IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 5, MAY 2021

1277

Strategy-Proof Online Mechanisms for Weighted
Aol Minimization in Edge Computing

Hongtao Lv, Zhenzhe Zheng

, Member, IEEE, Fan Wu

, Member, IEEE,

and Guihai Chen, Senior Member, IEEE

Abstract— Real-time information processing is critical to the
success of diverse applications from many areas. Age of Informa-
tion (Aol), as a new metric, has received considerable attention
to evaluate the performance of real-time information process-
ing systems. In recent years, edge computing is becoming an
efficient paradigm to reduce the Aol and to provide the real-
time services. Considering the substantial deployment cost and
the resulting resource limitation in edge computing, a proper
pricing mechanism is highly necessary to fully utilize edge
resources and then minimize the overall Aol of the whole system.
However, there are two challenges to design this mechanism:
1) the priorities (or values) of the real-time computing tasks,
critical to the efficient resource allocation, are usually private
information of users and may be manipulated by selfish users
for their own interests; 2) due to the time-varying property
of Aol, the values of the tasks discount with time, making
the traditional pricing mechanisms infeasible. In this paper,
we extend the classical Myerson Theorem to the online setting
with time discounting tasks values, and accordingly propose an
online auction mechanism, called PreDisc, including an allocation
rule and a payment rule. We leverage dynamic programming
to greedily allocate resources in each time slot, and charge the
winning user with a new critical price, extended from the classical
Myerson payment rule. A preemption factor is further employed
to make a trade-off between the newly arrived tasks and ongoing
tasks. We prove that PreDisc guarantees the economic property
of strategy-proofness and achieves a constant competitive ratio.
We conduct extensive simulations and the results demonstrate
that PreDisc outperforms the traditional mechanisms, in terms
of both weighted Aol and revenue of edge service providers.
Compared with the optimal solution in offline VCG mechanism,
PreDisc has much lower computation complexity with only a
slight performance loss.

Index Terms— Age of information (Aol), edge computing,
auction theory.

Manuscript received July 8, 2020; revised December 15, 2020; accepted
February 13, 2021. Date of publication March 10, 2021; date of current version
April 16, 2021. This work was supported in part by the National Key Research
and Development Program of China under Grant 2019YFB2102200; in part
by China NSF under Grant 62025204, Grant 62072303, Grant 61972252,
Grant 61972254, Grant 61832005, and Grant 61902248; in part by the Joint
Scientific Research Foundation of the State Education Ministry under Grant
6141A02033702; in part by the Shanghai Science and Technology Fund under
Grant 20PJ1407900; in part by the Alibaba Group through Alibaba Innovation
Research Program; and in part by the Tencent Rhino Bird Key Research
Project. (Corresponding author: Zhenzhe Zheng.)

The authors are with the Shanghai Key Laboratory of Scalable
Computing and Systems, Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
Ivhongtao@sjtu.edu.cn; zhengzhenzhe @sjtu.edu.cn; fwu@cs.sjtu.edu.cn;
gchen@cs.sjtu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2021.3065078.

Digital Object Identifier 10.1109/JSAC.2021.3065078

I. INTRODUCTION

N RECENT years, real-time information processing is

prevailing in many areas, such as autonomous vehicles [1],
online gaming [2], virtual reality (VR) [3] and multi-robot
systems [4]. In order to evaluate the performance of real-time
information processing systems, a new metric called age of
information (Aol) was proposed in [5], and has received con-
siderable attention recently [6]-[10]. Different from traditional
performance metrics like delay and throughput, the metric of
Aol takes the freshness of decision-making information into
account. For example, if the user sends tasks with a very
low frequency, the system performs well on delay but poorly
on Aol, because a lack of timely decision update makes the
received decision out of date. Thus, Aol is widely adopted as
a more reasonable metric in real-time computing applications.

The traditional centralized cloud computing mode does
not satisfy the stringent requirement of Aol in real-time
information processing system, because end devices have
to send data to remote cloud for processing with a high
network delay. Edge computing [11], as a new computing
paradigm, is quite attracted to further reduce the Aol in real-
time applications. In edge computing, edge servers (also called
cloudlets) are deployed near end devices, and such physical
proximity can significantly reduce transmission delay and also
Aol. For example, in autonomous vehicle systems with cloud
computing mode, the transmission time between the vehicle
and the remote cloud server is about 150 ms, while with the
assistance of edge servers, ultra-low latency (less than 1ms)
can be achieved [12], [13]. Many real-time applications like
online gaming and VR also have improvements in Aol and
hence in system performance and user experience by using
edge computing mode [2].

Although edge computing achieves attractive performance
improvement, it also introduces additional cost for distributed
deployment and maintenance [11], [14]. Due to this cost con-
straint, the computation resources of edge servers are usually
limited, which may result in the degradation of overall service
performance [15]. Therefore, on one hand, it is a promising
idea to consider the paradigm of edge-cloud collaboration,
combining the low latency of edge and the sufficient resources
of remote cloud [12], [16]. On the other hand, a proper
pricing mechanism is necessary to fully utilize the limited
edge resources and to compensate the cost of edge service
providers [17].

0733-8716 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3447-5349
https://orcid.org/0000-0003-0965-9058

1278

There are several challenges to design a pricing mechanism
for edge services in real-time information processing systems.
The service provider would like to efficiently manage the lim-
ited edge resources by assigning large weights (or priorities)
to urgent tasks. We measure the extent of task urgency by a
metric of task value (please refer to Section II for a specific
definition), which is related to private information of users,
such as the driving speed and the surrounding environment
in self-driving systems. As the values of tasks are private to
users, they would manipulate this information, if doing so can
increase the priorities of their tasks, resulting in the chaos of
market and then the degradation of resource utilization. There-
fore, the pricing mechanisms should be carefully designed to
resist the strategic behaviors of users.

Other than the difficulty in guaranteeing the strategy-
proofness,’ the dynamic property and the time discounting
values of tasks also bring obstacles to the design of efficient
pricing mechanisms. On one hand, since the tasks arrive at the
edge in an online manner, the edge server needs to schedule
them online, without the knowledge of future tasks. The
classical Vickrey-Clarke-Groves (VCG) mechanism [18]-[20]
could not be directly applied into this online setting, as it needs
to calculate the optimal offline allocation. On the other hand,
since the Aols of real-time decisions increase with time, the
values of tasks would discount if they are delayed for execu-
tion. The time changing value enables users to have a large
space to further manipulate the mechanisms, i.e., users can
win the resources at different time slots by misreporting their
values. The existing online mechanisms [21], [22], by which
each winning task is charged a predefined payment without
considering the time-discounting value, would be no longer
strategy-proof, and thus is inapplicable for Aol minimization
under strategic environments.

To address these challenges, in this paper, we adopt a cloud-
edge collaborative framework to optimize the weighted Aol
of real-time decision tasks. The edge servers are employed to
conduct urgent tasks, and the remote cloud server is considered
as a backup mode to make decisions for users when the
edge services are not available. We further propose an online
auction mechanism for weighted Aol minimization, where
users arrive at the auction dynamically, submit their tasks and
corresponding task values to the edge server, and wait for the
timely results of decisions before a certain deadline. Based on
the reported values, the edge service providers calculate the
reductions of weighted Aol for tasks at each time slot, and
schedule the tasks to execute, with the goal of minimizing the
overall weighted Aols of all tasks. The edge service provider
also determines the prices for users to guarantee the property
of strategy-proofness, and then the users pay for the edge
service at the required price.

The main contributions of this paper are summarized as

follows.
o We deeply investigate two critical aspects of Aol opti-

mization in edge computing: the potential strategic
behaviors of users and the time-varying property of

'In a strategy-proof mechanism, the users would truthfully reveal their
private information, i.e., the values of tasks in our context. Please refer to
Section II for detailed definition.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 5, MAY 2021

Aol. Based on the appropriate models for these two
aspects, we then formulate the problem of weighted Aol
minimization as an online mechanism design with time
discounting values. The challenges in designing online
mechanisms due to the new property of time discounting
values have also been fully discussed.

o« We extend the celebrated Myerson theorem [23] to the
online setting with time discounting values. Our algorith-
mic results and theoretical analysis provide a fundamental
tool for optimizing Aol within strategic environments.
This result would also have independent interests in
mechanism design literature, and the potential applica-
tions of this result are also discussed in this work.

o We propose a Preemption factor-based pricing mecha-
nism with time Discounting values PreDisc) to allocate
computing resources on the edge server. PreDisc assigns
a high virtual value to ongoing tasks to avoid unnecessary
preemptions of newly arrived tasks, making a desirable
tradeoff between preemption and non-preemption. Our
theoretical analysis shows that PreDisc guarantees both
strategy-proofness and constant competitive ratio.

o We evaluate the performance of our proposed mecha-
nism with extensive experiments. The evaluation results
demonstrate that PreDisc outperforms the existing First-
Come-First-Served (FCFS) and Last-Come-First-Served
(LCFS) mechanisms, and approaches to the optimal solu-
tion of offline VCG mechanism.

The paper is organized as follows. Section II introduces
the model and the basic background knowledge. Section III
characterizes the property of strategy-proofness. Section IV
and Section V focus on the detailed design of PreDisc.
In Section IV, we introduce the allocation and payment rules
in PreDisc for tasks with unit edge execution time, and then
give an analysis for the upper bound of competitive ratio
compared with the offline optimal solution. Section V extends
our mechanism to the general cases. In Section VI, we give
the simulation results on weighted Aol and the revenue of
edge service provider. Section VII reviews the related works.
Finally, we conclude this paper in Section VIII.

II. PRELIMINARIES

In this section, we introduce the model of online auction
mechanism with time discounting task values in the context of
edge computing, and briefly review related solution concepts
used in this paper from game theory.

A. System Model

We consider a cloud-edge collaborative computing frame-
work with two components: a cloud server and an edge server,
to facilitate users to make real-time decisions. A cloud server
with adequate computing resources is normally far away from
users, so the response time cannot be guaranteed if only
relying on the cloud server for decision making. In contrast,
a nearby edge server has a timely response for users, but can
only support a certain amount of tasks simultaneously due to
the limited edge resources. We consider the tasks that have to
be completed on either the cloud or the edge server, instead

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

LV et al.: STRATEGY-PROOF ONLINE MECHANISMS FOR WEIGHTED Aol MINIMIZATION IN EDGE COMPUTING

of the edge devices. A task may exceed the limitation of
computation capacity on local edge devices (e.g., CNN based
image recognition tasks [24]), or need some information from
other vehicles in auto-driving systems (e.g., connected vehicle
analytics [25]). We assume the task generation follows certain
pattern which could not be manipulated by the users. The goal
of each user is to minimize her Age of Information (Aol),
which is defined as follows.

