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Abstract—Vertical federated learning (VFL) allows multiple
clients with misaligned feature spaces to collaboratively ac-
complish the global model training. Applying VFL to high
stakes decision scenarios greatly requires model interpretation
for decision reliability and diagnosis. However, the feature
discrepancy in VFL raises new issues for model interpretation
in distributed setting: one is from the local-global perspective,
where the local importance of features is not equal to the global
importance; and the other is from the local-local perspective,
where information asymmetry among clients causes difficulty
in identifying overlapped features. In this work, we propose
a new distributed Model Interpretation method for Vertical
Federated Learning with feature discrepancy, namely MI-VFL.
In particular, to deal with the local-global discrepancy, MI-
VFL leverages the law of total probability to adjust the local
importance of features and ensures the completeness of the
selected features using adversarial game. To handle the local-local
discrepancy, MI-VFL builds a federated adversarial learning
model to efficiently identify the overlapped features once, rather
than performing client-to-client intersections multiple times. We
extensively evaluate MI-VFL on six synthetic datasets and five
real-world datasets. The evaluation results reveal that MI-VFL
can accurately identify the important features, suppress the
overlapped features, and thus improve the model performance.

I. INTRODUCTION

Federated learning (FL) [1]–[3] is a privacy-preserving
distributed machine learning that enables clients to jointly train
a global model without sharing their local data. Different from
the conventional FL (also called horizontal federal learning
(HFL) [4]), vertical federated learning (VFL) [5] has a distinct
property of feature misalignment, which means clients share
the same sample space but not feature space. This provides the
opportunity for clients with different feature spaces to collabo-
rate across platforms and institutions, expanding feature space
to improve model performance and generalization ability.

High stakes decision fields such as finance, manufacturing
and medicine, one of the important applications of VFL,
require model interpretation to understand the underlying
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model behavior and ensure reliable decisions [6], [7]. For
example, when multiple medical institutions collaborate to
diagnose a patient, the doctors need to understand the specific
factors led to the patient’s illness. Also, when banks and
credit information service work together to determine whether
to lend loads to users, they must understand the reasons
behind the model’s decision. Although we can expand the
feature space through VFL, massive features with uneven
quality from multiple institutions may lead to performance
degradation. Therefore, we need model interpretation methods
to select representative and important features to guarantee the
reliability of decisions and also improve model performance.

Current model interpretation methods are basically central-
ized [8]–[17], which would raise new issues if we regard
each client’s local model as an isolated model to explain
in VFL. These issues are mainly caused by the natural
characteristic of feature misalignment in VFL [4]. We call
them “discrepancy” phenomena, which can be captured by
two aspects. The first “discrepancy” is reflected in the local-
global perspective, which refers to the local importance of
clients’ features not equal to the global one. If we only
calculate the local importance of features on their own clients,
we would lose the information about meaningful relations
among features from different clients, which is critical to
model interpretation in distributed scenarios. Therefore, we
need to design a method to adjust the local importance in line
with the global one. The second “discrepancy” exists in the
local-local perspective, which means the clients are not aware
of the features of the other clients. It may lead to different
clients selecting the same important features when there are
overlapped features among them, causing feature redundancy.
In reality, many applications in VFL exist overlapped fea-
tures. For example, different business domains in Taobao’s
recommendation system can be considered as VFL scenario,
where these domains with different items’ and users’ features
cooperate to recommend items for users. In Alibaba production
data regarding user click behavior, two domains contain 8.52%
overlapped users [18]. In addition, in the one-day traffic logs of
Alibaba display advertising production data, 49% of users and
79% of items appear in at least two domains [19]. The same
phenomenon also exists in natural language processing. We
count different news articles with stop-word removal reported
by three popular online news sources (BBC, Reuters, and the
Guardian) on 169 news stories [20], and find that each news
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story has an average of 111.9 overlapped words among three
sources with average 224.0 words per article of BBC, 196.4
of Reuters and 250.5 of the Guardian. Moreover, multi-view
face images of people collected at different times, lighting,
and facial expressions for face recognition [21] can also be
regarded as a VFL scenario, which means that different views
can be considered as different clients. We calculate the number
of identical pixels of all face images of the same person
with different views, and find that there are an average of
17.18% overlapped pixels. All these phenomena demonstrate
that in real-world scenarios, different clients inevitably have
overlapped features in VFL. However, redundant features do
not improve the class-discriminative power of the model [22]
and reduce the interpretability of the model, and thus we must
remove the overlapped features among clients. From the above
discussion, designing the model interpretation method for VFL
includes two important steps to solve the discrepancy issues,
which are adjusting local importance to global importance and
suppressing overlapped features among clients.

It is challenging to overcome these two discrepancy issues:
for local-global discrepancy, clients cannot communicate with
each other, so they cannot directly adjust the local importance
on their own. Further, the importance relation among features
from different clients is unknown, the misadjustment prob-
lem may occur, which means the unimportant features from
one client are adjusted excessively to conceal the important
features from another client. For the local-local discrepancy,
clients cannot share their own features with each other to
remove overlapped features due to privacy protection in VFL.
The current method for solving this is through private set in-
tersections [23] in a pairwise way. However, when the number
of clients increases, such client-to-client intersection method
will result in multiple communications and computational
overhead. It may also have the risk of leaking clients’ local
features to the server and other clients.

