents, who is able to complete its task
if starting at the current time slot t, i.e., we have i ∈ Na

if ai ≤ t ≤ d′i. At each time slot t ∈ T, the auctioneer
first calculates the bid v̂i(t) for each active agent i ∈ Na,
by replacing her declared type v̂i with the true intrinsic value
vi in (2). Given the bidding profile of the active agents Na

at time t: v̂(t) = (v̂1(t), v̂2(t), · · · , v̂|Na|(t)), the auctioneer
then allocates the total W units of resources, including the
idle resources and those in use by existing tasks, to the
active agents. We note that to further improve the utilization
of resources, the newly arrived agents with high bids could
interrupt some ongoing tasks with low bids. The agent i is
called a winning agent if she is allocated mi units of resources
for T e

i continuous time slots without an interruption before
the deadline di; otherwise she is called a losing agent. We
use xi(v̂) = 1 to denote that the agent i is a winner when
the declare value profile is v̂; otherwise xi(v̂) = 0. For a
winning agent, ti(v̂) is the starting time of the winner i ∈W

to execute her task when the declared type profile is v̂. Finally,
according to the declared value profile v̂ of agents, the auc-
tioneer determines the payment pi(v̂) for each agent i at her
departure time di. The payments of the losing agents are set to
zeros. We use vector x(v̂) = (x1(v̂), x2(v̂), · · · , xN (v̂)) and
p(v̂) = (p1(v̂), p2(v̂), · · · , pN (v̂)) to represent the allocation
rule and payment rule in an online auction, respectively.
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The utility ui of each agent i ∈ N is defined as the difference
between her value on the allocated resources and the payment:

ui(v̂) =

{
vi × fi(ti(v̂))− pi(v̂), i ∈W,

0, otherwise,
(3)

where W is the set of winning agents.
As we have shown at the beginning of this section, mini-

mizing the weighted average AoI is equivalent to maximizing
the sum of time-varying task values, which is defined as the
social welfare in the context of auction mechanism as follows.

Definition 2 (Social Welfare): The social welfare in an
online auction mechanism with time discounting values is the
sum of winners’ values at their corresponding winning time
slots, i.e.,

SW =
∑
i∈W

vi × fi(ti(v̂)). (4)

Other than social welfare, revenue, which is defined as the
total payment collected from agents, is also a widely used
objective in mechanism design. As revenue only reflects the
interest of the edge service provider rather than the whole
system, we adopt social welfare as the optimization objective
in this work, which is beneficial for the long term development
of real-time edge service systems. We also evaluate the revenue
of the proposed mechanisms in the evaluation results.

In contrast to the optimization goal of the edge service
provider, the agents are rational and selfish, and have incen-
tives to maximize their own utilities by strategically reporting
their private intrinsic values. To illustrate this strategic behav-
ior in the setting of time discounting task values, we provide
a simple example: Suppose agent 1 with v1 = 10 and
agent 2 with v2 = 8 send tasks to the edge server at the same
time. The edge can only serve one agent and the execution
time is T e

i = 1 for both tasks. We adopt a simple resource
allocation rule as the more urgent tasks (tasks with higher
values) first, and the payment rule as charging the winners
a uniform price 1. Under these rules, the solution would be
to execute task 1 at the first time slot and then task 2 at the
following time slot. If the values of tasks do not discount
over time, then agent 2 has no incentive to misreport her
value, because the payment is independent on her bid and
her utility is always 8 − 1 = 7. However, if the values of
tasks shrink by half after each time slot, the strategic behaviors
may occur. Suppose agent 2 reports her value truthfully, her
utility would be 4 − 1 = 3, and the social welfare is 14.
But if agent 2 misreports a value 11, she would be served
before agent 1 and obtain a higher utility 8−1 = 7, while the
social welfare drops to 13. We also observe from this example
that the traditional payment rule to guarantee the strategy-
proofness derived from the classical Myerson theorem [23],
i.e., the payment is independent on the resource allocation
time, no longer holds in the setting of time discounting values.
This is because the users can change the resource allocation
times, resulting in different utilities in the setting of time-
varying task values, by misreporting their values. Therefore,
a new proper auction mechanism is necessary for this setting
to resist such strategic behaviors and still achieve the optimal
social welfare.

C. Solution Concepts

A strong solution concept from mechanism design is dom-
inant strategy, where strategy is defined as the type reported
by a user.

Definition 3 (Dominant Strategy [26]): A strategy v̂i is
agent i’s dominant strategy, if for any strategy v̂′i �= v̂i and
any other agents’ strategy profile v̂−i, we have

ui(v̂i, v̂−i) ≥ ui(v̂′i, v̂−i).
Intuitively, a dominant strategy of an agent is a strategy that
maximizes her utility, regardless of what strategy profile the
other agents choose.

The concept of dominant strategy is the basis of incentive-
compatible mechanism, in which truthfully revealing private
information is a dominant strategy for every agent. An accom-
panying concept is individual-rationality, which means that
every agent participating in the auction expects to gain no
less utility than staying outside. We now can introduce the
definition of a strategy-proof mechanism.

Definition 4 (Strategy-Proofness [27]): A mechanism is
strategy-proof when it satisfies both incentive-compatibility
and individual-rationality.

The objective of this work is to design a strategy-proof
online auction mechanism in the setting of time discounting
task values.

III. CHARACTERIZING STRATEGY-PROOFNESS

In this section, we present a characterization theorem for
strategy-proof online auction mechanisms with time discount-
ing values. This can be considered as a generalization of the
well-known Myerson theorem [23]. Specifically, we claim that
the necessary and sufficient condition for a payment rule that
truthfully implement an allocation rule in the setting of time
discounting values is that the function F (v̂) = f(t(v̂)) ×
x(v̂) must satisfy a monotonicity criterion. We first give the
definition of this monotone criterion.

Definition 5 (Monotonicity): The function Fi(v̂) =
fi(ti(v̂))× xi(v̂) is monotone, if for any two types of v̂i and
v̂′i with v̂i > v̂′i and the reported types of the other agents
v̂−i, we have Fi(v̂i, v̂−i) ≥ Fi(v̂′i, v̂−i).

We take a closer look at this monotone condition
Fi(v̂i, v̂−i) ≥ Fi(v̂′i, v̂−i), which could be realized in two
detailed cases. One is that the allocation result xi(·) changes
from xi(v̂′i, v̂−i) = 0 to xi(v̂i, v̂−i) = 1. The other case is that
the allocation result xi(·) remains the same, i.e., xi(v̂i, v̂−i) =
xi(v̂′i, v̂−i) = 13 and fi(ti(v̂i, v̂−i)) ≥ fi(ti(v̂′i, v̂−i)), which
further implies ti(v̂i, v̂−i) ≤ ti(v̂′i, v̂−i) under the assumption
of non-increasing function fi(t). The first case is consistent
with the monotonicity of allocation rule in the classical Myer-
son Theorem, meaning that the bidder with a higher value is
more likely to win the auction. The second case comes from
the new feature of online mechanism, which further requires
the agent with a higher value to be allocated at an earlier time
slot. The intuition behind this monotone condition in online
setting is that the winning user could be allocated resources
at an earlier time slot if she increases her declared type.