Definition 1 (Age of Information): The age of information
of a user at a specific time is the difference between the current
time slot and the generating time slot of the latest received
decision-making result of this user.

1) User-Cloud Communication: A user communicates with
the cloud server periodically in a normal mode. Each user j
regularly sends a task 4, such as the real time diagnostics,
to the cloud server at each time interval At¢, and receives a
decision feedback after a processing time period 77, (includ-
ing transmission delay and execution time). As the cloud
server is configured with ubiquitous and powerful computing
resources, we assume that the tasks do not need to wait for
execution. However, the communication time is quite large due
to the long transmission distance between users and cloud, and
hence the Aol fluctuates at a relatively high level without the
involvement of an edge server.

2) User-Edge Communication: When a user encounters an
emergency task (e.g., for a self-driving system, some urgent
situations need timely decisions), the user would send the task
to both the cloud and the edge server, and receive a quick
feedback from the edge server (also from the cloud server as a
backup). We assume the execution time on the edge is T}, and
the task would demand m; ; units of resources, which may not
necessarily be available immediately. Due to the property of
ultra-low communication latency of the edge server, we omit
the communication time to make the presentation clearer,
which will be discussed in the later section. We have that
T, is always smaller than T7’; due to the long distance of
the cloud [24], [25], and hence Aol can be reduced with the
help of edge server. Furthermore, as only emergency tasks are
uploaded to the edge server, we assume the emergency tasks
from the same user are non-overlapping with each other.

We illustrate the system model with an example in Fig. 1.
For easy presentation, we consider fixed values of 7 and T°
for all tasks in this example. The users regularly send tasks
to the cloud server at each time interval At¢, and receive a
feedback after T° time slots. At time ¢3, we can calculate that
the Aol of user 1 is T, since the newly received decision is
generated at time slot ¢;, which is 7 time slots before the
current time slot. After time slot ¢3, the Aol increases over
time, reaches the highest Aol 7T¢ + At at time t4, and then
drops to T° since the next decision is received. At time to,
user 2 sends a task to both the cloud and the edge servers,
and receives a response from the edge after 7¢ time slots.
With the definition of Aol, we can plot the new Aol curve as
the red solid line. Hence, one can see that the Aol is reduced
with the help of the edge server (from the blue solid line to
the red solid line). At time ¢5, user 1 sends a task to the edge
server, and shortly after that, user 2 also sends a task to the
same edge server at time tg. However, the edge server does

1279

Aol

t3 A't t4
Aol

t, te A
e
T® T®

Fig. 1. The illustration of system model for two users with three tasks. The
x-axis indicates time slots and the y-axis indicates the Aol. The blue solid
lines show the Aol generated by the cloud, and the red solid lines show that
of the edge. The shadow areas depict the reduction of the Aol with the help
of the edge server.

not have enough computing resources to satisfy the demands
for both users, so the task of user 2 has to wait until the
completion of the task of user 1.

As the timeliness of decisions is critical for the success
of real-time information processing applications, e.g., it may
influence the safety of self-driving cars or the user experience
in interactive gaming, the objective of each user j is to
minimize the weighted average Aol over time, denoted as Zj.
The weight captures the extent of emergency or value of
using edge services to execute a task, and also indicates the
minimum amount of money the user is willing to pay to
exchange for a unit decrease of Aol. For each urgent task
1, the value (i.e., weight) v; ; is reported by the user j, and
it may depend on many types of factors. For example, in an
autonomous vehicle system, the value of a task depends on
the driving speed, the vehicle performance, the surrounding
environment, the safety awareness and other preference of the
user. Since most of these factors are private information to
the user, she is able to misreport the value v; ; for her own
interest, e.g., declaring a large value to increase the priority of
her task, and reduce the weighted Aol. Such a selfish behavior
would degrade the system performance of the edge service,
as a more urgent task may be preempted by a non-urgent
task with a misreported high value. With such a consideration,
we leverage an auction mechanism to incentivize the users to
truthfully reveal their private information, and to efficiently
allocate the limited edge resources to optimize the weighted
average Aol of all users.

B. Problem Formulation

We consider the edge server with W units of reusable
homogeneous resources in a finite time horizon, which can
be further divided into 7" time slots with equal length: T =
{1,2,---,T}. Suppose the set of tasks> produced by user j
is Uj, task i € U; arrives at time slot a; j, and then it should
be completed before a deadline d; ; = a;,; + T;;. This is
because the decision made by the edge server becomes useless

2As we focus on the emergency tasks on the edge, we do not distinguish
“task” and “emergency task” in the following sections.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

1280

when the decision from the cloud server is received after 77,
time slots. We denote T; ; as the set of all time slots during
[a; ;, d; ;] for task ¢ of user j, and denote the set of other time
slots t ¢ U;ep, T j by 'ﬁ‘j. To calculate the weighted average
Aol Zj of user j, we denote the age at time t as A;(¢), the
age produced by the cloud server (i.e., the blue solid line in
Fig. 1) as C;(¢), and the age produced by the edge server (i.e.,
the red solid line in Fig. 1) as E;(¢). If the Aol at time slot
t is not produced by the edge server, we set E;(t) = +o0.
With these definitions, we can have

Aj(t) = min{E;(t), C; (1) }-

We then separate the time slots as the slots with cloud
produced age and slots with edge produced age, and get the
weighted average Aol,

— 1
A =7 Lx Aj(t)+ Y Y viy x Aj(t)
teﬁj i€U; teT; ;
1
= T Cj(t) + Z Z Vi X Cj(t)
teT; i€U; teTs

N>

i€U; B,(t)<C5 (1)

vy x (C(t) — Ej5(t))

As the first two items in the brackets are constants and the
tasks are non-overlapping, we only need to maximize the
third item EEj(t)<cj(t) vi,; % (C}(t) — E;(t)) for each task
independently, which represents the reduction of the weighted
Aol during the current interval, i.e., each of the shadow areas
in Fig. 1. For easy presentation, we duplicate each user, also
called as an agent, for each of her task, and hence omit the
subscript j for all notations. (e.g., we use v; directly to denote
v; ;). Suppose the edge server starts to execute the task 7 at
time ¢; without an interruption in the following 77 time slots,
we can then obtain the following weighted Aol reduction,

Z v X (Ci(t) — Ei(t))=v; x Z (Ci(t) — E4(1))
E;(t)<C;(t) t>t;+Tf
t<a;+T]

which is a function with respect to the starting time ¢,. Thus,
we define the task value as

Ui(t) = U; X fz(t)
=vix Y (CG(t') - E(t)), (1)
t'>t4+T7
t'<a;+Tf
if the task starts to execute at time slot ¢, with

a; <t < a;+ TS —"T7. It should be noted that we do not
restrict C;(t') and F;(t') to any specific format. Since we have
E;i(t) < C;i(t) during the considered time interval, we can get
that f;(¢) is non-negative and non-increasing, meaning that the
task value is discounting over time. Some possible function
fi(t) could be fi(t) = n''=) or fi(t) = 1 — B(t — a),
where the parameters could be different for all task. Without
loss of generality, we normalize f;(a;) = 1.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 5, MAY 2021

With the metric of task value, we can further formulate
the problem of weighted Aol minimization as follows. There
are N agents N = {1,2,--- N} arriving at the system
in a random order. Each agent ¢+ € N arrives at time a,,
and demands for m; resources to execute her task before a
departure time d;. For simplicity of notations, we also denote
d; = a; + Tf — Tf as the latest starting time for task i
to be able to be completed in time. Each agent ¢ has an
intrinsic task value v; and a time-varying task value wv;(t)
once she is allocated m; units of resources from the time
t for Tf consecutive time slots. We denote v; = v;(a;) as
vi(a;) = v; X fi(a;) and f;(a;) = 1. As discussed above, the
agent ¢’s time-varying value function can be expressed as

vi(t) = {Ui x fi(t), t€ las,dl], o

0, otherwise,

where f;(t) is a time discounting value function defined in (1).
We note that the arrival time a; is critical for the edge to make
the correct decision. For example, if a self-driving car uploads
a task with an incorrect timestamp, it may receive a false
driving command, which endangers the safety. Thus, once an
agent ¢ € N enters the system, the information of arrival time
a; and the resource demand m; are truthfully revealed. The
agent submits a declared intrinsic value (bid) v;, which may
not be necessarily equal to her true intrinsic value v;, to a
trusted auctioneer (the edge server). We call the true value v;
of agent 7 as her fype as in mechanism design, and use vector
¥ = (01,09, -+ ,0n) to denote the declared types (i.e., the
bidding profile) of all agents.

The procedure of online auction mechanism for edge
resource allocation is described as follows. We denote N,
as the set of active agents, who is able to complete its task
if starting at the current time slot ¢, i.e., we have ¢ € N,
if a; <t < dj. At each time slot ¢ € T, the auctioneer
first calculates the bid 0;(¢) for each active agent i € N,
by replacing her declared type ©; with the true intrinsic value
v; in (2). Given the bidding profile of the active agents N,
at time £: 0(t) = (01(t),02(t),- -+ , 0w, (t)), the auctioneer
then allocates the total W units of resources, including the
idle resources and those in use by existing tasks, to the
active agents. We note that to further improve the utilization
of resources, the newly arrived agents with high bids could
interrupt some ongoing tasks with low bids. The agent i is
called a winning agent if she is allocated m; units of resources
for T} continuous time slots without an interruption before
the deadline d;; otherwise she is called a losing agent. We
use x;(®) = 1 to denote that the agent 7 is a winner when
the declare value profile is ¥; otherwise z;(9) = 0. For a
winning agent, ¢;(9) is the starting time of the winner i € W
to execute her task when the declared type profile is ©. Finally,
according to the declared value profile © of agents, the auc-
tioneer determines the payment p;(¥) for each agent i at her
departure time d;. The payments of the losing agents are set to
zeros. We use vector &(9) = (x1(9), 22(0),- -+ ,xn (D)) and
p(0) = (p1(D), p2(®), -+ ,pn(D)) to represent the allocation
rule and payment rule in an online auction, respectively.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

LV et al.: STRATEGY-PROOF ONLINE MECHANISMS FOR WEIGHTED Aol MINIMIZATION IN EDGE COMPUTING

The utility u; of each agent 7 € N is defined as the difference
between her value on the allocated resources and the payment:

v; X fl(tz(f})) —pl(f}), 1€ W,
0, otherwise,

ui(®) = 3)
where W is the set of winning agents.

As we have shown at the beginning of this section, mini-
mizing the weighted average Aol is equivalent to maximizing
the sum of time-varying task values, which is defined as the
social welfare in the context of auction mechanism as follows.

Definition 2 (Social Welfare): The social welfare in an
online auction mechanism with time discounting values is the
sum of winners’ values at their corresponding winning time
slots, i.e.,

SW =Y "w; x fiti(®)).)