The intuition behind our proposed solution for model in-
terpretation in VFL is as follows. First, to guarantee the
importance relation of the whole feature set, we adjust the
local importance in line with the global importance based
on the law of total probability. Specifically, we divide the
adjustment process into local importance calculation and fea-
ture subset importance calculation. In the local computation
part, we use mutual information [24] to guide the feature
importance calculation. Further, to ensure the completeness of
the selected features and consolidate the relative importance of
intra-client features, we design an adversarial game to increase
the importance score gap between important and unimportant
features. In the feature subset importance calculation part, we
propose to use the marginal contributions to the global result
aggregation of clients as their importance scores. Second, to
identify overlapped features in the local-local discrepancy, we
train a federated adversarial learning model to learn common
features among all clients simultaneously. Then, we can ensure
that the set of selected features is representative and free of
redundancy by suppressing overlapped features.

We summarize the contributions of this work as follows.

• We present a new distributed model interpretation method
for VFL, which jointly considers the brand new issues
of local-global discrepancy and local-local discrepancy
caused by feature misalignment in VFL.

• To address the discrepancy between global features and
clients’ local features, we leverage the law of total prob-
ability to adjust the local importance of features. Further,
we propose to design an adversarial game to ensure the
completeness of the selected features.

• To suppress the overlapped features of the clients, we
avoid multiple client-to-client intersections to obtain over-
lapped features and design a federated adversarial learn-
ing model to identify them. Our method ensures that the
selected features are representative and non-overlapped.

• We evaluate the performance of MI-VFL on several
synthetic and real-world datasets. The evaluation results
show that our method can select a subset of important
features accurately with suppression of overlapped fea-
tures, and further improve the model performance.

II. RELATED WORKS

A. Centralized Model Interpretation

Centralized model-agnostic interpretations method can in-
terpret black-box models, and a lot of research have been
done in this field [8]–[12]. Lei et al. [8] proposed to explain
text prediction models based on a subset of selected features
in NLP domain. Subsequently, Chen et al. [9] maximized
the mutual information between feature subset and prediction
label to control the selection of the feature subset from an
information-theoretic perspective; subsequently, Yoon et al.
[10] achieved this using Kullback-Leibler (KL) divergence
combined with reinforcement learning. Chang et al. [11]
borrowed the idea of GAN to select a minimum feature subset
for each class. Yu et al. [12] considers the model interlocking
problem, and combined binarized selective rationalization and
attention mechanism to solve the problem. Other model-
agnostic methods include LIME [25], SHAP [26], and Anchors
[27], which are not very efficient.

The counterpart to model-agnostic methods is model-
specific method [13]–[17], which needs to be associated
with the knowledge of the model itself. Some methods used
the model gradient, for example, Saliency maps [13] calcu-
lated feature importance score through the absolute gradient,
Gradient×Input method [14] multiplied gradient and feature
as importance score, and Integrated Gradients [15] averaged
the gradient along a linear path from input feature to baseline
as feature importance. In addition, there are methods based
on model back-propagation. For example, Bach et al. [16]
proposed back-propagation by Taylor decomposition to find
important features. Also, Shrikumar et al. [17] similarly used
back-propagation to calculate the difference between the out-
put and reference values as feature importance. These methods
have a very close relation with the model compared to the
model-agnostic methods, and cannot explain general models.
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B. Vertical Federated Learning

Vertical federated learning can be divided into two modes
according to whether the server is included or not. For
methods with the server, there are two kinds of frameworks,
which depends on whether splitting learning is involved. One
framework splits the whole model into two parts and deploys
them on both the server and the client respectively, and the
client needs to upload the intermediate features to the server;
the other framework deploys the model only on the client,
which requires clients to upload the model output to the server
and the server aggregates them. For the second framework, Hu
et al. [28] proposed an SGD-based parameter update method in
VFL. Zhang et al. [29] put forward an SVRG-based parameter
update method for VFL and designed a tree-structured com-
munication model. Gu et al. [30] designed a parameter update
method based on SGD, SVRG, and SAGA, and improved the
tree-structured communication pattern. In addition, there are
some methods in VFL that do not include servers. They divide
clients into one active client and many passive clients, where
the active client does not have features and is responsible for
aggregating results from passive features. For example, Liu et
al. [31] proposed to exchange intermediate outputs between
clients for parameter updating.