3Another case of xi(v̂i, v̂−i) = xi(v̂′i, v̂−i) = 0 is trivial to analyze, and
we omit it here.
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We now present our main result: the necessary and sufficient
condition for the existence of strategy-proof online auction
mechanisms with time discounting values.

Theorem 1: There exists a payment rule p(v̂) such that the
online auction mechanism (x(v̂), p(v̂)) in the setting of time
discounting values is strategy-proof if and only if the function
Fi(v̂) = fi(ti(v̂))× xi(v̂) is monotone for each agent i ∈ N.
This theorem indicates that, when designing a new mechanism
for the time discounting value scenarios, we can transform
the problem of satisfying strategy-proofness into the proof
of the monotonicity of the function Fi(v̂). We separate the
theorem into “if” and “only if” parts, and complete the proof
by analyzing the following two lemmas.

Lemma 1: If the function Fi(v̂) = fi(ti(v̂)) × xi(v̂) is
monotone for each agent, the online auction mechanism asso-
ciated with a carefully designed payment rule p(v) is strategy-
proof.

Proof: We set the payment rule as

pi(v̂) =
K∑

k=1

vk
i ×ΔF

i (vk
i ), (5)

where the sequence v1
i , v2

i , · · · , vK
i is a list of K values, which

are the breakpoints of function Fi(v̂) when the value increases
from 0 to the true value vi. In general, we assume vk1

i ≤ vk2
i

for k1 ≤ k2, v0
i = 0 and vK

i ≤ vi. The function ΔF
i (vk

i )
represents the jump of Fi(v̂) at the breakpoint (vk

i , v̂−i),4 i.e.,

ΔF
i (vk

i ) = Fi(vk
i , v̂−i)− Fi(vk−1

i , v̂−i).

The intuition behind the payment rule in (5) is that, with
the increase of vi, the agent is allocated at a “better” (i.e.,
earlier) time slot, so the auctioneer charges the agent for this
incremental part. The breakpoint value vk

i in (5) means the
critical price of being allocated at the better time slot, and
ΔF

i (vk
i ) measures “how better the new time slot is”, i.e.,

the (normalized) value difference between the two allocations
for agent i.

With the payment rule in (5), we can express the utility
ui(v̂) of agent i ∈ N as:

ui(v̂) = vi × fi(ti(v̂))× x(v̂)−
K∑

k=1

vk
i ×ΔF

i (vk
i )

= vi × Fi(v̂)−
K∑

k=1

vk
i ×ΔF

i (vk
i )

=
(
vK

i + vi − vK
i

)
Fi(vK

i , v̂−i)

−
K∑

k=1

vk × (Fi

(
vk

i , v̂−i

)− Fi(vk−1
i , v̂−i)

)
=
(
vi − vK

i

)
Fi(vK

i , v̂−i)

+
K∑

k=1

(
vk

i − vk−1
i

)
Fi(vk−1

i , v̂−i), (6)

where the third equation is because Fi(vi, v̂−i) = Fi(vK
i , v̂−i)

as vK
i is the highest breakpoint for resource allocation for

4We omit the situation with ties for notation simplicity, i.e., we consider
Fi(v

k
i , v̂−i) = Fi(v

k
i + ε, v̂−i), for a small positive constant ε.

agent i. According to the definition of the value sequence,
we have vK

i ≤ vi and vk−1
i ≤ vk

i for all 1 ≤ k ≤ K .
Therefore, the utility ui(v̂) of agent i cannot be negative, and
the property of Individual Rationality is satisfied.

We now show that the monotone function Fi(v̂) in combina-
tion with the payment rule pi(v̂) in (5) guarantees the property
of Incentive Compatibility. We prove this by contradiction.
If the auction mechanism is not incentive compatible, there
exists an agent i, a true type vi, and a non-truthful reported
type v̂i with v̂i �= vi, such that ûi(v̂i, v̂−i) > ui(vi, v̂−i). That
is, the utility of agent i reporting v̂i is strictly greater than the
utility ui(vi, v̂−i) that she can achieve from being truthful.
By (6), we have(
vi − v

�K
i

)
Fi(v

�K
i , v̂−i)+

�K∑
k=1

(
vk

i −vk−1
i

)
Fi(vk−1

i , v̂−i)

>
(
vi−vK

i

)
Fi(vK

i , v̂−i)+
K∑

k=1

(
vk

i −vk−1
i

)
Fi(vk−1

i , v̂−i),

(7)

where K̂ is the corresponding maximum index of breakpoints
for the misreported type v̂i. It is worth to note that the
misreported type v̂i only impacts the numbers, rather than the
values, of breakpoints compared with the true type vi, because
the values of breakpoints are independent on the declared type
of agent i.

Since the case of K̂ = K is trivial for the proof, we can
complete the analysis by distinguishing the following two
cases:

� If v̂i < vi, we then have K̂ < K , and thus v
�K
i ≤ vK

i .
Since the function Fi(v̂) is monotone, we can get

RHS of (7) ≥ (vi − vK
i

)
Fi(v

�K
i , v̂−i)

+
K∑

k= �K+1

(
vk

i − vk−1
i

)
Fi(vk−1

i , v̂−i)

+
�K∑

k=1

(
vk

i − vk−1
i

)
Fi(vk−1

i , v̂−i)

≥
(
vi − v

�K
i

)
Fi(v

�K
i , v̂−i)

+
�K∑

k=1

(
vk

i − vk−1
i

)
Fi(vk−1

i , v̂−i)

= LHS of (7),

where we reduce Fi(vk−1
i , v̂−i) for K̂ + 2 ≤ k ≤ K to

Fi(v
�K
i , v̂−i) in the second item. Thus, we get a contradiction

in this case.
� If v̂i > vi, we then have K̂ > K , and thus v

�K
i ≥ vK

i .
We can then unpack the summation in the second term of
the left hand side of (7) into k = 1 to K , k = K + 1, and
k = K + 2 to K̂ . Thus we obtain

LHS of (7)

=

⎛⎝vi − vK+1
i +

�K∑
k=K+2

(vk−1
i − vk

i )

⎞⎠Fi(v
�K
i , v̂−i)
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+
K∑

k=1

(
vk

i − vk−1
i

)
Fi

(
vk−1

i , v̂−i

)
+
(
vi − vK

i + vK+1
i − vi

)
Fi

(
vK

i , v̂−i

)
+

�K∑
k=K+2

(
vk

i − vk−1
i

)
Fi

(
vk−1

i , v̂−i

)
. (8)