Other than social welffr? revenue, which is defined as the
total payment collected from agents, is also a widely used
objective in mechanism design. As revenue only reflects the
interest of the edge service provider rather than the whole
system, we adopt social welfare as the optimization objective
in this work, which is beneficial for the long term development
of real-time edge service systems. We also evaluate the revenue
of the proposed mechanisms in the evaluation results.

In contrast to the optimization goal of the edge service
provider, the agents are rational and selfish, and have incen-
tives to maximize their own utilities by strategically reporting
their private intrinsic values. To illustrate this strategic behav-
ior in the setting of time discounting task values, we provide
a simple example: Suppose agent 1 with v; = 10 and
agent 2 with v, = 8 send tasks to the edge server at the same
time. The edge can only serve one agent and the execution
time is 7 = 1 for both tasks. We adopt a simple resource
allocation rule as the more urgent tasks (tasks with higher
values) first, and the payment rule as charging the winners
a uniform price 1. Under these rules, the solution would be
to execute task 1 at the first time slot and then task 2 at the
following time slot. If the values of tasks do not discount
over time, then agent 2 has no incentive to misreport her
value, because the payment is independent on her bid and
her utility is always 8 — 1 = 7. However, if the values of
tasks shrink by half after each time slot, the strategic behaviors
may occur. Suppose agent 2 reports her value truthfully, her
utility would be 4 — 1 = 3, and the social welfare is 14.
But if agent 2 misreports a value 11, she would be served
before agent 1 and obtain a higher utility 8 — 1 = 7, while the
social welfare drops to 13. We also observe from this example
that the traditional payment rule to guarantee the strategy-
proofness derived from the classical Myerson theorem [23],
i.e., the payment is independent on the resource allocation
time, no longer holds in the setting of time discounting values.
This is because the users can change the resource allocation
times, resulting in different utilities in the setting of time-
varying task values, by misreporting their values. Therefore,
a new proper auction mechanism is necessary for this setting
to resist such strategic behaviors and still achieve the optimal
social welfare.

1281

C. Solution Concepts

A strong solution concept from mechanism design is dom-
inant strategy, where strategy is defined as the type reported
by a user.

Definition 3 (Dominant Strategy [26]): A strategy v; is
agent i’s dominant strategy, if for any strategy v, # U; and
any other agents’ strategy profile ©_;, we have

’U,i(ﬁi, 1’3_1) > uz(f):, ’l’}_i).
Intuitively, a dominant strategy of an agent is a strategy that
maximizes her utility, regardless of what strategy profile the
other agents choose.

The concept of dominant strategy is the basis of incentive-
compatible mechanism, in which truthfully revealing private
information is a dominant strategy for every agent. An accom-
panying concept is individual-rationality, which means that
every agent participating in the auction expects to gain no
less utility than staying outside. We now can introduce the
definition of a strategy-proof mechanism.

Definition 4 (Strategy-Proofuness [27]): A mechanism is
strategy-proof when it satisfies both incentive-compatibility
and individual-rationality.

The objective of this work is to design a strategy-proof
online auction mechanism in the setting of time discounting
task values.

III. CHARACTERIZING STRATEGY-PROOFNESS

In this section, we present a characterization theorem for
strategy-proof online auction mechanisms with time discount-
ing values. This can be considered as a generalization of the
well-known Myerson theorem [23]. Specifically, we claim that
the necessary and sufficient condition for a payment rule that
truthfully implement an allocation rule in the setting of time
discounting values is that the function F(9) = f(t(?)) x
2(0) must satisfy a monotonicity criterion. We first give the
definition of this monotone criterion.

Definition 5 (Monotonicity): The function F;(?D) =
fi(ti (D)) x z;(D) is monotone, if for any two types of ¥; and
0f with ©; > 0 and the reported types of the other agents
’l’)_i, we have Fz(@z, 'l’\)_z) Z F‘z(f),i, 1’3_1)

We take a closer look at this monotone condition
Fi(0;,0_;) > F;(0;,©_;), which could be realized in two
detailed cases. One is that the allocation result x;(-) changes
from x; (0}, 9_;) = 0 to x;(0;, _;) = 1. The other case is that
the allocation result z;(-) remains the same, i.e., z;(0;, 0—;) =
.137,(@7{,’8_1) = 13 and fi(ti(ﬁi;ﬁ—i)) > fi(ti(@7/;7ﬁ—i))» which
further implies ¢;(0;,®_;) < ¢;(0},®_;) under the assumption
of non-increasing function f;(¢). The first case is consistent
with the monotonicity of allocation rule in the classical Myer-
son Theorem, meaning that the bidder with a higher value is
more likely to win the auction. The second case comes from
the new feature of online mechanism, which further requires
the agent with a higher value to be allocated at an earlier time
slot. The intuition behind this monotone condition in online
setting is that the winning user could be allocated resources
at an earlier time slot if she increases her declared type.

3 Another case of @;(;, ®_;) = x; (], d_;) = 0 is trivial to analyze, and
we omit it here.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

1282

We now present our main result: the necessary and sufficient
condition for the existence of strategy-proof online auction
mechanisms with time discounting values.

Theorem 1: There exists a payment rule p(0) such that the
online auction mechanism (x(0), p(0)) in the setting of time
discounting values is strategy-proof if and only if the function

Fi(9) = fi(t:i(D)) x x;(0) is monotone for each agent i € N.
This theorem indicates that, when designing a new mechanism
for the time discounting value scenarios, we can transform
the problem of satisfying strategy-proofness into the proof
of the monotonicity of the function F;(®). We separate the
theorem into “if” and “only if” parts, and complete the proof
by analyzing the following two lemmas.

Lemma 1: If the function F;(9) = fi(t;(D)) x z;(D) is
monotone for each agent, the online auction mechanism asso-
ciated with a carefully designed payment rule p(v) is strategy-
proof.

Proof: We set the payment rule as

K
= ol x AT (v]),
k=1

where the sequence v}, v2, - -+, vX is alist of K values, which
are the breakpoints of function (%) when the value increases
from O to the true value v;. In general, we assume vfl < vf2
for k1 < ko, v9 = 0 and viK < ;. The function Af(vf)

i
represents the jump of F;(®) at the breakpoint (vF, 9_;),* i.e.,

AP () = Fi(wf, o) — Fi(of ", 9_5).

(2 7

(5)

The intuition behind the payment rule in (5) is that, with
the increase of v;, the agent is allocated at a “better” (i.e.,
earlier) time slot, so the auctioneer charges the agent for this
incremental part. The breakpoint value v¥ in (5) means the
critical price of being allocated at the better time slot, and
AF(vF) measures “how better the new time slot is”, i.e.,
the (normalized) value difference between the two allocations
for agent +.

With the payment rule in (5), we can express the utility
u;(0) of agent i € N as:

u; (D) = v; X fi(t;(0)) X x(o

K
DR
Zv x AF(vF)

= (”f{+vi—vf<)Fi(vf{7f’—i)

= v; X Fy(®

= (Ui — UzK) Fi(UiK,’l’}_i)

K
+> (o - Fi(of =, 6), (6)
k=1
where the third equation is because F; (v;, & ;) = F; (v, ;)

as vX is the highest breakpoint for resource allocation for
4We omit the situation with ties for notation simplicity, ie., we consider
Fi(vF,_;) = F;(vF +¢,%_;), for a small positive constant e.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 5, MAY 2021

agent 7. According to the definition of the value sequence,
we have v < v; and v < oF forall 1 < k < K.
Therefore, the utility u,;(®) of agent ¢ cannot be negative, and
the property of Individual Rationality is satisfied.

We now show that the monotone function F;(%) in combina-
tion with the payment rule p;(®) in (5) guarantees the property
of Incentive Compatibility. We prove this by contradiction.
If the auction mechanism is not incentive compatible, there
exists an agent i, a true type v;, and a non-truthful reported
type ©; with ©; # v;, such that @, (9;,9—;) > w;(v;, ©_;). That
is, the utility of agent 7 reporting v; is strictly greater than the
utility w;(v;,©_;) that she can achieve from being truthful.
By (6), we have

K
(Ui - UzK) E(U{(,'ﬁ_z)—f—z (Uf—vf_l) Fi(vf—l,ﬁ_i)

(N

where K is the corresponding maximum index of breakpoints
for the misreported type v;. It is worth to note that the
misreported type v; only impacts the numbers, rather than the
values, of breakpoints compared with the true type v;, because
the values of breakpoints are independent on the declared type
of agent 1. N

Since the case of K = K is trivial for the proof, we can
complete the analysis by distinguishing the following two
cases:

» If ¥; < v;, we then have K < K, and thus v
Since the function F;(®) is monotone, we can get

<v

RHS of (7) > (v; —

K

+ 2
k=K+1
R

> (W =) Fi(]

k=

|
S
L
>
~

—

> (Ui viK) F(wf, 5

wherewereduceF("1) for K+2 <k <K to

F(vf(,©_;) in the second item. Thus, we get a contradiction
in this case. N R

» If 0; > v;, we then have K > K, and thus viK > viK
We can then unpack the summation in the second term of
the left hand side of (7) into k = 1 to K, k = K + 1, and

k=K +2to K. Thus we obtain
LHS of (7)

R
— vi—viK“—f— Z (vffl—vf)

k=K+2

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

LV et al.: STRATEGY-PROOF ONLINE MECHANISMS FOR WEIGHTED Aol MINIMIZATION IN EDGE COMPUTING

(8)
k=K+2
Furthermore, since we have v; < vK H 1K > viK and v{“ >
vf I and hence we get F; gj O > F; (viK,'i;,i), we
can eliminate some items in the equation and obtain
K K A
(8) < (vi —v;*) Fi (v, 9-4)
K
k -1 k—1
+Z(vz_)Fl(vz ’v*i)
k=1
= RHS of (7).)

Thus, we also get a contradiction in this case and the proof
of the “if” part is completed. (]

Conversely, we consider the “only if” part.

Lemma 2: If the online auction mechanism (x(0), p(0)) is
strategy-proof, then we have F;(®) = f;(t;(D)) x x;(D) is
monotone for each agent.

Proof: Consider an agent ¢ € N and two type profiles v,
» with v_; = ©_; and v; > 0,;. We first consider a scenario
where the true type of the agent ¢ is v;. The strategy-proof
mechanism ensures that the utility of agent ¢ when reporting
her type truthfully is not less than that when she misreports
her type, i.e.,

filti(v))vizi(v) — pi(v) = fi(ti(0))vizi () — pi(D).