III. PRELIMINARIES

In this section, we describe model interpretation in the
context of VFL. For a classification task, let {(xi, yi)}ni=1 be
the training set, where x ∈ Rd is the overall input feature with
dimension d, and y ∈ {1, · · · , c} is the corresponding label. In
a VFL task with a set of M clients M = {1, · · · ,M}, client
m ∈ M only owns part of the features, denoted as xm ∈ Rdm ,
where dm represents the feature dimension owned by client
m. Since there may be overlapped features among clients, we
have d ≤

∑
m dm and x = ∪m∈Mxm. Further, we use xm,i to

represent the ith feature of client m. The labels y are managed
by the trusted server. Model interpretation [15], [17], [25],
[26] attempts to select the features that contribute most to the
model output among all features, enabling the interpretation to
the black-box model. In the centralized model interpretation
method [9], the key is to learn an explainer E to select a subset
xs ⊆ x of features with a size of k. Specifically, E takes
the whole feature set x as input, and the output is a binary
mask vector s ∈ 2d, where si = 1 indicates that the feature
xi is selected and otherwise is not. Therefore, the selected
feature subset is x̃s = s⊙ x = [s1x1, · · · , sdxd], where ⊙ is
element-wise product. In VFL, since features are distributed
among clients, the client m is associated with a sub-explainer
Em : xm → sm and x̃m,s = sm ⊙ xm and all sub-explainers
are trained collaboratively. For a classification task, each client
computes a local model output bm = fm(θm; Em(xm)⊙ xm)
with the input of the selected local features x̃m, where θm
are the parameters of local model fm. The server performs
weighted aggregation after receiving all the local models’
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Fig. 1. The overall architecture. Features from different clients have
different input dimensions. Each client m has its own local models composed
of the explainer Em, predictor fpm , irrelevant predictor fp̄m , pre-trained
predictor fprem , and pre-trained weight network fwm . The purpose of the
predictor and the irrelevant predictor is to help the explainer to select complete
important feature subset. The pre-trained predictor is set to calculate the im-
portance of feature subset from each client to help adjust the local importance
in line with the global one, and the pre-trained weight network helps suppress
the common features among clients to remove feature redundancy.

outputs from clients

ŷ(θ,x) = σ(

M∑
m=1

wmbm),

where σ : R → R is a continuous differentiable function to
aggregate local model outputs bm and wm is the weight for
bm. For backward propagation, the server calculates the loss
based on the global results and labels and sends them back
to clients to calculate their own partial gradients. Then clients
update their parameters of local models following:

θm = θm − η∇mL(θ;x, y)

= θm − η
∂L(θ;x, y)

∂θm

= θm − η
∂L(θ;x, y)

∂bm

∂bm
∂θm

.

IV. METHODOLOGY

In this section, we introduce the detailed procedure of MI-
VFL. First, we decompose the calculation of feature impor-
tance into two steps from a global view to overcome the dis-
crepancy in local-global perspective. Moreover, we propose a
common feature suppression method for the overlapped feature
problem to solve the discrepancy in local-local perspective.
The overall architecture of our model is shown in Figure 1.
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A. Global Feature Importance

We jointly train sub-explainers to select km local features
for each client m ∈ M, forming a set of top k features from
the global view, where

∑
m km = k. However, specifying the

value for each km is unrealistic in practice. We design an
adaptive method to learn them. The key observation is that we
jointly select k important features globally instead of having
each client select km local important features independently.
Therefore, for a specific sample x, we need to acquire the
global feature importance, which can be calculated through
the law of total probability:

p(xi) =

M∑
m=1

p(xm,i|xm)p(xm), (1)

where p(xi) represents the global importance of the ith feature
xi, p(xm,i|xm) is the local importance of xm,i on client m
and p(xm) is the global importance of the feature subset of
client m. Equation (1) suggests that there may be overlapped
features among clients. However, since features are private
information for clients, the server does not know the location
of overlapped features on all clients, and thus cannot calculate
the global feature importance in (1). We will describe how to
overcome the feature overlap problem in Section IV-B. Here,
we first assume there are no overlapped features, and we can
convert (1) to

p(xm,i) = p(xm,i|xm)p(xm). (2)

So the problem converts to calculate the local importance
of features on the client m, i.e., p(xm,i|xm) and the global
importance of feature subset on the client m, i.e., p(xm).
The p(xm,i|xm) can be calculated by the sub-explainer, while
p(xm) can be obtained by the global result aggregation at
the server. We will introduce details of these two parts in the
following, respectively.

Local Feature Importance We now discuss how to
compute the local importance of features on the client m
p(xm,i|xm). We propose to use mutual information to select
the feature subset. Mutual information is used to measure
the dependence between two random variables. For the input
random variable X , we regard the selected global feature
subset as a random variable XS ∈ Rk with S ⊂ 2d and
|S| = k. Maximizing mutual information between XS and
the response variable Y will help find features that are most
dependent on the model output [9], [22]. Thus, we formulate
the model interpretation as learning an explainer to maximize
the mutual information:

max
S∼E(X)

I(XS ;Y ). (3)

In prediction tasks, there is sometimes a phenomenon that
several features selected by the explainer are not dependent on
the response variable but can improve the prediction accuracy.
The reason is that these features are not important individually,
but can be selected combinatorially by the explainer which is
like a function of the features to make true predictions. In VFL,

this negative effect is even amplified, implying that the locally
selected unimportant features are amplified to the global level,
which may delay the selection of the truly important features
in other clients. Thus, we require the explainer not only to
focus on the importance of the selected features but also to
control the remaining features to widen their importance gap to
ensure that the remaining features are irrelevant to the response
variable, preventing important features from being missed.