Furthermore, since we have vi ≤ vK+1
i , v

�K
i ≥ vK

i and vk
i ≥

vk−1
i , and hence we get Fi

(
v
�K
i , v̂−i

)
≥ Fi

(
vK

i , v̂−i

)
, we

can eliminate some items in the equation and obtain

(8) ≤ (vi − vK
i

)
Fi

(
vK

i , v̂−i

)
+

K∑
k=1

(
vk

i − vk−1
i

)
Fi

(
vk−1

i , v̂−i

)
= RHS of (7). (9)

Thus, we also get a contradiction in this case and the proof
of the “if” part is completed. �

Conversely, we consider the “only if” part.
Lemma 2: If the online auction mechanism (x(v̂), p(v̂)) is

strategy-proof, then we have Fi(v̂) = fi(ti(v̂)) × xi(v̂) is
monotone for each agent.

Proof: Consider an agent i ∈ N and two type profiles v,
v̂ with v−i = v̂−i and vi > v̂i. We first consider a scenario
where the true type of the agent i is vi. The strategy-proof
mechanism ensures that the utility of agent i when reporting
her type truthfully is not less than that when she misreports
her type, i.e.,

fi(ti(v))vixi(v)− pi(v)≥fi(ti(v̂))vixi(v̂)− pi(v̂). (10)

We then consider another scenario where the true type of the
agent i is v̂i and she may cheat by misreporting vi. Similarly,
we have

fi(ti(v̂))v̂ixi(v̂)− pi(v̂)≥fi(ti(v))v̂xi(v)− pi(v). (11)

Combining (10) and (11), we can get

fi(ti(v))vixi(v)− fi(ti(v̂))vixi(v̂)
≥ pi(v)− pi(v̂)
≥ fi(ti(v))v̂ixi(v)− fi(ti(v̂))v̂ixi(v̂)
⇒ fi(ti(v))xi(v)(vi − v̂i) ≥ fi(ti(v̂))x(v̂)(vi − v̂i)
⇒ Fi(v)(vi − v̂i) ≥ Fi(v̂)(vi − v̂i).

Since vi > v̂i, we have Fi(v) ≥ Fi(v̂). Thus, we can conclude
that Fi(v) is monotone. �

We remark that this result can be applied to not only the AoI
optimization problem, but also some other real-world scenarios
with time discounting values. For example, Mehta et al [28]
found that the expected click probability (i.e., the value) of
an impression advertisement on mobile apps decreases during
the user’s visit. In addition, the click value of live streaming
advertisement, a new type of advertisement in recent years,
also decreases during the live streaming. Our results provide a
fundamental theoretical tool to deal with this type of problems.

Algorithm 1 Resource Allocation Algorithm
Input: A vector of declared types v̂; arrival time ai,

latest starting time d′i and resource demand mi of
each task i.

Output: A set of winners W.
1 Na ← ∅, W← ∅, Wt ← ∅, ∀t ∈ T;
2 foreach t ∈ T do
3 foreach i ∈ N do
4 if ai ≤ t ≤ d′i and i /∈W then
5 Na ← Na ∪ {i};
6 v̂i(t)← v̂i × fi(t);

7 Γ← {< v̂i(t), mi >, i ∈ Na};
8 Wt ← DynamicProgramming(W, Γ);
9 foreach i ∈Wt do

10 W←W ∪ {i};
11 return W.

IV. PREDISC FOR THE CASE WITH UNIT EDGE

EXECUTION TIME

We now present the detailed design for our proposed mech-
anism, namely PreDisc, and analyze its economic properties
and competitive ratio. We first present the mechanism for the
case of unit edge execution time, i.e., T e

i = 1 for all tasks
(thus we omit the subscript i), in which the knotty problem
of preemption in online setting does not exist. In this case,
the cloud processing time T c

i and the resource demand mi

could be different for tasks. We note that the “online” property
of the problem is still a challenge, that is, we should decide
when to conduct a task within its duration to optimize the
overall AoI. The allocated time slots for the current tasks may
prevent future tasks from being executed. We will extend the
mechanism to the general cases of different execution time
slots on edge in the next section.

A. Allocation Rule

We present the procedure of resource allocation rule of
PreDisc in Algorithm 1. At each time slot, the active tasks
are collected in set Na, and their current values and resource
demands are collected in the set Γ (Lines 3-7). The allocation
problem at each time slot can be formulated as a 0-1 knapsack
problem, where the capacity of the knapsack is the resource
capacity W and the profit and weight of each item correspond
to the current value and the resource demand of the task,
respectively. Our goal at each time slot is to select the
most cost-efficient active tasks under the resource capacity
constraint. Thus, we adopt dynamic programming technique
to solve the resource allocation problem at each time slot t to
obtain the winner set Wt, and to update the ultimate winner
set W (Lines 8-10).

We next show that such a simple allocation rule at each
time slot without the knowledge of future tasks, can obtain a
constant competitive ratio 2. This result implies that PreDisc
achieves at least half of the offline optimal social welfare.

Theorem 2: The competitive ratio of the resource allocation
rule in PreDisc is 2 for the cases with unit edge execution time.
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Proof: Let the set of winners in the offline optimal
solution (OPT) be OPT, and the winning agents at time slot
t in OPT be OPTt. Similarly, we denote the corresponding
sets of winning agents obtained from PreDisc as W and Wt,
respectively. For a winning agent i, we use t∗i to present the
time it is selected in OPT, and ti the time it is selected in
PreDisc. We distinguish the following two cases.

� For agent i ∈ OPTt, if agent i ∈ Wt′ for t′ ≤ t, i.e.,
agent i is also selected as a winner in PreDisc at or before the
time slot t, we denote these agents as a set OPT

1
t . Since the

values of tasks are non-increasing, we can easily obtain∑
t

∑
i∈OPT1

t

vi(t∗i ) ≤
∑
i∈W

vi(ti).

� For the other agents in OPTt, we know that these agents
are not in Wt′ for any t′ ≤ t, and denote them as OPT

2
t .

In PreDisc these agents may lose or be selected as a winner
later. We have that the total value of these agents at the time
slot t should be less than that of agents selected by PreDisc;
otherwise, the dynamic programming algorithm would output
them as the result. Thus, we can get∑

i∈OPT2
t

vi(t∗i ) ≤
∑
i∈Wt

vi(ti).