We then consider another scenario where the true type of the
agent 7 is ¥; and she may cheat by misreporting v;. Similarly,
we have

fi(ti(0))0izs(8) — pi(D) = fi(t:(v)) i (v) —

Combining (10) and (11), we can get

(10)

pi(v). (11)

> pz’(v) —pi(v)

> fi(ti(v))vizi(v) — fi(ti(9))0izi(D)

= filti(v))zi(v)(vi — 0;) > fi(ti(9))z(0) (v — 0;)
= Fy(0)(vs — i) > Fy(®)(vi — 6).

Since v; > ©;, we have F;(v) > F;(0). Thus, we can conclude
that F;(v) is monotone. O

We remark that this result can be applied to not only the Aol
optimization problem, but also some other real-world scenarios
with time discounting values. For example, Mehta et al [28]
found that the expected click probability (i.e., the value) of
an impression advertisement on mobile apps decreases during
the user’s visit. In addition, the click value of live streaming
advertisement, a new type of advertisement in recent years,
also decreases during the live streaming. Our results provide a
fundamental theoretical tool to deal with this type of problems.

1283

Algorithm 1 Resource Allocation Algorithm

Input: A vector of declared types ©; arrival time a;,
latest starting time d; and resource demand m; of
each task 1.
Output: A set of winners W.
1Ny — o, W— 9o W, — o VteT,;
2 foreach ¢ € T do
3 | foreach : € N do
4 if a; <t <d} and i ¢ W then
5 N, — N U {i};

I'— {<0(t),m; >,1 € Ng};

8 | W, — DynamicProgramming(W,T');
9 | foreach i € W, do

0| | We—Wu{ih

=

11 return W.

IV. PREDISC FOR THE CASE WITH UNIT EDGE
EXECUTION TIME

We now present the detailed design for our proposed mech-
anism, namely PreDisc, and analyze its economic properties
and competitive ratio. We first present the mechanism for the
case of unit edge execution time, i.e., T = 1 for all tasks
(thus we omit the subscript 7), in which the knotty problem
of preemption in online setting does not exist. In this case,
the cloud processing time 7 and the resource demand m;
could be different for tasks. We note that the “online” property
of the problem is still a challenge, that is, we should decide
when to conduct a task within its duration to optimize the
overall Aol. The allocated time slots for the current tasks may
prevent future tasks from being executed. We will extend the
mechanism to the general cases of different execution time
slots on edge in the next section.

A. Allocation Rule

We present the procedure of resource allocation rule of
PreDisc in Algorithm 1. At each time slot, the active tasks
are collected in set N, and their current values and resource
demands are collected in the set I' (Lines 3-7). The allocation
problem at each time slot can be formulated as a 0-1 knapsack
problem, where the capacity of the knapsack is the resource
capacity W and the profit and weight of each item correspond
to the current value and the resource demand of the task,
respectively. Our goal at each time slot is to select the
most cost-efficient active tasks under the resource capacity
constraint. Thus, we adopt dynamic programming technique
to solve the resource allocation problem at each time slot ¢ to
obtain the winner set W;, and to update the ultimate winner
set W (Lines 8-10).

We next show that such a simple allocation rule at each
time slot without the knowledge of future tasks, can obtain a
constant competitive ratio 2. This result implies that PreDisc
achieves at least half of the offline optimal social welfare.

Theorem 2: The competitive ratio of the resource allocation
rule in PreDisc is 2 for the cases with unit edge execution time.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

1284

Proof: Let the set of winners in the offline optimal
solution (OPT) be OPT, and the winning agents at time slot
t in OPT be OPT,. Similarly, we denote the corresponding
sets of winning agents obtained from PreDisc as W and W/,
respectively. For a winning agent ¢, we use ¢} to present the
time it is selected in OPT, and ¢; the time it is selected in
PreDisc. We distinguish the following two cases.

» For agent i € OPT,, if agent i € Wy for ¢’ < ¢, ie.,
agent 7 is also selected as a winner in PreDisc at or before the
time slot ¢, we denote these agents as a set @P’]I‘tl. Since the
values of tasks are non-increasing, we can easily obtain

Z Z Ui(t:) S sz(tz)

t {cOPT} iEW

» For the other agents in OPT,, we know that these agents
are not in Wy, for any ¢/ < ¢, and denote them as (O)IP”JI‘?.
In PreDisc these agents may lose or be selected as a winner
later. We have that the total value of these agents at the time
slot ¢ should be less than that of agents selected by PreDisc;
otherwise, the dynamic programming algorithm would output
them as the result. Thus, we can get

S owit) < Y wilt).
i€OPT? iEW,

Overall, we have

S o)=Y 3w+ X w)

i€OPT t icOPT; i€OPT?
<D ult)+)) ult)
ieW t €W,
=2 v(ti), (12)
iCW
which concludes our proof. U

B. Payment Rule

In classical online auction mechanisms [21], [22], to guar-
antee the strategy-proofness, the payment rule is to set a pre-
defined price for each time slot. However, we have constructed
a simple example in the previous section to demonstrate that
with such a payment rule, the property of strategy-proofness
no longer holds when the value discounts over time. To tackle
this obstacle, we calculate the critical price for each single slot,
and derive our payment rule based on the extended Myerson
Theorem in Section III.

We conduct the following steps to calculate the payment
for each winner ¢ in the allocation rule. First, we run the
resource allocation algorithm (i.e., Algorithm 1) again to
compute a new solution without the agent ¢. During this new
allocation process, at each time slot, we can leverage the
optimal substructure of dynamic programming, and obtain the
minimum bid 97" () as the difference between the solutions
for total W units of resources and for W — m; units of
resources. The value 9" (t) represents the minimum bid at
time slot ¢ that the agent ¢ can win at this time slot. Then,

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 5, MAY 2021

Algorithm 2 Payment Calculation Algorithm

Input: The declared type v; of agent 7, a set of critical
intrinsic values of agent ¢ at each time slot
o, o
Output: The payment p; of agent 7.
1 K—0,p; 0,V «—g;
2 CurrentPrice «— v;;
3 foreach ¢ € {a;,a; +1,...,d;} do
4 | if vlmtm < CurrentPrice then
5 V —Vu{omint,
6 CurrentPrice — UHR
7 K— K+1;

min
’U’%d; .

8 Sort breakpoints in V' with a non-decreasing order, and
re-label them as v for k € {1,2,..., K}, 00 « 0;

9 foreach k€ {1,2,...,K} do

0 | AF@WF) — Fi(of,v_) — B v_y);

1| pi(v) — p; +vF x AP (0F);

12 return p,.

according to the definition of time-varying value function (2),
we can get the corresponding critical intrinsic value

min __ @zmzn(t)
2, fz(t) ’

which the agent 7 needs to declare to win at the time slot
t. With this critical value for agent ¢ at each time slot,
we can greedily select a non-increasing subsequence of critical
values over time, which are the breakpoint values as stated
in Theorem 1. Intuitively, suppose one breakpoint is vlmtm
it means that when the agent ¢ reports an intrinsic value no
less than vmm at arrival time a;, she would be selected as
a winner no later than the time slot t. We give a procedure
in Algorithm 2 to determine the breakpoints from the critical
intrinsic values and the corresponding payment for the winning
agent ¢. Following the time slots from the arrival time a;
to the latest starting time d;, we set the first breakpoint as
the first critical intrinsic price less than the bid of agent.
After that, we select the critical intrinsic price as a breakpoint
only when it is less than the previously selected breakpoint
(Lines 2-3). For example, suppose the declared type is 5,
and the sequence of critical intrinsic prices is {6,4,2, 3},
we select 4 and then 2 as the breakpoints. We can verify that
such a selected set of intrinsic values satisfies the definition
of breakpoints. We then sort the selected breakpoints with a
non-decreasing order, and calculate the payment using (5) in
Theorem 1 (Lines 8-11).

Consider a simple walkthrough example in Fig. 2, where
the total amount of resources W is 5, the cloud processing
time 77 = 3 for all tasks, and the value of each user
1 € N decreases linearly with time through a time-discounting
function f;(t) = 1 — 2(t — a;). In Fig. 2, we use solid
line to denote the present time interval of each agent. The
resource demand and value are also shown beside each agent.
In the allocation determination phase, at the first time slot,
agents A and C are selected as winners because their total
value 9 is larger than that of B. At the second time slot, the

value of B becomes 22, and D is chosen due to a higher

3

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

LV et al.: STRATEGY-PROOF ONLINE MECHANISMS FOR WEIGHTED Aol MINIMIZATION IN EDGE COMPUTING

(my, v;)
E(5, 3)
D(4, 6)
C(2,1)

B(5, 5)

AQ3, 8)

Time slot

1 2 3 4

Fig. 2. A walkthrough example for the cases with unit edge execution time.

value 6. At the third time slot, agents B with an updated
value % and E with an updated value 2 are active, and E
is selected as a winner. We denote the winners at each time
slot as red in Fig. 2. In the payment calculation phase, for
agent A, we remove her and re-run the resource allocation
procedure, obtaining the critical intrinsic values for each time
slot v = 4,079 = 8, v = 5. We can greedily get
the decreasing subsequence with only a breakpoint v} = 4.
Using (5), we can calculate the payment for agent A as
pa = 4. Similarly, we have the breakpoint sequence for agent
C as vy, = 0, for agent D as v5') = 22 o = 3,011 =0,

and for agent E as v}, = 2 v% = 0. Finally, we can calculate
5

?
the payment for agents: pzc =0,pp = 1ﬁs‘g,pE =3

We now show the strategy-proofness of PreDisc based on
Theorem 1.

Theorem 3: The online auction mechanism PreDisc with
the above allocation and payment rules is strategy-proof for
the cases with unit edge execution time.

Proof: Based on Theorem 1, we only need to prove the
monotonicity of the resource allocation rule, i.e., the winning
agent would be executed at an earlier (or the same) time slot
when she increases her bid. Since the dynamic programming
algorithm outputs the optimal solution at each time slot,
if a winning agent reports a higher value, she would either
be selected at this time slot or an earlier one. Hence, the
monotonicity of the allocation rule as defined in Definition 5
is satisfied and we can conclude the proof. U

V. PREDISC FOR GENERAL CASES

In this section, we first extend PreDisc to the case where T}°
can be larger than 1 but is still the same for all tasks (hence
we use T'° and T interchangeably). In such case, tasks may
be preempted by other tasks during the execution process, and
hence the interactions among tasks become more complex in
such online settings. In Section V-D, we further extend PreDisc
to the most general cases, where the execution time 7} on edge
can be different among tasks and the communication time to
the edge is also taken into account.