Therefore, we consider the idea of adversarial game. Max-
imizing the mutual information between the selected feature
subset and the response variable Y , while also minimizing
the mutual information between remaining feature subsets
XS̄ = xs̄ ∈ Rd−k and the response variable Y :

min
S∼E(X)

I(XS̄ ;Y ), (4)

where XS̄ = X −XS .
The explainer should select features that satisfy (3) and (4)

at the same time, so the problem is converted to

max
S∼E(X)

(I(XS ;Y )− I(X −XS ;Y )). (5)

The above formulation can be converted into the form of
conditional distributions:

I(XS ;Y )− I(X −XS ;Y )

=E
[
log

p(XS , Y )

p(XS)p(Y )

]
− E

[
log

p(X −XS , Y )

p(X −XS)p(Y )

]
=E

[
log

p(Y |XS)

p(Y )

]
− E

[
log

p(Y |X −XS)

p(Y )

]
=E[log p(Y |XS)]− E[log p(Y |X −XS)]

=EY |XS
[log p(Y |XS)− log p(Y |X −XS)].

Thus, (5) equals

max
S∼E(X)

EY |XS
[log p(Y |XS)− log p(Y |X −XS)]. (6)

However, p(Y |XS) and p(Y |X − XS) cannot be calculated
directly, we derive the variational lower bound to approximate
them. For a variational mapping XS → q(Y |XS), Kullback-
Leibler (KL) divergence between p and q is non-negative:

KL(p||q) = EY |XS
[log

p

q
] = EY |XS

[log p]−EY |XS
[log q] ≥ 0.

Here, we get the variational lower bound of p:

EY |XS
[log p] ≥ EY |XS

[log q].

Thus, (6) is relaxed to maximize the variational lower bound:

max
S∼E(X)

EY |XS
[log q(Y |XS)− log q(Y |X −XS)]. (7)

In each client, apart from the model sub-explainer Em :
xm → sm, we also introduce a predictor fpm

: x̃m,s → bm to
cooperate to train the global predictor fp to learn q(y|xs) and
also an irrelevant predictor fp̄m : x̃m,s̄ → b̄m to cooperate to
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train the global irrelevant predictor fp to learn q(y|x − xs).
The loss functions of all clients are

Lθp(θE , θp;x, y) =
1

n

n∑
i=1

L(σ(

M∑
m=1

wmfpm(x̃i
m,s)), y

i), (8)

Lθp̄(θE , θp̄;x, y) =
1

n

n∑
i=1

L(σ(

M∑
m=1

w̄mfp̄m
(xi

m − x̃i
m,s)), y

i),

(9)
LθE (θE , θp;x, y)− LθE (θE , θp̄;x, y), (10)

where θE , θp and θp̄ are parameters of global models E , fp
and fp̄ respectively and x̃i

m,s = xi
m ⊙ Em(xi

m). We note that
the irrelevant predictor fp̄ plays an adversarial game with the
explainer E .

An ideal E should guarantee that (8) is less than (9), so in
order to prevent (8) from being negative, we need to process
(10) as follows

LθE (θE , θp;x, y)+λ(max{LθE (θE , θp;x, y)−LθE (θE , θp̄;x, y), 0}).

For the forward propagation, client m submits the local
results bm = fp(x̃m,s) and b̄m = fp̄(x̃m,s̄) to the server. Then
the server aggregates all the local results ŷ = σ(

∑M
m=1 wmbm)

and ˆ̄y = σ(
∑M

m=1 w̄mb̄m). Finally, the server sends global re-
sults back to each client to conduct the backward propagation.

In reality, we can optimize (7) by sampling
(
d
k

)
times to

form s according to feature importance. However, this way is
computationally expensive, and the discreteness of sampling
blocks the backward propagation of the model. Therefore,
we use a reparameterization method, namely the Gumbel-
Softmax trick [32], which is a continuous relaxation for
discrete distributions to approximate sampling.

We use Gumbel-Softmax to sample for discrete feature
importance distribution. It is worth noting that after Em
generates the local importance distribution vector pm =
[p(xm,1|xm), · · · , p(xm,dm |xm)], we need to upload the local
feature importance to the server and convert it to the global
importance according to (2):

p̂m = pm · p(xm)

= [p(xm,1|xm)p(xm), · · · , p(xm,dm
|xm)p(xm)].

Now, we can get
∑M

m=1

∑dm

i=1 p̂(xm,i|xm) = 1. Therefore,
the actual sampling process should be

zm,i =
exp((log p̂(xm,i|xm) + gm,i)/τ)∑M

l=1

∑dl

j=1 exp((log p̂(xl,j |xl) + gl,j)/τ)
,

gm,i = − log(log um,i), um,i ∼ Uniform(0, 1),

where τ > 0 is temperature coefficient. Repeat the above
process k times to simulate sampling k features to obtain
approximate results rm,i = maxj∈{1,··· ,k} z

(j)
m,i. The sampling

result of s̄ is the complement of s, so we express it as s̄ .
= 1−r

where 1 represents an all-one vector with d-dimension. Thus,
x̃s

.
= r⊙x and x̃s̄

.
= (1− r)⊙x. The rm will be sent to the

client m, who will sample the features and forward them into
fp and fp̄ to finish the subsequent prediction.

Feature Subset Importance We next describe how to
calculate the feature subset importance p(xm).