Overall, we have

∑
i∈OPT

vi(t∗i ) =
∑

t

⎛⎝ ∑
i∈OPT1

t

vi(t∗i ) +
∑

i∈OPT2
t

vi(t∗i )

⎞⎠
≤
∑
i∈W

vi(ti) +
∑

t

∑
i∈Wt

vi(ti)

= 2
∑
i∈W

vi(ti), (12)

which concludes our proof. �

B. Payment Rule

In classical online auction mechanisms [21], [22], to guar-
antee the strategy-proofness, the payment rule is to set a pre-
defined price for each time slot. However, we have constructed
a simple example in the previous section to demonstrate that
with such a payment rule, the property of strategy-proofness
no longer holds when the value discounts over time. To tackle
this obstacle, we calculate the critical price for each single slot,
and derive our payment rule based on the extended Myerson
Theorem in Section III.

We conduct the following steps to calculate the payment
for each winner i in the allocation rule. First, we run the
resource allocation algorithm (i.e., Algorithm 1) again to
compute a new solution without the agent i. During this new
allocation process, at each time slot, we can leverage the
optimal substructure of dynamic programming, and obtain the
minimum bid v̂min

i (t) as the difference between the solutions
for total W units of resources and for W − mi units of
resources. The value v̂min

i (t) represents the minimum bid at
time slot t that the agent i can win at this time slot. Then,

Algorithm 2 Payment Calculation Algorithm
Input: The declared type v̂i of agent i, a set of critical

intrinsic values of agent i at each time slot
{vmin

i,ai
, vmin

i,ai+1, . . . , v
min
i,d′

i
}.

Output: The payment pi of agent i.
1 K ← 0, pi ← 0, V ← ∅;
2 CurrentPrice← v̂i;
3 foreach t ∈ {ai, ai + 1, . . . , d′i} do
4 if vmin

i,t ≤ CurrentPrice then
5 V ← V ∪ {vmin

i,t };
6 CurrentPrice← vmin

i,t ;
7 K ← K + 1;

8 Sort breakpoints in V with a non-decreasing order, and
re-label them as vk

i for k ∈ {1, 2, . . . , K}, v0
i ← 0;

9 foreach k ∈ {1, 2, . . . , K} do
10 ΔF

i (vk
i )← Fi(vk

i , v−i)− Fi(vk−1
i , v−i);

11 pi(v)← pi + vk
i ×ΔF

i (vk
i );

12 return pi.

according to the definition of time-varying value function (2),
we can get the corresponding critical intrinsic value

vmin
i,t =

v̂min
i (t)
fi(t)

,

which the agent i needs to declare to win at the time slot
t. With this critical value for agent i at each time slot,
we can greedily select a non-increasing subsequence of critical
values over time, which are the breakpoint values as stated
in Theorem 1. Intuitively, suppose one breakpoint is vmin

i,t ,
it means that when the agent i reports an intrinsic value no
less than vmin

i,t at arrival time ai, she would be selected as
a winner no later than the time slot t. We give a procedure
in Algorithm 2 to determine the breakpoints from the critical
intrinsic values and the corresponding payment for the winning
agent i. Following the time slots from the arrival time ai

to the latest starting time d′i, we set the first breakpoint as
the first critical intrinsic price less than the bid of agent.
After that, we select the critical intrinsic price as a breakpoint
only when it is less than the previously selected breakpoint
(Lines 2-3). For example, suppose the declared type is 5,
and the sequence of critical intrinsic prices is {6, 4, 2, 3},
we select 4 and then 2 as the breakpoints. We can verify that
such a selected set of intrinsic values satisfies the definition
of breakpoints. We then sort the selected breakpoints with a
non-decreasing order, and calculate the payment using (5) in
Theorem 1 (Lines 8-11).

Consider a simple walkthrough example in Fig. 2, where
the total amount of resources W is 5, the cloud processing
time T c

i = 3 for all tasks, and the value of each user
i ∈ N decreases linearly with time through a time-discounting
function fi(t) = 1 − 1

3 (t − ai). In Fig. 2, we use solid
line to denote the present time interval of each agent. The
resource demand and value are also shown beside each agent.
In the allocation determination phase, at the first time slot,
agents A and C are selected as winners because their total
value 9 is larger than that of B. At the second time slot, the
value of B becomes 10

3 , and D is chosen due to a higher
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Fig. 2. A walkthrough example for the cases with unit edge execution time.

value 6. At the third time slot, agents B with an updated
value 5

3 and E with an updated value 2 are active, and E
is selected as a winner. We denote the winners at each time
slot as red in Fig. 2. In the payment calculation phase, for
agent A, we remove her and re-run the resource allocation
procedure, obtaining the critical intrinsic values for each time
slot vmin

A,1 = 4, vmin
A,2 = 8, vmin

A,3 = 5. We can greedily get
the decreasing subsequence with only a breakpoint v1

A = 4.
Using (5), we can calculate the payment for agent A as
pA = 4. Similarly, we have the breakpoint sequence for agent
C as v1

C = 0, for agent D as vmin
D,2 = 10

3 , vmin
D,3 = 3, vmin

D,4 = 0,
and for agent E as v3

E = 5
2 , v4

E = 0. Finally, we can calculate
the payment for agents: pC = 0, pD = 19

9 , pE = 5
6 .

We now show the strategy-proofness of PreDisc based on
Theorem 1.

Theorem 3: The online auction mechanism PreDisc with
the above allocation and payment rules is strategy-proof for
the cases with unit edge execution time.

Proof: Based on Theorem 1, we only need to prove the
monotonicity of the resource allocation rule, i.e., the winning
agent would be executed at an earlier (or the same) time slot
when she increases her bid. Since the dynamic programming
algorithm outputs the optimal solution at each time slot,
if a winning agent reports a higher value, she would either
be selected at this time slot or an earlier one. Hence, the
monotonicity of the allocation rule as defined in Definition 5
is satisfied and we can conclude the proof. �

V. PREDISC FOR GENERAL CASES

In this section, we first extend PreDisc to the case where T e
i

can be larger than 1 but is still the same for all tasks (hence
we use T e and T e

i interchangeably). In such case, tasks may
be preempted by other tasks during the execution process, and
hence the interactions among tasks become more complex in
such online settings. In Section V-D, we further extend PreDisc
to the most general cases, where the execution time T e

i on edge
can be different among tasks and the communication time to
the edge is also taken into account.