A. Virtual Bid Generation

When a newly arrived agent has a task value higher than that
of some ongoing agents, the auctioneer can choose to preempt
the ongoing tasks to make up the task value difference, or
to reject the new agents to guarantee the continuity of edge

1285

service. Once a task is preempted, it would wait until being
selected next time to execute the task from the beginning, and
hence the preemption may degrade the resource utilization if
the newly arrived agents does not offer a substantially higher
bid. With this consideration, the auctioneer raises the bids of
ongoing agents, which is denoted by N,, to give them higher
priorities of being allocated resources continuously. At time
slot ¢, each ongoing agent 7 € N, has been allocated m; units
of resources without an interruption from the time slot ¢;(9).
We denote the virtual bid of agent ¢ at time slot ¢ as b;(t),
which can be calculated as

bi(t) = 0;(t; (D)) x a¥t, where @; = (t — t;(9))/TF

which denotes the percentage of task ¢’s completeness at time
t, and o > 1 is the parameter that the auctioneer can adjust
to control the preemption frequency: the setting of a = 1
represents the preemption model which interrupts the ongoing
tasks once there is a newly arrived task with a higher bid.
The auctioneer can give more protection to the ongoing tasks
by increasing . When o — oo, the auctioneer does not
allow preemption, and the tasks can execute for continuous
Ty time slots once they are allocated resources. For the active
agents that have not been allocated resources, i.e., agents in
N,\N,, the auctioneer updates their bids i.e., b;(t) = 0;(t).
The auctioneer can generate the virtual bid b;(t) of the agent
7 € N at time slot £ € T by distinguishing the following two
cases:

@i(l‘,i(’l’})) X a¥t, i €N,

bi(t) =
=15 i € N,\N,.

au(t), (3

B. Allocation Rule

The algorithm of resource allocation in the general cases
is shown in Algorithm 3. For simplicity, we only present the
algorithm for one time slot. Similar to the allocation rule in
the simple case, the key idea is to use dynamic programming
technique with the virtual bids of agents at each time slot.
We first update the current values of tasks as the virtual
bids to give the ongoing tasks higher priorities of being
allocated (Lines 1-7). After that, we consider the problem
of resource allocation as the knapsack problem, and adopt
the dynamic programming technique to solve it (Lines 8-9).
We update the allocation states for two kinds of agents. For
newly winning agents, we update their winning time ¢;(9) as
t (Lines 10-11). For preempted agents, we set their winning
time to Null back (Lines 12-13), then they would wait for
the next allocation process. We add the agents, who have
executed for T} consecutive time slots before the departure
time, into the ultimate winner set (Lines 15-16). We discard
the agents whose tasks cannot be completed in the remaining
time (Lines 17-18).

Theorem 4: The competitive ratio of our resource alloca-
tion rule in PreDisc is 1 + %% for the general cases

with identical edge computation time slots, compared with the
offline optimal solution.

Proof: The proof process is similar to that of Theorem 2,
and we re-use the notations in Theorem 2. We note that in

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

1286

Algorithm 3 Resource Allocation Algorithm for General

Cases (for One Time Slot)

Input: A time slot t € T, a set of active agents N,, a set
of ongoing agents N,, a vector of reported types
0, a preemption factor a, resource demand m; for
each task, and a set of temporary winners W,_;
at time slot ¢ — 1.

Output: A winner set W and a temporary winner set W,

for time slot ¢.

foreach 7 € N, do

if i € N, then

L i (t - 1:(8)) /TS

bi(t) — f]z(tz(’l})) X 0&4‘07";
else if z' eN \N then
| bi(t) — 0:(t);

8T {<bi(t),m; >,i € Ng};

9 W, « DynamicProgramming(W,T);

10 foreach i € W,\W,_; do

1| () —t, Ny — N, U {i};

12 foreach i € W;_,\W, do

13 | ti(®) — Null, N, — No\{i};

14 foreach 7 € N, do

15 | if i e W, and t — ¢;(0) +1 > Tf then

16 L W — WuU{i}, Ny, — N \{i}, N, — N,\{i};
17 | else if i ¢ W, and t > d] then

18 L No — N, \{i};

19 return W, W,.

R W N -

N

general cases with identical T,, an agent would be a winner
in T consecutive time slots. Thus, we denote i € OPT,
as that the task 7 starts to execute from time slot ¢ for 7%
consecutive time slots (i.e., t7 = t), and for i € W in PreDisc,
the task 7 starts to execute from time slot ¢; for T'¢ consecutive
time slots. But for task ¢ in the temporary winner set ¢ € W,
it only represents that task ¢ is selected at time slot ¢, which
might be preempted later. We distinguish the following two
cases.

» For agent i € OPT,, if i € W with ¢; < ¢, i.e., the agent
1 is also selected as a winner in PreDisc starting at or before
time slot ¢, we denote them as a set (D)IED']I‘% , and denote the set
of them of all time slots as QPT* = UteT@PT% . Since we
have that the values of tasks are non-increasing, we can easily

get that
Z ’Uz'(tr) S Zvi(ti)-

i€OPT? i€eW

» For the other agents in OPT,, ie, i ¢ Wori € W
with ¢; > t, we denote the set of them of all time slots as
(D)]P”]I‘f. They may lose in PreDisc or be selected as a winner
later. Similarly, we denote all of them as OPT? = UteT@IP’JI‘f .
We have that the total value of agents in OPT? at time slot
t should be no more than the total virtual bid of agents
selected by PreDisc at the same time slot; otherwise, the
dynamic programing algorithm would output them as the

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 5, MAY 2021

result. Therefore, we can get

S ow) = >

i€OPT? i€OPT?

t) < Z bi(t)a

i€EWy

where the left equation is because ¢ =t as stated above.

Next, at time slot ¢, we denote the sum of virtual bids of
uncompleted ongoing agents as Sy, (t). It can be observed that
the sum of virtual bids at time slot £+1 is at least Sy, (t) x T
following the rule of virtual bid. This means, every selected
agent ¢ in PreDisc would either be completed ultimately or,
be preempted by agents whose total value is larger than the
sum of virtual bids of preempted agents. We note that this
observation holds even if the preemption happens in a chain.
Thus, let the set of agents which are completed at time slot ¢’
in our algorithm be NY,, and recall that the last time slot in T
is T, then we can get

>

€Wy

XO{T".

SN

t'=t 1’ EN“

The key idea of this equation is that, once a winner is selected
at time slot ¢, it might be preempted, but finally the winner or
its (chained) preemptor will be completed at a later time slot.
So we map the subsequent completed tasks to time slot ¢ and
sum over all of them as an upper bound of the left side. Thus

we have that
2wt =32 > vy > hit)

i€OPT? t icOPT? t €W,
TE?

A
<§§ gb ><aT“<§ v (t;) E aT®
t'=t i’ EN‘ €W A=—00

«
- 2 :Uz i i'
1EW a T

Overall, we obtain that

Yoowlt) = Y wlt)+ Y wilt)

i€OPT i€OPT! i€OPT?
@
< 1) _
— Z (3 + Z v’L Z _ a*%
i€EW ieW
@
=) wilts) x (1+ jx (14)
€W l—a77
which concludes our proof. 0

Base on the theorem, we can get the optimal preemption
factor v = (1+ 2)”" with simple mathematical calculations,
while the corresponding competitive ratio is (7¢ + 1)(1 +
%)Te, which is a small constant. This result implies that the
optimal preemption factor is related to only the edge execution
time. Intuitively, a larger 7¢ with the same ¢; implies that the
ongoing task tends to have occupied the resources for a longer
time, and thus it is more cost-efficient not to preempt it, ie.,
setting a larger preemption factor «.

C. Payment Rule

Similar to the payment rule for the simple case, it is
necessary to calculate the critical intrinsic price for ¢ to be

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

LV et al.: STRATEGY-PROOF ONLINE MECHANISMS FOR WEIGHTED Aol MINIMIZATION IN EDGE COMPUTING

a winner at different time slot. But the difference is that,
in the general cases with 7° > 1, the critical intrinsic price
should guarantee that agent 7 can win in continuous 7°¢ time
slots. Following the procedure in Section IV-B, we can get the
minimum virtual bid b (¢) of winning at a single time slot
t for agent i. Correspondingly, we can calculate ¢ (¢), the
minimum bid at time slot ¢ for agent ¢ to win 7'° continuous
time slots starting from time ¢ (¢ € [a;, d}]):

. bmin t/
f)zmm(t) _ max i t/i)’

(15)
vEltt+Te—1] o5F

which is the highest minimum bid (mapping from the mini-
mum virtual bids) for single time slots in the present interval.
Then we have the corresponding critical intrinsic value for the
agent ¢ at time t:

min __ ’Ozmzn(t)
vt fi(t)

Next, we can call Algorithm 2 to calculate the payment of
each winning agent.

Finally, we can get the following theoretical guarantee
on strategy-proofness. Since the proof is nearly identical to
Theorem 3, we omit the proof here.

Theorem 5: Our proposed mechanism PreDisc with the
above allocation and payment rule is strategy-proof for the
general cases with the identical edge execution times.

D. Extension

We next extend PreDisc to the most general and realistic
cases, where 1) the communication time to the edge is taken
into account, and 2) the edge execution time 77 could be
different for tasks, and hence the decisions on preemption
become more complex.

We can first obtain that the mechanism design problem with
non-negligible communication time to the edge is equivalent
to the problem where tasks are generated after the communi-
cation time in our simplified model. Furthermore, as the task
communication time could not be manipulated by the user,
we have that the communication time to the edge does not
affect the theoretical analysis, and both the strategy-proofness
and the constant competitive ratio still hold with the extension
of non-negligible communication time to the edge.

We next show that with the above allocation rule and
payment rule, the corresponding competitive ratio is similar
to Theorem 4 under the extension, as long as we replace 7
with T7%, .., which is the highest edge execution time among
all tasks. As the proof is also similar to that of Theorem 4,
we omit it here.

Theorem 6: Following the same allocation rule and pay-
ment rule as above, the competitive ratio of PreDisc is

14+ ——2+— for the general cases compared with the offline
1—a Thaz
optimal solution.

The economical property of strategy-proofness also holds
in the extended cases. The proof is nearly identical to that of
Theorem 3 and is omitted due to the space limitation.

Theorem 7: Following the same allocation rule and pay-
ment rule as above, our proposed mechanism PreDisc is
strategy-proof for the general cases.

1287

We would further interpret how the general cases can be
interpreted in the real-world task offloading scenarios. We can
model the edge execution time as

Ci
Tic:eze = Ea

and the communication time to the edge as
li
R¢’

(3
where ¢; is the number of CPU cycles the task requires, m;
is the CPU computational capability allocated to the task, I;
is the input data size of a task and R{ is the average data
transmission rate between the edge and the user. Therefore,
we have the edge processing time as

Te

i,comm

li 7
Te — e ¢

T = e
i i,comm iexe e
? ’ Rz m;

Analogously, we can model the cloud processing time as
L a

+_a
m;

T =T¢

3 ,comm

+TY

iere — ﬁ
i

where T .,,,, 1s the communication time to the cloud, T, .
is the cloud execution time and R¢ is the average data
transmission rate between the cloud and the users. We note that
T epe 1s the same as the edge execution time 77, because
the number of CPU cycles ¢; and the CPU computational
capability it is allocated m; are the same. This way, the
real-world task offloading scenarios could be captured by the

general cases where users have different 77 and T7.