We consider the importance of feature subset xm on client
m as its contribution to the global result aggregation on the
server. A classic contribution calculation method is Shapley
value from cooperative game theory [33]. Although it guar-
antees fairness, it has exponential computational complexity,
which is computationally expensive in VFL. Other methods
[34], [35] also require extra model training time, which is also
inefficient. To make it clear, we summarize some requirements
for the contribution calculation method in VFL as follows:

• Low computation cost: VFL involves multiple clients,
and Shapley value-based methods have exponentially
increasing computation costs with respective to the in-
creasing number of clients, severely reducing the model
training speed. Thus, calculation methods with high com-
putation costs will delay adjusting the local importance
to the global one.

• Low communication cost: The contribution calculation
process should not involve excessive communications
between clients and the server, which means backward
gradient propagation and excessive exchange of results
between clients and server will not be considered. Also,
methods that attempt to transfer feature subsets among
clients are also not allowed, which will bring communi-
cation costs among clients and cause privacy leakage.

According to the above requirements, we propose a feature
contribution calculation method, which is based on the defi-
nition of the marginal contribution of a feature subset to the
global prediction outcome.

Definition 1. Let V be a feature contribution evaluation
function. The marginal contribution of feature subset xm is

ϕV (xm) = ∆(x,xm, V ) = V (x)− V (x− xm).

For the feature contribution evaluation function V , we
use the loss function to measure the distance between the
predicted result and the ground truth. Specifically, V (x) =
−Dis(ŷ(θ,x), y) and V (x−xm) = −Dis(ŷ(θ−m,x−m), y).
We can use cross entropy for discrete variables and mean
squared error for continuous variables to represent Dis.

The intuition of Definition 1 is the marginal contribution
caused by the participation and non-participation of the client
m in the global result aggregation. For example, if the client
m is beneficial to global aggregation, then the first term in
Definition 1 must be smaller than the second term and the
contribution of the client m is positive; on the contrary, if the
client m is harmful to global aggregation, the contribution of
the client m is negative.

When implementing this feature contribution evaluation
function, we need to set up a pre-trained predictor fpre for
each client. The architecture is shown in the green box in
Figure 1. These predictors are jointly trained by all clients
before training the explainer. When training the explainer, we
only need to make one extra inference to calculate the marginal
contribution of the client. In addition, calculating the feature
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Fig. 2. Common feature suppression. The model is set to suppress common
features among clients and remove redundancy. Each client owns the weight
network and representation learning module. The intermediate results are
uploaded to the server as the inputs of the discriminator network.

subset importance can be only on the server, so it does not
need much communication between clients and the server. The
server only needs to maintain a matrix that saves the local
outputs of each client, and then calculate the contributions of
all clients in parallel according to Definition 1.

B. Common Feature Suppression

The xs generated by the explainer is required to be the most
refined feature subset, which means that it needs to select k
representative features under the premise of ensuring predic-
tion accuracy, rather than selecting some repeated features.
However, xs generated without any coordination may have
overlap, which will not fully improve model performance. As
we mentioned before, (1) cannot be calculated during training
since we cannot know which features are overlapped. This will
cause overlapped features to be regarded as different features
during global sampling. Therefore, we hope that the model can
remove the overlap between features, and provide an accurate
and concise interpretation with representative features.

The specific method is that we hope that each E should
try to avoid selecting common features. Two models are used
to achieve this goal. One is the weight network fwm

: xm →
am, am ∈ Rdm on client m, and the other is the discriminator
network fd : xm ⊙ am → t, m ∈ M, t ∈ RM on the server.
The two networks form an adversarial game which is similar
to Generative Adversarial Network (GAN) [36]. The output
dimension of fd is M -hot, and its function is to identify which
client the input comes from argmaxi∈Mti; and the purpose of
fw is to learn the weight of each feature to ensure that it can
provide higher weight to features that can confuse fd, which
are actually the common features. Therefore, the objective
function of the network of clients m is

min
fwm

max
fd

Exm∼πm [log I(m=argmaxi∈Mti)fd(xm ⊙ fwm(xm))],

where πm is the data distribution of client m.

TABLE I
SYNTHETIC DATASETS

# Clients Dataset Method

2

D2
1 P (x|y = 1) ∝ exp{

∑4
i=1 x

2
i − 4}

D2
2

P (x|y = 1) ∝ exp{−10× sin(2X5) + 2|x6|+
x7 + exp{−x8}}

D2
3

x10 ≥ 0: P (x|y = 1) ∝ D2
1

x10 < 0: P (x|y = 1) ∝ D2
2

5

D5
1 P (x|y = 1) ∝ exp{

∑10
i=1 x

2
i − 4}

D5
2

P (x|y = 1) ∝ exp{−5×
∑14

i=11 sin(2xi)+

2|x15|+ 1
2

∑17
i=16 xi +

1
3

∑20
i=18 exp{−xi}}

D5
3

x25 ≥ 0: P (x|y = 1) ∝ D5
1

x25 < 0: P (x|y = 1) ∝ D5
2

TABLE II
MEAN FIA (%) FOR SYNTHETIC DATASETS UNDER DIFFERENT NUMBER

OF CLIENTS OVER 10000 SAMPLES FOR EACH DATA SET

# Clients 2 5
Dataset D2

1 D2
2 D2

3 D5
1 D5

2 D5
3

MI-VFL 100.0 92.8 75.7 83.9 79.6 65.5
SHAP 100.0 65.5 56.0 49.2 58.0 55.9
LIME 99.5 98.5 62.4 93.2 91.0 55.1

Saliency 90.0 93.0 64.8 85.2 96.2 55.5

For fwm
fixed, the optimal fd is

f∗
d (xm ⊙ am) =

[
π0(xm)∑
m πm(xm)

, · · · , πM (xm)∑
m πm(xm)

]
.