A. Virtual Bid Generation

When a newly arrived agent has a task value higher than that
of some ongoing agents, the auctioneer can choose to preempt
the ongoing tasks to make up the task value difference, or
to reject the new agents to guarantee the continuity of edge

service. Once a task is preempted, it would wait until being
selected next time to execute the task from the beginning, and
hence the preemption may degrade the resource utilization if
the newly arrived agents does not offer a substantially higher
bid. With this consideration, the auctioneer raises the bids of
ongoing agents, which is denoted by No, to give them higher
priorities of being allocated resources continuously. At time
slot t, each ongoing agent i ∈ No has been allocated mi units
of resources without an interruption from the time slot ti(v̂).
We denote the virtual bid of agent i at time slot t as bi(t),
which can be calculated as

bi(t) = v̂i(ti(v̂))× αϕi , where ϕi = (t− ti(v̂))/T e
i

which denotes the percentage of task i’s completeness at time
t, and α ≥ 1 is the parameter that the auctioneer can adjust
to control the preemption frequency: the setting of α = 1
represents the preemption model which interrupts the ongoing
tasks once there is a newly arrived task with a higher bid.
The auctioneer can give more protection to the ongoing tasks
by increasing α. When α → ∞, the auctioneer does not
allow preemption, and the tasks can execute for continuous
T e

i time slots once they are allocated resources. For the active
agents that have not been allocated resources, i.e., agents in
Na\No, the auctioneer updates their bids i.e., bi(t) = v̂i(t).
The auctioneer can generate the virtual bid bi(t) of the agent
i ∈ N at time slot t ∈ T by distinguishing the following two
cases:

bi(t) =

{
v̂i(ti(v̂))× αϕi , i ∈ No,

v̂i(t), i ∈ Na\No.
(13)

B. Allocation Rule

The algorithm of resource allocation in the general cases
is shown in Algorithm 3. For simplicity, we only present the
algorithm for one time slot. Similar to the allocation rule in
the simple case, the key idea is to use dynamic programming
technique with the virtual bids of agents at each time slot.
We first update the current values of tasks as the virtual
bids to give the ongoing tasks higher priorities of being
allocated (Lines 1-7). After that, we consider the problem
of resource allocation as the knapsack problem, and adopt
the dynamic programming technique to solve it (Lines 8-9).
We update the allocation states for two kinds of agents. For
newly winning agents, we update their winning time ti(v̂) as
t (Lines 10-11). For preempted agents, we set their winning
time to Null back (Lines 12-13), then they would wait for
the next allocation process. We add the agents, who have
executed for T e

i consecutive time slots before the departure
time, into the ultimate winner set (Lines 15-16). We discard
the agents whose tasks cannot be completed in the remaining
time (Lines 17-18).

Theorem 4: The competitive ratio of our resource alloca-
tion rule in PreDisc is 1 + α

1−α− 1
T e

for the general cases

with identical edge computation time slots, compared with the
offline optimal solution.

Proof: The proof process is similar to that of Theorem 2,
and we re-use the notations in Theorem 2. We note that in
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Algorithm 3 Resource Allocation Algorithm for General
Cases (for One Time Slot)
Input: A time slot t ∈ T, a set of active agents Na, a set

of ongoing agents No, a vector of reported types
v̂, a preemption factor α, resource demand mi for
each task, and a set of temporary winners Wt−1

at time slot t− 1.
Output: A winner set W and a temporary winner set Wt

for time slot t.
1 foreach i ∈ Na do
2 v̂i(t)← v̂i × fi(t);
3 if i ∈ No then
4 ϕi ← (t− ti(v̂))/T e

i ;
5 bi(t)← v̂i(ti(v̂))× αϕi ;

6 else if i ∈ Na\No then
7 bi(t)← v̂i(t);

8 Γ← {< bi(t), mi >, i ∈ Na};
9 Wt ← DynamicProgramming(W, Γ);

10 foreach i ∈Wt\Wt−1 do
11 ti(v̂)← t, No ← No ∪ {i};
12 foreach i ∈Wt−1\Wt do
13 ti(v̂)← Null, No ← No\{i};
14 foreach i ∈ Na do
15 if i ∈Wt and t− ti(v̂) + 1 ≥ T e

i then
16 W←W ∪ {i}, Na ← Na\{i}, No ← No\{i};
17 else if i /∈Wt and t ≥ d′i then
18 Na ← Na\{i};
19 return W, Wt.

general cases with identical Te, an agent would be a winner
in T e consecutive time slots. Thus, we denote i ∈ OPTt

as that the task i starts to execute from time slot t for T e

consecutive time slots (i.e., t∗i = t), and for i ∈W in PreDisc,
the task i starts to execute from time slot ti for T e consecutive
time slots. But for task i in the temporary winner set i ∈Wt,
it only represents that task i is selected at time slot t, which
might be preempted later. We distinguish the following two
cases.

� For agent i ∈ OPTt, if i ∈W with ti ≤ t, i.e., the agent
i is also selected as a winner in PreDisc starting at or before
time slot t, we denote them as a set OPT

1
t , and denote the set

of them of all time slots as OPT
1 = ∪t∈TOPT

1
t . Since we

have that the values of tasks are non-increasing, we can easily
get that ∑

i∈OPT1

vi(t∗i ) ≤
∑
i∈W

vi(ti).

� For the other agents in OPTt, i.e., i /∈ W or i ∈ W

with ti > t, we denote the set of them of all time slots as
OPT

2
t . They may lose in PreDisc or be selected as a winner

later. Similarly, we denote all of them as OPT
2 = ∪t∈TOPT

2
t .

We have that the total value of agents in OPT
2
t at time slot

t should be no more than the total virtual bid of agents
selected by PreDisc at the same time slot; otherwise, the
dynamic programing algorithm would output them as the

result. Therefore, we can get∑
i∈OPT2

t

vi(t∗i ) =
∑

i∈OPT2
t

vi(t) ≤
∑
i∈Wt

bi(t),

where the left equation is because t∗i = t as stated above.
Next, at time slot t, we denote the sum of virtual bids of

uncompleted ongoing agents as Sun(t). It can be observed that
the sum of virtual bids at time slot t+1 is at least Sun(t)×α

1
T e

following the rule of virtual bid. This means, every selected
agent i in PreDisc would either be completed ultimately or,
be preempted by agents whose total value is larger than the
sum of virtual bids of preempted agents. We note that this
observation holds even if the preemption happens in a chain.
Thus, let the set of agents which are completed at time slot t′

in our algorithm be Nc
t′ , and recall that the last time slot in T

is T , then we can get∑
i∈Wt

bi(t) ≤
T∑

t′=t

∑
i′∈Nc

t′

bi′(t′)× α
t−t′
T e .

The key idea of this equation is that, once a winner is selected
at time slot t, it might be preempted, but finally the winner or
its (chained) preemptor will be completed at a later time slot.
So we map the subsequent completed tasks to time slot t and
sum over all of them as an upper bound of the left side. Thus
we have that∑

i∈OPT2

vi(t∗i ) =
∑

t

∑
i∈OPT2

t

vi(t) ≤
∑

t

∑
i∈Wt

bi(t)

≤
∑

t

T∑
t′=t

∑
i′∈Nc

t′

bi′(t′)× α
t−t′
T e ≤

∑
i∈W

(
vi(ti)

T e∑
Δ=−∞

α
Δ

Te

)

=
∑
i∈W

vi(ti)× α

1− α− 1
Te

.