VI. EVALUATION RESULTS
A. Experimental Settings

We implement our proposed mechanism in C++4, and
compare it with the existing mechanisms. In the experiments,
there are N = 100 users and 7" = 100 time slots, where the
length of each time slot is set as 10 ms. The number of required
CPU resources of each task m; are set as integers following a
uniform distribution over [1, 5], and each unit of GPU resource
is set as 1 GHz. The overall CPU capacity on the edge is
W =10 GHz if not otherwise specified. In particular, we set
the intrinsic values of tasks following a uniform distribution
over [1, 10]. The time discounting value function f;(t) is
specified as a linear function f;(t) = 1 — ;tiaT) Each user
generates a task at a time slot with probability (arrival rate)
~ if she has no active task at the time. We set the arrival
rate v as 0.1 in our experiment. To make the presentation
clearer, we first consider the simplified model where the
communication time to the edge is not considered, and the
edge execution time is fixed as 30 ms (i.e., 3 time slots),
and the cloud processing time as 100 ms (i.e., 10 time slots).
We then also consider the realistic cases with non-negligible
communication time to the edge and different edge execution
times and cloud processing times among the tasks. Similar
to the settings in [29]-[31], we set the input data size of
tasks as [= 50 Kb, the data transmission rate to the edge
as R° = 5 Mbits/s, the data transmission rate to the cloud
as R® = 0.5 Mbits/s for all tasks if not otherwise specified.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

1288

49.8

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 5, MAY 2021

102 mwm LCFS-p [0 LCFSp [0 PreDisc-100 NN ICFS-p EEE PreDisc-l I PreDisc-opt @ —o— FCFS
[FCFS WM PreDisc-l [PreDiscopt 49, == ECES 1 PreDise-100 1 VCGroff LCFS-p
100 © =3 LeFsp 95

49.4

o4 438
92 ﬂ 48.6
= Il
%0 0.1 02 03 484
Y

0.05

Weighted Aol
v
=
Weighted Aol
& &
& ©
o i

(a) Arrival rate y

5iis 100 —6— FCFS
. LCFS-p
90 LCFS-np
= o14 =S 80 PreDisc
2 2
B2 it
= 2 70
3 5
2910 2 60 /
9203 0 /:
40 &
90.6 P N g
20 21 22 23 24 25 26 7 28 29)l 40 50 60
a

(d) Preemption rate «

Fig. 3. The weighted average Aol with different parameters.

We assume the execution time follows a uniform distribution
over [1, 5] time slots (i.e., 10 ms to 50 ms). We evaluate
the changes of both weighted average Aol and revenue with
different parameters under different mechanisms. We run the
experiments for 500 times to get the average result.

We compare our mechanism PreDisc with the following
benchmark mechanisms:

o First-Come-First-Served (FCFS): In FCFS, at each time
slot, the active tasks (including ongoing tasks) are sorted
by their arrival time in an increasing order. If their arrival
times are the same, the tasks with higher values are
selected first. It is worth to note that FCFS is naturally
non-preemptive, since tasks with later arrival times are
always executed later.

o Last-Come-First-Served with Preemption (LCFS-p):
In LCFS-p, at each time slot, the active tasks (including
ongoing tasks) are sorted decreasingly by their arrival
time. Similarly, if their arrival times are the same, the
tasks with higher values are served first. Note that
LCFS-p does not protect ongoing tasks from preemption,
and hence the tasks are very likely to be preempted by
subsequent tasks.

o Last-Come-First-Served with Non-preemption
(LCFS-np): LCFS-np is similar to LCFS-p, with
the difference that ongoing tasks are protected from
interruption, i.e., once a task is selected to execute,
it would be completed without preemption.

o Offline VCG (VCG-off): VCG is a well-known mech-
anism with optimal social welfare for problems with
strategic input. We convert the problem of edge resource
allocation into the offline version, and consider VCG
mechanism as the ideally optimal baseline. We remark
that this mechanism cannot be deployed in real life, as it
needs the offline global information.

We conduct experiments on PreDisc with 3 kinds of
preemption factors: o = 1 (PreDisc-1), « = 100 (PreDisc-
100) and optimal o =~ 2.4 (PreDisc-opt), while PreDisc-opt is
also named as PreDisc in some figures as the default setting.

(b) Arrival rate y with offline VCG

T¢ (ms)
(e) Cloud processing time T ¢

LCFS-np
PreDisc
90

‘Weighted Aol

85

20 40 60 80 100

W (GHz)
(c) CPU computational capability W
P 100 e .
’ 95
j% 90
E
£ 85
5 8
5
EE) —6— FCFS
LCFS-p
75 LCFS-np
PreDisc
) 701 5 .
70 80 9 100 10 20 30 40 S0 60 70 8 90
T (ms)

(f) Edge execution time T ¢

To calculate the revenue of FCFS, LCFS-p and LCFS-np,
we adopt a simple payment rule which is widely used in
practice, i.e., p; = p - v;(t;) where 0 < p < 1 is a constant.
We set p = 0.5 in our simulations, meaning that the edge
service provider charges half of the values of completed
tasks. We remark that such a payment rule is easy to deploy
but not truthful, as users can easily cheat at their values to
reduce their payments.

B. Numerical Results

The evaluation results on weighted average Aol with
different parameters are shown in Fig. 3. We first compare
different mechanisms with different arrival rate v in Fig. 3(a).
Overall, we can see that our mechanisms achieve significant
reduction on the weighted Aol than the other mechanisms,
and PreDisc-opt obtains the smallest weighted Aol among
them. There are two reasons behind the advantage of our
mechanisms: First, our mechanisms realize an optimal
resource allocation in each time slot, since a dynamic
programming rather than a simple greedy algorithm is
employed. Second, PreDisc-opt makes a good trade-off
between preemption and non-preemption. In addition, FCFS
and LCFS-p result in the worst performances, because FCFS
tends to select stale tasks with earlier arrival times, while
LCFS-p preempts tasks frequently once there are newly
arrived tasks. In LCFS-np, fresh tasks with high values are
selected and completed without preemption, hence a low Aol
is achieved. When + increases from 0.05 to 0.3, a large
amount of tasks are uploaded to the edge, and hence many
tasks with high values are not completed. Thus, the weighted
Aols of all mechanisms increase with the arrival rate.

In Fig. 3(b), we compare the above mechanisms with the
offline VCG mechanism, the ideally optimal benchmark. The
computation complexity of VCG is extremely high, as it
needs to enumerate every possible scheduling outcomes. Thus,
we reduce the scale of the problem, setting N = 20, 7' = 10,
Il = 25 Kb, W = 5 GHz, and average the evaluation results
over 100 runs. We can observe from Fig. 3(b) that the weighted

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

LV et al.: STRATEGY-PROOF ONLINE MECHANISMS FOR WEIGHTED Aol MINIMIZATION IN EDGE COMPUTING

1289

W LCFS-p [0 LCFSap 1 PreDisc-100 EEN TCFSp EEE PreDisc-l I PreDisc-opt 1400 ot
[FCFS B PreDisc-1 [PreDisc-opt W FCFS 1 PreDisc-100 1 VCG-off Va
800 25 == LcFsp 1200
o 600 L2) 1000 rors
2 H 2 800 LCFS-p
: £15 5 LCFS-np
g 15 5 ’
<400 = = 600 PreDisc
10 400
200 200
5
0 A
0005 0.1 02 03 0.1 0.2 0.3 0 20 40 60 80 100
14 12 W (GHz)
(a) Arrival rate y (b) Arrival rate y with offline VCG (c) CPU computational capability W
620
600 —6— FCFS
600 R 1000 LCFS-p
<50 500 LCFS-np
800 PreDisc
2, 400 »
=1 2
5\60 5300 —o— ECFS 5 600
) 9 LCFS 5
54 P
& 540 = LCFS-np = 400
50 200 PreDise
200 .
100 >3
500 o
3 i S~ o oo
N 0 -
20 21 22 23 24 25 26 27 28 20 10 4 S0 60 70 8 9 100 1020 30 40 50 60 70 80 90
a T€ (ms) T (ms)

(d) Preemption rate «

Fig. 4. The average revenue of the edge with different parameters.

TABLE I
PROGRAM EXECUTION TIME (ms)
FCFS LCFS-p LCFS-np | PreDisc-1
0.007 0.005 0.005 0.078
PreDisc-100 | PreDisc-opt | VCG-off
0.080 0.073 137

Aol of our mechanisms are very close to that of the offline
VCG mechanism, which demonstrates the effectiveness of
PreDisc. A small difference from Fig. 3(a) is that, the Aols of
some mechanisms decrease with the arrival rate in Fig. 3(b).
This is because the resources are relatively sufficient under
the scale-reduced setting, and thus the impact of incremental
completed tasks is higher than that of incremental uncompleted
tasks. We further evaluate the computation complexity (i.e.,
the program execution time) of FCFS, LCFS-p, LCFS-np, our
mechanisms and VCG-off, and show the results in Table I.
These results show that our proposed mechanism PreDisc can
achieve an approximate optimal weighted average Aol with
much lower computation complexity than the optimal solution.

Fig. 3(c) shows the impact of CPU computational capability
W. With a large CPU computational capability, the edge server
can efficiently schedule the tasks to reduce the weighted Aol,
leading to the decrease of Aol from all mechanisms. When
W > 60 GHz, nearly all tasks are completed in time in
all mechanisms, and thus the lowest Aol is achieved. When
W < 40 GHz, the resource is limited and PreDisc has a much
better resource utilization and then obtain a lower weighted
Aol than the other mechanisms.

The impact of preemption factor o on weighted Aol is
depicted in Fig. 3(d). We can see that when the preemption
factor is close to the optimal «, which is approximately 2.4
under our default settings, the weighted Aol indeed realizes a
better performance. This result demonstrates the optimality of
preemption parameter selection in our theoretical analysis of
PreDisc.

We report the influence of cloud processing time 7'° and
edge execution time 7° on the evaluation results in Fig. 3(e)

(e) Cloud processing time 7 ¢

(f) Edge execution time T ¢

and Fig. 3(f), respectively. We remark that 7¢ is the largest
Aol because every task can get a response from the cloud
after 7° time slots. A large 7 enables a flexible scheduling
for emergency tasks sent to the edge, and thus reduces the
weighted Aol for these tasks. However, the weighted average
Aol of the tasks sent to the cloud, which is the majority of all
tasks, has a significant increase, due to a large 7. Thus, the
overall Aol increases with 7°°. A large 7 implies that tasks
would have to wait a longer time to complete. Therefore, the
weighted Aol would be higher with the increase of 7°°.