The fwm
and fd confront each other and finally reach a

balance point, which is π0(xm) = · · · = πM (xm). That is
to say, fwm has learned the common features of the clients.

However, there exist two problems in the current model.
First, the output dimensions of fwm

and xm from different
clients are different, which cannot be used directly as the input
of fd. Second, we cannot send weighted features to the server
for privacy consideration. To solve the above problems, we add
a representation learning module frm after fwm , which maps
inputs from different clients into the same input dimension for
fd. Also, submitting intermediate representations can further
protect data privacy and frm can learn better representations
of common features to improve model performance. The
architecture is shown in Figure 2.

Since we need to suppress common features, we use xm ⊙
(1 − am) as the input of fd to ensure that fwm

can directly
generate weights that suppress common features. The whole
network will be pre-trained. After training, we retain fwm

and
multiply its calculated weight with the local weight calculated
by Em. Our purpose is to suppress the common features, rather
than completely ignoring them, so we will randomly select a
client m during training without setting fwm

to ensure that the
common features can also participate in the training. Because
the network still needs to learn based on the feedback of the
predictor fp and the irrelevant predictor fp̄ during training,
suppressing common features will not bring negative effects
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TABLE III
MEAN FIA AND MEAN RR FOR SYNTHETIC DATASETS UNDER DIFFERENT NUMBERS OF CLIENTS WITH OVERLAPPED FEATURES OVER 10000 SAMPLES

FOR EACH DATASET

# Clients 2 5

Dataset D2
1 D2

2 D2
3 D5

1 D5
2 D5

3

# Overlap 1 2 1 2 1 2 1 2 1 2 1 2

Metric(%) FIA RR FIA RR FIA RR FIA RR FIA RR FIA RR FIA RR FIA RR FIA RR FIA RR FIA RR FIA RR

MI-VFL 85.8 28.5 77.7 22.3 74.9 41.9 75.0 21.7 69.4 44.6 54.9 19.1 72.4 27.5 71.2 18.6 67.0 19.0 69.1 8.2 58.7 34.2 52.6 26.4

MI-VFL+supp 99.7 0.7 98.9 0.9 95.2 0.0 80.4 0.0 82.3 0.0 79.3 4.2 77.8 1.7 78.8 6.4 71.5 0.3 78.1 4.2 64.7 0.03 80.6 0.7

to E but ensure that the explainer can learn the features relevant
to the target without overlap.

V. EVALUATION

In this section, we evaluate MI-VFL through extensive
experiments in several synthetic and real-world datasets.

A. Synthetic Datasets

1) Evaluation Setup: Centralized interpretation methods
usually use some synthetic datasets to verify whether they
can accurately find task-relevant features [9], [10]. In VFL,
we need to consider the number of clients, and set up two
types of datasets for the different numbers of clients. The
first type is for 2 clients and contains 10 features (generated
by a 10-dimensional Gaussian distribution), where 4 features
are important (k = 4); the second type is for 5 clients and
contains 25 features (generated by a 25-dimensional Gaussian
distribution), where 10 features are important (k = 10). Labels
of these datasets depend only on important features. The
specific settings of the datasets are shown in Table I. We split
the feature set randomly and guarantee that each client has an
equal number of features.

The performance metric used in centralized interpretation
methods is feature identification accuracy (FIA), which repre-
sents the proportion of important features discovered among
all important features. In VFL, we use the same performance
metric. We also introduce repetition rate (RR) to evaluate the
feasibility of the common feature suppression scheme. RR
indicates the proportion of selected repetitive features among
all repetitive features.

2) Evaluation of Difference in Local Feature Importance
and Global One: To verify whether our approach can compen-
sate for client-server’s difference, we compare MI-VFL with
several current centralized interpretation methods, including
Saliency maps [13], SHAP (SHapley Additive exPlanations)
[26] and LIME (Local Interpretable Model-agnostic Expla-
nations) [25]. Saliency maps use the absolute values of the
gradient of model output over features as the importance
score of features. SHAP is a unified framework for feature
importance measurement based on the classic Shapley value.
Here we use Deep SHAP [26], which is an approximate
algorithm for SHAP values used in deep learning. LIME
approximates the model by constructing a local linear model
to make an interpretation. For all methods, we train a unified

centralized model. We select top-k important features for each
sample. The results are shown in Table II.