Overall, we obtain that∑
i∈OPT

vi(t∗i ) =
∑

i∈OPT1

vi(t∗i ) +
∑

i∈OPT2

vi(t∗i )

≤
∑
i∈W

vi(ti) +
∑
i∈W

vi(ti)× α

1− α− 1
T e

=
∑
i∈W

vi(ti)× (1 +
α

1− α− 1
T e

), (14)

which concludes our proof. �
Base on the theorem, we can get the optimal preemption

factor α = (1+ 1
T e )T e

with simple mathematical calculations,
while the corresponding competitive ratio is (T e + 1)(1 +
1

T e )T e

, which is a small constant. This result implies that the
optimal preemption factor is related to only the edge execution
time. Intuitively, a larger T e with the same ϕi implies that the
ongoing task tends to have occupied the resources for a longer
time, and thus it is more cost-efficient not to preempt it, i.e.,
setting a larger preemption factor α.

C. Payment Rule

Similar to the payment rule for the simple case, it is
necessary to calculate the critical intrinsic price for i to be
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a winner at different time slot. But the difference is that,
in the general cases with T e ≥ 1, the critical intrinsic price
should guarantee that agent i can win in continuous T e time
slots. Following the procedure in Section IV-B, we can get the
minimum virtual bid bmin

i (t) of winning at a single time slot
t for agent i. Correspondingly, we can calculate v̂min

i (t), the
minimum bid at time slot t for agent i to win T e continuous
time slots starting from time t (t ∈ [ai, d

′
i]):

v̂min
i (t) = max

t′∈[t,t+T e−1]

bmin
i (t′)

α
t′−t
T e

, (15)

which is the highest minimum bid (mapping from the mini-
mum virtual bids) for single time slots in the present interval.
Then we have the corresponding critical intrinsic value for the
agent i at time t:

vmin
i,t =

v̂min
i (t)
fi(t)

.

Next, we can call Algorithm 2 to calculate the payment of
each winning agent.

Finally, we can get the following theoretical guarantee
on strategy-proofness. Since the proof is nearly identical to
Theorem 3, we omit the proof here.

Theorem 5: Our proposed mechanism PreDisc with the
above allocation and payment rule is strategy-proof for the
general cases with the identical edge execution times.

D. Extension

We next extend PreDisc to the most general and realistic
cases, where 1) the communication time to the edge is taken
into account, and 2) the edge execution time T e

i could be
different for tasks, and hence the decisions on preemption
become more complex.

We can first obtain that the mechanism design problem with
non-negligible communication time to the edge is equivalent
to the problem where tasks are generated after the communi-
cation time in our simplified model. Furthermore, as the task
communication time could not be manipulated by the user,
we have that the communication time to the edge does not
affect the theoretical analysis, and both the strategy-proofness
and the constant competitive ratio still hold with the extension
of non-negligible communication time to the edge.

We next show that with the above allocation rule and
payment rule, the corresponding competitive ratio is similar
to Theorem 4 under the extension, as long as we replace T e

with T e
max, which is the highest edge execution time among

all tasks. As the proof is also similar to that of Theorem 4,
we omit it here.

Theorem 6: Following the same allocation rule and pay-
ment rule as above, the competitive ratio of PreDisc is
1+ α

1−α
− 1

Te
max

for the general cases compared with the offline

optimal solution.
The economical property of strategy-proofness also holds

in the extended cases. The proof is nearly identical to that of
Theorem 3 and is omitted due to the space limitation.

Theorem 7: Following the same allocation rule and pay-
ment rule as above, our proposed mechanism PreDisc is
strategy-proof for the general cases.

We would further interpret how the general cases can be
interpreted in the real-world task offloading scenarios. We can
model the edge execution time as

T e
i,exe =

ci

mi
,

and the communication time to the edge as

T e
i,comm =

li
Re

i

,

where ci is the number of CPU cycles the task requires, mi

is the CPU computational capability allocated to the task, li
is the input data size of a task and Re

i is the average data
transmission rate between the edge and the user. Therefore,
we have the edge processing time as

T e
i = T e

i,comm + T e
i,exe =

li
Re

i

+
ci

mi
.

Analogously, we can model the cloud processing time as

T c
i = T c

i,comm + T c
i,exe =

li
Rc

i

+
ci

mi
,

where T c
i,comm is the communication time to the cloud, T c

i,exe

is the cloud execution time and Rc
i is the average data

transmission rate between the cloud and the users. We note that
T c

i,exe is the same as the edge execution time T e
i,exe because

the number of CPU cycles ci and the CPU computational
capability it is allocated mi are the same. This way, the
real-world task offloading scenarios could be captured by the
general cases where users have different T e

i and T c
i .

VI. EVALUATION RESULTS

A. Experimental Settings

We implement our proposed mechanism in C++, and
compare it with the existing mechanisms. In the experiments,
there are N = 100 users and T = 100 time slots, where the
length of each time slot is set as 10 ms. The number of required
CPU resources of each task mi are set as integers following a
uniform distribution over [1, 5], and each unit of GPU resource
is set as 1 GHz. The overall CPU capacity on the edge is
W = 10 GHz if not otherwise specified. In particular, we set
the intrinsic values of tasks following a uniform distribution
over [1, 10]. The time discounting value function fi(t) is
specified as a linear function fi(t) = 1 − (t−ai)

T c
i −T e

i
. Each user

generates a task at a time slot with probability (arrival rate)
γ if she has no active task at the time. We set the arrival
rate γ as 0.1 in our experiment. To make the presentation
clearer, we first consider the simplified model where the
communication time to the edge is not considered, and the
edge execution time is fixed as 30 ms (i.e., 3 time slots),
and the cloud processing time as 100 ms (i.e., 10 time slots).
We then also consider the realistic cases with non-negligible
communication time to the edge and different edge execution
times and cloud processing times among the tasks. Similar
to the settings in [29]–[31], we set the input data size of
tasks as l = 50 Kb, the data transmission rate to the edge
as Re = 5 Mbits/s, the data transmission rate to the cloud
as Rc = 0.5 Mbits/s for all tasks if not otherwise specified.
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Fig. 3. The weighted average AoI with different parameters.

We assume the execution time follows a uniform distribution
over [1, 5] time slots (i.e., 10 ms to 50 ms). We evaluate
the changes of both weighted average AoI and revenue with
different parameters under different mechanisms. We run the
experiments for 500 times to get the average result.

We compare our mechanism PreDisc with the following
benchmark mechanisms:

• First-Come-First-Served (FCFS): In FCFS, at each time
slot, the active tasks (including ongoing tasks) are sorted
by their arrival time in an increasing order. If their arrival
times are the same, the tasks with higher values are
selected first. It is worth to note that FCFS is naturally
non-preemptive, since tasks with later arrival times are
always executed later.