We further investigate the average revenue of the edge in
different mechanisms in Fig. 4. Fig. 4(a) shows the revenue
performance of different mechanisms. We can observe that the
revenues of our mechanisms outperform all other mechanisms
due to the high utilization of edge resources. In addition,
PreDisc-1 achieves the highest revenue in our mechanism,
which will be explained later. With the increase of arrival rate
v, the revenues of our mechanisms increase, because more
tasks result in a stiffer competition, and hence a higher critical
price for winners.

We show the comparison results on average revenue with
offline VCG in Fig. 4(b) under the setting of reduced problem
scale. Offline VCG achieves the highest revenue, but the
gap between our mechanisms and VCG-off is small. Given
the extremely large computation complexity and the need of
global information of VCG-off mechanism, PreDisc is more
practical in deployment with a slight revenue loss. When
v = 0.1 or 0.2, the revenue of LCFS-np is slightly higher than
our mechanisms, this is because the resources are relatively
sufficient under the scale-reduced setting, and thus the critical
prices in our mechanisms is low to some extent. We also note
that as the payment rule of LCFS-np is not strategy-proof, its
present revenue may degrade in real life.

Fig. 4(c) shows the impact of CPU computational capability
W on revenue. Naturally, the revenues of FCFS, LCFS-p and
LCFS-np increase with a higher W, because the revenues
of these mechanisms are proportional to the numbers of
completed tasks, which obviously increase with the CPU

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

1290

W LCTSp I LCTS-p PreDisc-100
| FCTS W PreDisc-I W PreDisc-opt

Weighted Aol
kS

100 500 1000 2000 100 500 1000 2000
N

(a) Weighted Aol (b) Revenue

Fig. 5.
users IN.

The weighted average Aol and revenue with different numbers of

computational capability. In contrast with these mechanisms,
the revenue of PreDisc would first increase and then decrease
into 0 with a larger W, because the number of completed
tasks increases but the critical prices for resources decrease
when the resource supply is more abundant. Thus, we remark
that we can improve the revenue of PreDisc by increasing the
competition on edge resources among users.

In Fig. 4(d), we present the impact of preemption factor
« on the revenue of PreDisc. We observe that with a higher
«, the revenue decreases. This is because a low « leads to
frequent preemption, resulting in a high critical price in each
time slot. Therefore, we can conclude that both weighted Aol
and revenue decrease with the preemption factor «, when
it is lower than the optimal value, which also provides a
direction in real life to trade off between Aol and revenue
when choosing « in this range.

We then show the revenues of mechanisms with different
values of T and T° in Fig. 4(e) and Fig. 4(f), respectively.
In Fig. 4(e), the revenue of PreDisc increases with 7 at first
and then decreases when 7 is larger than a threshold. This is
because PreDisc is able to schedule the tasks flexibly with a
large T, leading to the number of completed tasks and then
the revenue increases. However, if 7T° continues to grow, the
large number of completed tasks implies low critical prices,
so the revenue of PreDisc decreases slightly. The revenue of
LCFS is always quite small, as the frequent preemption for
ongoing tasks causes only a few of tasks to be completed. In
LCFS-np, only newly arrived tasks are selected, so the revenue
decreases instead because less tasks are produced with a larger
T°. In FCFS mechanism, a larger 7° means that tasks with
top priorities are more stale, so the revenue decreases with [
substantially. Fig. 4(f) depicts the impact of the edge execution
time 7°°. When T'¢ is larger, each task needs resources in more
time slots, leading to less tasks to be completed and then lower
revenue to obtain. When 7° = 10 ms, each task is completed
in a single time slot, and preemption does not occur, hence
LCFS-p and LCFS-np have the same performance. With a
higher 7, the tasks selected by FCFS become fresher, leading
to the increase of revenue when 7°¢ > 50 ms.

We present the performance of PreDisc with different num-
bers of users N in Fig. 5. Fig. 5(a) dipicts that the weighted
Aol becomes closer to the upper bound 100 ms with the
increase of N since the edge computing resources are more
scarce. The relative advantage of PreDisc remains the same
compared with other mechanisms. The performance on the
revenue is presented in Fig. 5(b), which presents a significant
increase on the revenue with user numbers because a larger
amount of users leads to a more fierce competition. We can

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 5, MAY 2021

TABLE II

THE AVERAGE WEIGHTED Aol AND REVENUE WITH DIFFERENT
TASK EXECUTION TIMES

R¢ =0.5 Mbits/s R¢ = 0.25 Mbits/s

Aol (ms) Revenue Aol (ms) Revenue
LCFS-p 128.24 70.83 221.81 97.39
LCFS-np 120.51 401.44 200.35 306.21
FCFS 129.24 31.57 227.61 29.93
PreDisc-1 119.54 497.45 199.07 415.69
PreDisc-100 119.16 411.94 196.57 346.55
PreDisc-opt 118.75 485.46 196.44 407.62

conclude from the results that our proposed mechanism is
suitable for a large system.

We finally test the performance of the online mechanisms
in the general case, where the execution times among tasks
are different, and the communication time to the edge is taken
into account. We set the execution times of tasks follow a
uniform distribution over [1, 5] time slots. Table II presents
the results with two different data transmission rates to the
cloud: 0.5 Mbits/s and 0.25 Mbits/s. We can see that the
mechanisms perform similarly to the simplified cases above,
and PreDisc-opt and PreDisc-1 achieve the lowest Aol and the
highest revenue, respectively, among all the mechanisms.

VII. RELATED WORK

The concept of age of information was first studied in [5],
where an optimal updating rate is provided for remote monitor
systems to optimize the timeliness of collected data. Following
this work, much attention has been focused on Aol optimiza-
tion, typically with the queueing theory technique [5], [32],
[33]. The Aol was investigated in real-time computing prob-
lems in recent years [34]-[36], and different types of update
policies and preemption strategies are proposed. However,
these studies did not consider the strategic behaviors of users.
There are several works that considered the selfish agents in
status update systems [37]-[39]. Hao et al. [37] investigated
the competition of selfish crowdsourcing platforms to reduce
their own Aol. They proposed a non-monetary punishment
mechnism in a repeated game to enforce their cooperation. The
work of [38] introduced the concept of fresh data market. They
proposed a new pricing mechanism to maximize the profit of
information source and minimize the cost of the destination.
These works treated updates as homogeneous ones and only
manipulate the update frequency. However, in a real-time edge
computing problem, tasks are heterogeneous and users may
misreport the information about their tasks. Therefore, the
above studies are substantially different from the problem
setting considered in this work.

The topic of online auction was first introduced by
Lavi and Nisan [40]. Based on the 2-competitive model of
[41] for reusable resource allocation and the proof of com-
petitive ratio, the work in [42] raised the concept of auc-
tion with preemption and its application in online spectrum
auctions. However, the above classical works only considered
constant values during the auction. The authors of [43] consid-
ered online auctions with discounting values. However, they

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

LV et al.: STRATEGY-PROOF ONLINE MECHANISMS FOR WEIGHTED Aol MINIMIZATION IN EDGE COMPUTING

imposed constraints on unit resource demand and unit edge
execution time, and hence their proposed mechanism does not
apply to our general cases.

From the perspective of edge computing, there are extensive
studies that considered the high cost of edge deployment and
the resource limitation at the edge server [11], [44], [45].
Some of these works proposed task scheduling algorithms
to better utilize edge resources [16], [46]-[48]. For example,
Tan et al from [46] proposed an online scalable algorithm,
called OnDisc, for the job dispatching and scheduling problem
with a constant competitive ratio. In [16], Zhao et al proposed
to combine the edge server and the remote cloud server into
a heterogeneous cloud. However, all of these studies did not
take the pricing mechanism into account. An online incentive
mechanism for the task offloading in mobile edge computing
was proposed in [22] based on the primal-dual optimization
framework, but they only considered a maximal tolerance
delay for each task, rather than the time discounting values of
tasks, i.e., the Aol metric. Therefore, their proposed simple
threshold-based pricing mechanism cannot be applied in our
problem.

VIII. CONCLUSION

We have proposed a strategy-proof online mechanism
PreDisc for the cloud-edge collaborative computing system
to reduce the overall weighted Aol. A preemption factor is
employed to trade off the newly arrived tasks and ongoing
tasks. We have proved that PreDisc guarantees both strategy-
proofness and a constant competitive ratio compared with
the offline optimal solution. Extensive simulations have been
conducted and the results demonstrated the effectiveness of
PreDisc. In the future work, we would further investigate
the online mechanism design problem with overlapped tasks
from a user, where the time discounting function of task
values would vary over time. In addition, we focus on mobile
devices with adequate power and energy in this work, and
would extend the proposed mechanism to the scenarios with
energy-constrained edge devices, where more practical utility
functions and new task generation policies will be taken into
account.

ACKNOWLEDGMENT

The opinions, findings, conclusions, and recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies or the
government.

REFERENCES

[11 W.Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-
edge: Orchestration of real-time vision applications on heterogeneous
edge clouds,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
Apr. 2019, pp. 1270-1278.

[2] R. D. Yates, M. Tavan, Y. Hu, and D. Raychaudhuri, “Timely cloud
gaming,” in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2017,
pp- 1-9.

[3] J. Du, Z. Zou, Y. Shi, and D. Zhao, “Zero latency: Real-time syn-
chronization of BIM data in virtual reality for collaborative decision-
making,” Autom. Construct., vol. 85, pp. 51-64, Jan. 2018.

1291

[4] D. Morrison, P. Corke, and J. Leitner, “Learning robust, real-time, reac-
tive robotic grasping,” Int. J. Robot. Res., vol. 39, nos. 2-3, pp. 183-201,
Mar. 2020.

[5] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE INFOCOM, Mar. 2012, pp. 2731-2735.

[6] R.D. Yates, “Age of information in a network of preemptive servers,” in
Proc. IEEE INFOCOM Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), Apr. 2018, pp. 118-123.

[7]1 J. Zhong, W. Zhang, R. D. Yates, A. Garnaev, and Y. Zhang, “Age-
aware scheduling for asynchronous arriving jobs in edge applications,” in
Proc. IEEE INFOCOM Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), Apr. 2019, pp. 674-679.

[8] J. Zhong, “Age of information for real-time network applications,” Ph.D.
dissertation, Dept. Elect. Comput. Eng., Rutgers Univ.-School Graduate
Studies, Brunswick, NJ, USA, 2019.

[9] S. Gopal, S. K. Kaul, and R. Chaturvedi, “Coexistence of age and
throughput optimizing networks: A game theoretic approach,” in Proc.
IEEE 30th Annu. Int. Symp. Pers., Indoor Mobile Radio Commun.
(PIMRC), Sep. 2019, pp. 1-6.