As demonstrated in Table II, MI-VFL performs well when
the number of clients is 2 and 5. We observe that some
results are slightly inferior to some centralized interpretation
methods in D2

2 , D5
1 , and D5

2 , which is due to the performance
degradation in distributed scenario compared with centralized
one. Even so, almost all important features can be selected in
the first two datasets in 2 clients, and about 80% of important
features can be selected in the first two datasets in 5 clients. In
addition, we notice that the accuracy of their second dataset
is generally lower regardless of the number of clients. It is
due to the non-linear relationship between features and labels.
In contrast, in the third dataset, MI-VFL owns a very huge
advantage. This also demonstrates that MI-VFL is instance-
wise, which has the ability to select different important fea-
tures based on different samples. Sample variability is also
important in interpretation methods. It is worth mentioning
that the running time of one sample in MI-VFL is just the
time of one inference, which is a very significant advantage
compared with LIME and SHAP methods that have very high
time complexity. Especially in VFL, the high time complexity
can be very detrimental.

3) Evaluation of Common Feature Suppression: It makes
sense to suppress important features than to suppress unim-
portant features, because it has a lower probability to select
unimportant features. Therefore, our experiments only con-
sider overlapped important features. Moreover, there is an
importance ranking among important features. For example, in
D2

2 , the importance rank of x8 is higher than that of x7. There-
fore, we choose overlapped features according to their feature
importance obtained in the experiments without overlapped
features. We assign the overlapped features to each client,
and the remaining important features are randomly assigned to
them. Finally, the remaining unimportant features are removed
randomly by the number beyond the total number. In this way,
we ensure that all important features are retained, while also
ensuring that the total numbers of features remain at 10 and 25.
We conduct 2 types of experiments with 1 overlapped feature
and 2 overlapped features. In order to explore the completeness
of the discoverable important features, the overlapped features
are recorded only once in the calculation of FIA. The results
are shown in Table III.

As can be seen in Table III, our common feature suppression
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TABLE IV
PREDICTION PERFORMANCE IN THE FIRST THREE REAL-WORLD DATASETS

ON TEST DATA

without MI-VFL MI-VFL

Metric AUROC AUPRC AUROC AUPRC

Credit Card 0.7770 0.5411 0.8288 0.6375

Drug Persistency 0.8239 0.7127 0.8890 0.8105

w8a 0.9417 0.7048 0.9741 0.8068

scheme performs very well. When there is one overlapped
feature, it is possible to achieve no overlap or very little
overlap. When there are two overlaps, RR decreases greatly.
This demonstrates that our method can remove overlapped
features very effectively. We observe that the decrease in
RR is accompanied by an increase in FIA. This is because
the removal of overlapped features leaves positions for other
important features to be selected, ensuring the completeness
of the important features set and enhancing the interpretability
of the method.

B. Real-world Datasets

1) Evaluation Setup: We further evaluate MI-VFL in 5 real-
world datasets as well:

• Credit card [37]: a tabular dataset of 30000 samples with
23 features. 8, 8, and 7 features are assigned to 3 clients
randomly.

• Drug persistency1 [38]: a tabular dataset of 3424 samples
with 67 features. 14, 14, 13, 13, and 13 features are
assigned to 5 clients randomly.

• w8a [39]: a tabular dataset of 64700 samples with 300
features. An equal number of features are assigned to 10
clients randomly.

• MNIST [40] subset: an image dataset to classify hand-
written digits 4 and 9, which has 19782 images with
28×28 features. We set up 2 clients with the raw images
on the first client and the images rotated by 180 degrees
on the second client. Thus there are 1568 features in total.

• IMDB [41]: a text dataset of sentiment classification for
movie reviews, which has 50000 reviews and the average
review length is 231 words. We split each review into
two parts and assign them to 2 clients respectively.

For the first three datasets, we set up k = 8, k = 20, and
k = 250 respectively. For the last two datasets, we follow
Chen et al. [9] to process them. For MNIST, we split the
28×28 image into 16 patches with the size of 7×7 for better
visualization and choose k = 10 patches from 32 patches. For
IMDB, we cut/pad each review into 200 words for each client.
We choose k = 10 words from 400 words.

Since we do not know in advance which features are impor-
tant in real-world datasets, we evaluate MI-VFL through the
Area Under the Receiver Operating Characteristic Curve (AU-
ROC) and Area Under the Precision Recall Curve (AUPRC).

1We check all the medical datasets on Kaggle, and choose this one due to
its sufficient features and samples, non-null data value, and complete labels.

TABLE V
PREDICTION PERFORMANCE AND MEAN RR IN THE FIRST THREE

REAL-WORLD DATASETS WITH OVERLAPPED FEATURES ON TEST DATA

MI-VFL MI-VFL+supp

Metric AUROC AUPRC RR(%) AUROC AUPRC RR(%)

Credit Card 0.7147 0.4290 31.5 0.7830 0.5894 0.1

Drug Persistency 0.8386 0.7376 12.6 0.8538 0.7538 4.3

w8a 0.9508 0.7574 42.17 0.9606 0.7431 13.8
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Fig. 3. Feature importance of each of 60 random samples (top) and mean
feature importance and standard error of test data (bottom) in drug persistency
dataset.