• Last-Come-First-Served with Preemption (LCFS-p):
In LCFS-p, at each time slot, the active tasks (including
ongoing tasks) are sorted decreasingly by their arrival
time. Similarly, if their arrival times are the same, the
tasks with higher values are served first. Note that
LCFS-p does not protect ongoing tasks from preemption,
and hence the tasks are very likely to be preempted by
subsequent tasks.

• Last-Come-First-Served with Non-preemption
(LCFS-np): LCFS-np is similar to LCFS-p, with
the difference that ongoing tasks are protected from
interruption, i.e., once a task is selected to execute,
it would be completed without preemption.

• Offline VCG (VCG-off): VCG is a well-known mech-
anism with optimal social welfare for problems with
strategic input. We convert the problem of edge resource
allocation into the offline version, and consider VCG
mechanism as the ideally optimal baseline. We remark
that this mechanism cannot be deployed in real life, as it
needs the offline global information.

We conduct experiments on PreDisc with 3 kinds of
preemption factors: α = 1 (PreDisc-1), α = 100 (PreDisc-
100) and optimal α ≈ 2.4 (PreDisc-opt), while PreDisc-opt is
also named as PreDisc in some figures as the default setting.

To calculate the revenue of FCFS, LCFS-p and LCFS-np,
we adopt a simple payment rule which is widely used in
practice, i.e., pi = ρ · vi(ti) where 0 < ρ < 1 is a constant.
We set ρ = 0.5 in our simulations, meaning that the edge
service provider charges half of the values of completed
tasks. We remark that such a payment rule is easy to deploy
but not truthful, as users can easily cheat at their values to
reduce their payments.

B. Numerical Results

The evaluation results on weighted average AoI with
different parameters are shown in Fig. 3. We first compare
different mechanisms with different arrival rate γ in Fig. 3(a).
Overall, we can see that our mechanisms achieve significant
reduction on the weighted AoI than the other mechanisms,
and PreDisc-opt obtains the smallest weighted AoI among
them. There are two reasons behind the advantage of our
mechanisms: First, our mechanisms realize an optimal
resource allocation in each time slot, since a dynamic
programming rather than a simple greedy algorithm is
employed. Second, PreDisc-opt makes a good trade-off
between preemption and non-preemption. In addition, FCFS
and LCFS-p result in the worst performances, because FCFS
tends to select stale tasks with earlier arrival times, while
LCFS-p preempts tasks frequently once there are newly
arrived tasks. In LCFS-np, fresh tasks with high values are
selected and completed without preemption, hence a low AoI
is achieved. When γ increases from 0.05 to 0.3, a large
amount of tasks are uploaded to the edge, and hence many
tasks with high values are not completed. Thus, the weighted
AoIs of all mechanisms increase with the arrival rate.

In Fig. 3(b), we compare the above mechanisms with the
offline VCG mechanism, the ideally optimal benchmark. The
computation complexity of VCG is extremely high, as it
needs to enumerate every possible scheduling outcomes. Thus,
we reduce the scale of the problem, setting N = 20, T = 10,
l = 25 Kb, W = 5 GHz, and average the evaluation results
over 100 runs. We can observe from Fig. 3(b) that the weighted
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Fig. 4. The average revenue of the edge with different parameters.

TABLE I

PROGRAM EXECUTION TIME (ms)

AoI of our mechanisms are very close to that of the offline
VCG mechanism, which demonstrates the effectiveness of
PreDisc. A small difference from Fig. 3(a) is that, the AoIs of
some mechanisms decrease with the arrival rate in Fig. 3(b).
This is because the resources are relatively sufficient under
the scale-reduced setting, and thus the impact of incremental
completed tasks is higher than that of incremental uncompleted
tasks. We further evaluate the computation complexity (i.e.,
the program execution time) of FCFS, LCFS-p, LCFS-np, our
mechanisms and VCG-off, and show the results in Table I.
These results show that our proposed mechanism PreDisc can
achieve an approximate optimal weighted average AoI with
much lower computation complexity than the optimal solution.

Fig. 3(c) shows the impact of CPU computational capability
W . With a large CPU computational capability, the edge server
can efficiently schedule the tasks to reduce the weighted AoI,
leading to the decrease of AoI from all mechanisms. When
W ≥ 60 GHz, nearly all tasks are completed in time in
all mechanisms, and thus the lowest AoI is achieved. When
W ≤ 40 GHz, the resource is limited and PreDisc has a much
better resource utilization and then obtain a lower weighted
AoI than the other mechanisms.

The impact of preemption factor α on weighted AoI is
depicted in Fig. 3(d). We can see that when the preemption
factor is close to the optimal α, which is approximately 2.4
under our default settings, the weighted AoI indeed realizes a
better performance. This result demonstrates the optimality of
preemption parameter selection in our theoretical analysis of
PreDisc.

We report the influence of cloud processing time T c and
edge execution time T e on the evaluation results in Fig. 3(e)

and Fig. 3(f), respectively. We remark that T c is the largest
AoI because every task can get a response from the cloud
after T c time slots. A large T c enables a flexible scheduling
for emergency tasks sent to the edge, and thus reduces the
weighted AoI for these tasks. However, the weighted average
AoI of the tasks sent to the cloud, which is the majority of all
tasks, has a significant increase, due to a large T c. Thus, the
overall AoI increases with T c. A large T e implies that tasks
would have to wait a longer time to complete. Therefore, the
weighted AoI would be higher with the increase of T e.

We further investigate the average revenue of the edge in
different mechanisms in Fig. 4. Fig. 4(a) shows the revenue
performance of different mechanisms. We can observe that the
revenues of our mechanisms outperform all other mechanisms
due to the high utilization of edge resources. In addition,
PreDisc-1 achieves the highest revenue in our mechanism,
which will be explained later. With the increase of arrival rate
γ, the revenues of our mechanisms increase, because more
tasks result in a stiffer competition, and hence a higher critical
price for winners.

We show the comparison results on average revenue with
offline VCG in Fig. 4(b) under the setting of reduced problem
scale. Offline VCG achieves the highest revenue, but the
gap between our mechanisms and VCG-off is small. Given
the extremely large computation complexity and the need of
global information of VCG-off mechanism, PreDisc is more
practical in deployment with a slight revenue loss. When
γ = 0.1 or 0.2, the revenue of LCFS-np is slightly higher than
our mechanisms, this is because the resources are relatively
sufficient under the scale-reduced setting, and thus the critical
prices in our mechanisms is low to some extent. We also note
that as the payment rule of LCFS-np is not strategy-proof, its
present revenue may degrade in real life.