[10] A. Garnaev, W. Zhang, J. Zhong, and R. D. Yates, “Maintaining informa-
tion freshness under jamming,” in Proc. IEEE INFOCOM Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), Apr. 2019, pp. 90-95.

[11] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, Jan. 2017.

[12] K. Sasaki, N. Suzuki, S. Makido, and A. Nakao, “Vehicle control
system coordinated between cloud and mobile edge computing,” in Proc.
55th Annu. Conf. Soc. Instrum. Control Eng. Jpn. (SICE), Sep. 2016,
pp. 1122-1127.

[13] N. Alliance, “5G white paper,” Next generation mobile networks,
Frankfurt, Germany, White Paper, Feb. 2015, vol. 1.

[14] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795-2808, Oct. 2016.

[15] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628-1656, 3rd Quart., 2017.

[16] T. Zhao, S. Zhou, X. Guo, and Z. Niu, “Tasks scheduling and resource
allocation in heterogeneous cloud for delay-bounded mobile edge com-
puting,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1-7.

[17] Y. Liu, C. Xu, Y. Zhan, Z. Liu, J. Guan, and H. Zhang, “Incentive mech-
anism for computation offloading using edge computing: A Stackelberg
game approach,” Comput. Netw., vol. 129, pp. 399-409, Dec. 2017.

[18] W. Vickrey, “Counterspeculation, auctions, and competitive sealed ten-
ders,” J. Finance, vol. 16, no. 1, pp. 8-37, Mar. 1961.

[19] E. H. Clarke, “Multipart pricing of public goods,” Public Choice, vol. 11,
no. 1, pp. 17-33, Sep. 1971.

[20] T. Groves, “Incentives in teams,” Econometrica, J. Econ. Soc., vol. 41,
no. 4, pp. 617-631, Jul. 1973.

[21] D. Zhao, X.-Y. Li, and H. Ma, “How to crowdsource tasks truth-
fully without sacrificing utility: Online incentive mechanisms with
budget constraint,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
Apr. 2014, pp. 1213-1221.

[22] G. Li and J. Cai, “An online incentive mechanism for collaborative task
offloading in mobile edge computing,” IEEE Trans. Wireless Commun.,
vol. 19, no. 1, pp. 624-636, Jan. 2020.

[23] R. Myerson, “Optimal auction design,” Math. Oper. Res., vol. 6, no. 1,
pp. 58-73, 1981.

[24] Q. Zhang et al., “OpenVDAP: An open vehicular data analytics platform
for CAVs,” in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jul. 2018, pp. 1310-1320.

[25] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge
computing,” Proc. IEEE, vol. 107, no. 8, pp. 1584-1607, Aug. 2019.

[26] D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA, USA: MIT
Press, 1991.

[27] A. Mas-Colell et al., Microeconomic Theory, vol. 1. New York, NY,
USA: Oxford Univ. Press, 1995.

[28] S. Mehta, M. Dawande, G. Janakiraman, and V. Mookerjee, “Sustaining
a good impression: Mechanisms for selling partitioned impressions at
ad exchanges,” Inf. Syst. Res., vol. 31, no. 1, pp. 126-147, Mar. 2020.

[29] Q. Kuang, J. Gong, X. Chen, and X. Ma, “Analysis on computation-
intensive status update in mobile edge computing,” IEEE Trans. Veh.
Technol., vol. 69, no. 4, pp. 4353-4366, Apr. 2020.

[30] X. Song, X. Qin, Y. Tao, B. Liu, and P. Zhang, “Age based task schedul-
ing and computation offloading in mobile-edge computing systems,”
in Proc. IEEE Wireless Commun. Netw. Conf. Workshop (WCNCW),
Apr. 2019, pp. 1-6.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

1292

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 5, MAY 2021

J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicu-
lar networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944-7956,
Aug. 2019.

R. D. Yates, “The age of information in networks: Moments, dis-
tributions, and sampling,” IEEE Trans. Inf. Theory, vol. 66, no. 9,
pp- 5712-5728, Sep. 2020. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/9103131

A. M. Bedewy, Y. Sun, and N. B. Shroff, “Minimizing the age of
information through queues,” IEEE Trans. Inf. Theory, vol. 65, no. 8,
pp. 5215-5232, Aug. 2019.

A. Arafa, R. D. Yates, and H. V. Poor, “Timely cloud computing:
Preemption and waiting,” in Proc. 57th Annu. Allerton Conf. Commun.,
Control, Comput. (Allerton), Sep. 2019, pp. 528-535.

V. Kavitha, E. Altman, and I. Saha, “Controlling packet drops to improve
freshness of information,” 2018, arXiv:1807.09325. [Online]. Available:
http://arxiv.org/abs/1807.09325

B. Wang, S. Feng, and J. Yang, “When to preempt? Age of information
minimization under link capacity constraint,” J. Commun. Netw., vol. 21,
no. 3, pp. 220-232, Jun. 2019.

S. Hao and L. Duan, “Regulating competition in age of information
under network externalities,” IEEE J. Sel. Areas Commun., vol. 38, no. 4,
pp. 697-710, Apr. 2020.

M. Zhang, A. Arafa, J. Huang, and H. V. Poor, “How to price fresh
data,” 2019, arXiv:1904.06899. [Online]. Available: http://arxiv.org/
abs/1904.06899

Y. Xiao and Y. Sun, “A dynamic jamming game for real-time status
updates,” in Proc. IEEE INFOCOM Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), Apr. 2018, pp. 354-360.

R. Lavi and N. Nisan, “Online ascending auctions for gradually expiring
goods,” in Proc. 16th ACM-SIAM Symp. Discrete Algorithms (SODA),
2005, pp. 1-27.

M. T. Hajiaghayi, “Online auctions with re-usable goods,” in Proc. 6th
ACM Conf. Electron. Commerce - EC, 2005, pp. 165-174.

L. Deek, X. Zhou, K. Almeroth, and H. Zheng, “To preempt or not:
Tackling bid and time-based cheating in online spectrum auctions,” in
Proc. IEEE INFOCOM, Apr. 2011, pp. 2219-2227.

F. Wu, J. Liu, Z. Zheng, and G. Chen, “A strategy-proof online auction
with time discounting values,” in Proc. 28th AAAI Conf. Artif. Intell.
(AAAI), 2014, pp. 812-818.

L. Peterson et al., “Democratizing the network edge,” ACM SIGCOMM
Comput. Commun. Rev., vol. 49, no. 2, pp. 31-36, May 2019.

Y. Li, K.-H. Kim, C. Vlachou, and J. Xie, “Bridging the data charging
gap in the cellular edge,” in Proc. ACM Special Interest Group Data
Commun., Aug. 2019, pp. 15-28.

H. Tan, Z. Han, X.-Y. Li, and F. C. M. Lau, “Online job dispatching and
scheduling in edge-clouds,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., May 2017, pp. 1-9.

S. Josilo and G. Dan, “Computation offloading scheduling for periodic
tasks in mobile edge computing,” IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 667-680, Apr. 2020.

H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency IoT services
in multi-access edge computing,” IEEE J. Sel. Areas Commun., vol. 37,
no. 3, pp. 668-682, Mar. 2019.

Hongtao Lv received the B.E. degree in computer
science and technology from Dalian University of
Technology, in 2017. He is currently pursuing the
Ph.D. degree at the Department of Computer Science
and Engineering, Shanghai Jiao Tong University,
China. His research interests include algorithmic
game theory, mobile computing, and computational
advertising.

Zhenzhe Zheng (Member, IEEE) received the B.E.
degree in software engineering from Xidian Uni-
versity, in 2012, and the M.S. degree and the
Ph.D. degree in computer science from Shanghai
Jiao Tong University, in 2015 and 2018, respec-
tively. He has visited the University of Illinois at
Urbana-Champaign (UIUC) as a Visiting Scholar
from 2016 to 2018, and then a Post-Doctoral
Research Associate from 2018 to 2019. He is cur-
rently an Assistant Professor with the Department of
Computer Science and Engineering, Shanghai Jiao
Tong University. His research interests include game theory, networking and
mobile computing, and online marketplaces. He was a recipient of the China
Computer Federation (CCF) Excellent Doctoral Dissertation Award 2018,
the Google Ph.D. Fellowship 2015, and the Microsoft Research Asia Ph.D.
Fellowship 2015. He has served as a member of technical program committee
for several academic conferences, such as MobiHoc, AAAI, IoTDI, MSN, and
so on. He is also a member of ACM and CCF.

Fan Wu (Member, IEEE) received the B.S.
degree in computer science from Nanjing University
in 2004 and the Ph.D. degree in computer science
and engineering from the State University of New
York at Buffalo in 2009. He has visited the Univer-
sity of Illinois at Urbana-Champaign (UIUC) as a
Post-Doctoral Research Associate. He is currently a
Professor with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University.
He has published more than 200 peer-reviewed
articles in technical journals and conference pro-
ceedings. His research interests include wireless networking and mobile com-
puting, algorithmic game theory and its applications, and privacy preservation.
He was a recipient of the first class prize for Natural Science Award of China
Ministry of Education, the NSFC Distinguished Young Scholars Program,
the ACM China Rising Star Award, the CCF-Tencent ‘“Rhinoceros bird”
Outstanding Award, the CCF-Intel Young Faculty Researcher Program Award,
the Pujiang Scholar, and the Tang Scholar. He has served as the Chair
for CCF YOCSEF Shanghai, on the editorial board of Elsevier Computer
Communications, and a member of technical program committee of more
than 60 academic conferences.

Guihai Chen (Senior Member, IEEE) received the
B.S. degree from Nanjing University in 1984, the
M.E. degree from Southeast University in 1987, and
the Ph.D. degree from The University of Hong Kong
in 1997. He had been invited as a visiting professor
by many universities, including the Kyushu Institute
of Technology, Japan, in 1998, the University of
Queensland, Australia, in 2000, and Wayne State
I University, USA, from September 2001 to August
HH“’E 2003. He is currently a Distinguished Professor with
% Shanghai Jiao Tong University, China. He has a wide
range of research interests with focus on sensor networks, peer-to-peer com-
puting, high-performance computer architecture, and combinatorics. He has
published more than 200 peer-reviewed articles, and more than 120 of them are
in well-archived international journals, such as the IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, Journal of Parallel and Distributed
Computing, Wireless Networks, The Computer Journal, International Journal
of Foundations of Computer Science, and Performance Evaluation, and also in
well-known conference proceedings, such as HPCA, MOBIHOC, INFOCOM,
ICNP, ICPP, IPDPS, and ICDCS.

i

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2021 at 11:54:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