2) Evaluation of Difference in Local Feature Importance
and Global One: We calculate AUROC and AUPRC with
(using selected features) and without (using all features) MI-
VFL in the first three datasets2, and the results are shown
in Table IV. We find that MI-VFL can improve the model
prediction ability very effectively regardless of the datasets
and the number of clients. This is because the explainer can
accurately select the important features to participate in the
prediction task in a more targeted manner. Furthermore, to
reflect the instance-wise nature of MI-VFL, we randomly
select 60 samples in the drug persistency dataset and drew their
feature importance as shown in Figure 3(top). Also, we present
the mean feature importance of test data for all features in
Figure 3(bottom). From this, we can clearly find the difference

2We evaluated our model in MNIST and IMDB datasets in section V-B3
directly because there is no need to manually set overlapped features.
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Fig. 4. Ten pairs of images of 4 and 9 are randomly selected from the test dataset in MNIST. Two rows are from two clients, respectively. The selected
patches are colored dark blue and purple.

TABLE VI
PREDICTION PERFORMANCE IN MNIST AND IMDB DATASETS

without MI-VFL MI-VFL+supp

Metric AUROC AUPRC ACC(%) AUROC AUPRC ACC(%)

MNIST 0.9993 0.9993 97.80 0.9996 0.9996 99.10

IMDB 0.9344 0.9299 86.27 0.9535 0.9619 89.63

in the importance scores between important and unimportant
features. From the figure, we can see that MI-VFL can select
important features well and has sample variability in important
features.

3) Evaluation of Common Feature Suppression: We also
evaluate the common feature suppression scheme in real-world
datasets. For the first three datasets, we select the overlapped
features based on the importance of features computed in the
experiments without overlapped features. The assignment is
the same as Section V-A3. We conduct experiments containing
2 overlapped features in both credit card and drug persistency
datasets and 5 overlapped features in w8a dataset. The exper-
imental results are shown in Table V.

As can be seen from the table, our method also suppresses
overlapped features and reduces RR in real-world datasets. At
the same time, the identification of more different important
features further improves the prediction ability of the model.
Therefore, it can be seen that the common feature suppression
is also effective in real-world datasets.

For MNIST and IMDB, we apply MI-VFL with common
feature suppression on them directly. The results are shown in
Table VI. We also calculate prediction accuracy (ACC) to do
a better comparison. With MI-VFL, both image and text tasks
get performance improvements. Furthermore, we visualize the
explanation results for MNIST in Figure 4 and IMDB in Figure
5. For MNIST, we can see the selected features focus on the
head of 4 and 9, which is the crucial position to distinguish
them. For IMDB, two reviews from different sentiments are
predicted correctly by MI-VFL. The words selected by MI-
VFL are highlighted and we underline the key sentences made
up of selected words, from which we can find MI-VFL can
select key adjectives. Although it also selects words like “out”
and “of”, they form a complete expression like “ran out of
gas”. It is worth mentioning that there are many overlapped
words, but MI-VFL avoided selecting them. For example, in

This movie was disappointing for at least one of two reasons. The suspense created
disappeared because of horrible acting or lack of direction from the director. I don‘t
know. It was like a tasty bubble gum that seemed to run out of flavor yet you continue to
chew on it because it once tasted great. Like most thrillers The Hitchhiker had promise
yet failed to deliver when it had me bright eyed and ready to turn the volume down(I
was watching the movie alone.. in the dark) This so called thriller simply came apart
like it was made of Lego transforming into something else. It simply ran out of gas and
left me staring at a made-for-TV-like style movie with one exception. It was probably
rated-R.

Truth: negative  Predicted: negative

I have to say that I know the documentaries of Mister Örnek and so I knew that I will get
a very well made piece of movie documentary. I was not disappointed. As a history nerd
- I did saw hundreds of documentary and liked the different approach of this work. The
Director and his 17 Consultants (historians, Veteran families) tried to access the reality
of the Gallipoli through the letters of solders from both sides. So, the history is followed
by British, Australian and Turkish soldiers. Narrated is this docu by Jeremy Irons and
Sam Neill - both boost the intensity and emotionality of this documentary by their great
voices. I saw this film in a cinema in Italy in Dolby Surround. I did buy the DVD last
year and will wait again 3-7 years for the next work of this talented director and his very
good documentaries. Summary: Well made. Intense. History with emotions - wrapped in
a war documentary with great narrators.

Truth: positive  Predicted: positive

Fig. 5. Two reviews (positive and negative) are randomly selected from the
test dataset in IMDB. Important words selected by MI-VFL are highlighted
and key sentences are underlined.

the second review of Figure 5, “well made” occurs both in the
first sentence (client 1) and in the last sentence (client 2), but
MI-VFL only selects it once.

VI. CONCLUSION

In this paper, we have presented the first distributed model
interpretation method for VFL, namely MI-VFL. From the
natural characteristic of feature misalignment in VFL, we
have proposed to use the law of total probability to solve
the problem that the local feature importance is not equal
to the global one caused by the discrepancy in local-global
perspective. For the sake of completeness of selected features,
we have designed to use adversarial game to select as many
important features as possible. At the same time, we have
also considered the discrepancy in the local-local perspective.
We have designed a federated adversarial learning model to
identify overlapped features once. Evaluation results demon-
strate that our proposed method can accurately select important
features and suppress overlapped features.
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