Fig. 4(c) shows the impact of CPU computational capability
W on revenue. Naturally, the revenues of FCFS, LCFS-p and
LCFS-np increase with a higher W , because the revenues
of these mechanisms are proportional to the numbers of
completed tasks, which obviously increase with the CPU
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Fig. 5. The weighted average AoI and revenue with different numbers of
users N .

computational capability. In contrast with these mechanisms,
the revenue of PreDisc would first increase and then decrease
into 0 with a larger W , because the number of completed
tasks increases but the critical prices for resources decrease
when the resource supply is more abundant. Thus, we remark
that we can improve the revenue of PreDisc by increasing the
competition on edge resources among users.

In Fig. 4(d), we present the impact of preemption factor
α on the revenue of PreDisc. We observe that with a higher
α, the revenue decreases. This is because a low α leads to
frequent preemption, resulting in a high critical price in each
time slot. Therefore, we can conclude that both weighted AoI
and revenue decrease with the preemption factor α, when
it is lower than the optimal value, which also provides a
direction in real life to trade off between AoI and revenue
when choosing α in this range.

We then show the revenues of mechanisms with different
values of T c and T e in Fig. 4(e) and Fig. 4(f), respectively.
In Fig. 4(e), the revenue of PreDisc increases with T c at first
and then decreases when T c is larger than a threshold. This is
because PreDisc is able to schedule the tasks flexibly with a
large T c, leading to the number of completed tasks and then
the revenue increases. However, if T c continues to grow, the
large number of completed tasks implies low critical prices,
so the revenue of PreDisc decreases slightly. The revenue of
LCFS is always quite small, as the frequent preemption for
ongoing tasks causes only a few of tasks to be completed. In
LCFS-np, only newly arrived tasks are selected, so the revenue
decreases instead because less tasks are produced with a larger
T c. In FCFS mechanism, a larger T c means that tasks with
top priorities are more stale, so the revenue decreases with l
substantially. Fig. 4(f) depicts the impact of the edge execution
time T e. When T e is larger, each task needs resources in more
time slots, leading to less tasks to be completed and then lower
revenue to obtain. When T e = 10 ms, each task is completed
in a single time slot, and preemption does not occur, hence
LCFS-p and LCFS-np have the same performance. With a
higher T e, the tasks selected by FCFS become fresher, leading
to the increase of revenue when T e ≥ 50 ms.

We present the performance of PreDisc with different num-
bers of users N in Fig. 5. Fig. 5(a) dipicts that the weighted
AoI becomes closer to the upper bound 100 ms with the
increase of N since the edge computing resources are more
scarce. The relative advantage of PreDisc remains the same
compared with other mechanisms. The performance on the
revenue is presented in Fig. 5(b), which presents a significant
increase on the revenue with user numbers because a larger
amount of users leads to a more fierce competition. We can

TABLE II

THE AVERAGE WEIGHTED AoI AND REVENUE WITH DIFFERENT
TASK EXECUTION TIMES

conclude from the results that our proposed mechanism is
suitable for a large system.

We finally test the performance of the online mechanisms
in the general case, where the execution times among tasks
are different, and the communication time to the edge is taken
into account. We set the execution times of tasks follow a
uniform distribution over [1, 5] time slots. Table II presents
the results with two different data transmission rates to the
cloud: 0.5 Mbits/s and 0.25 Mbits/s. We can see that the
mechanisms perform similarly to the simplified cases above,
and PreDisc-opt and PreDisc-1 achieve the lowest AoI and the
highest revenue, respectively, among all the mechanisms.

VII. RELATED WORK

The concept of age of information was first studied in [5],
where an optimal updating rate is provided for remote monitor
systems to optimize the timeliness of collected data. Following
this work, much attention has been focused on AoI optimiza-
tion, typically with the queueing theory technique [5], [32],
[33]. The AoI was investigated in real-time computing prob-
lems in recent years [34]–[36], and different types of update
policies and preemption strategies are proposed. However,
these studies did not consider the strategic behaviors of users.
There are several works that considered the selfish agents in
status update systems [37]–[39]. Hao et al. [37] investigated
the competition of selfish crowdsourcing platforms to reduce
their own AoI. They proposed a non-monetary punishment
mechnism in a repeated game to enforce their cooperation. The
work of [38] introduced the concept of fresh data market. They
proposed a new pricing mechanism to maximize the profit of
information source and minimize the cost of the destination.
These works treated updates as homogeneous ones and only
manipulate the update frequency. However, in a real-time edge
computing problem, tasks are heterogeneous and users may
misreport the information about their tasks. Therefore, the
above studies are substantially different from the problem
setting considered in this work.

The topic of online auction was first introduced by
Lavi and Nisan [40]. Based on the 2-competitive model of
[41] for reusable resource allocation and the proof of com-
petitive ratio, the work in [42] raised the concept of auc-
tion with preemption and its application in online spectrum
auctions. However, the above classical works only considered
constant values during the auction. The authors of [43] consid-
ered online auctions with discounting values. However, they
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imposed constraints on unit resource demand and unit edge
execution time, and hence their proposed mechanism does not
apply to our general cases.

From the perspective of edge computing, there are extensive
studies that considered the high cost of edge deployment and
the resource limitation at the edge server [11], [44], [45].
Some of these works proposed task scheduling algorithms
to better utilize edge resources [16], [46]–[48]. For example,
Tan et al from [46] proposed an online scalable algorithm,
called OnDisc, for the job dispatching and scheduling problem
with a constant competitive ratio. In [16], Zhao et al proposed
to combine the edge server and the remote cloud server into
a heterogeneous cloud. However, all of these studies did not
take the pricing mechanism into account. An online incentive
mechanism for the task offloading in mobile edge computing
was proposed in [22] based on the primal-dual optimization
framework, but they only considered a maximal tolerance
delay for each task, rather than the time discounting values of
tasks, i.e., the AoI metric. Therefore, their proposed simple
threshold-based pricing mechanism cannot be applied in our
problem.

VIII. CONCLUSION

We have proposed a strategy-proof online mechanism
PreDisc for the cloud-edge collaborative computing system
to reduce the overall weighted AoI. A preemption factor is
employed to trade off the newly arrived tasks and ongoing
tasks. We have proved that PreDisc guarantees both strategy-
proofness and a constant competitive ratio compared with
the offline optimal solution. Extensive simulations have been
conducted and the results demonstrated the effectiveness of
PreDisc. In the future work, we would further investigate
the online mechanism design problem with overlapped tasks
from a user, where the time discounting function of task
values would vary over time. In addition, we focus on mobile
devices with adequate power and energy in this work, and
would extend the proposed mechanism to the scenarios with
energy-constrained edge devices, where more practical utility
functions and new task generation policies will be taken into
account.
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