
Mobility-aware Device Sampling for Statistical
Heterogeneity in Hierarchical Federated Learning

Songli Zhang, Zhenzhe Zheng, Qinya Li, Fan Wu, and Guihai Chen
Department of Computer Science and Engineering

Shanghai Jiao Tong University, Shanghai, China 200240

Emails: {zhang sl, zhengzhenzhe, qinyali}@sjtu.edu.cn, {fwu, gchen}@cs.sjtu.edu.cn

Abstract—Hierarchical Federated Learning (HFL) is a prac-
tical implementation of federated learning in mobile edge com-
puting, employing edge servers as intermediaries between mobile
devices and the cloud server for device coordination and cloud
communication. However, the devices are usually mobile users
with unpredictable mobile trajectories and statistical heterogene-
ity, leading to the edge models optimized along dynamic edge data
distribution directions and further resulting in instability and
slow convergence of the global model. In this work, we propose
a Mobility-Aware deviCe sampling algorithm in HFL, namely
MACH, which can dynamically maintain the device sampling
strategy at each edge to accelerate the convergence of the global
model. First, we analyze the convergence bound of HFL with
mobile devices under arbitrary device sampling probabilities.
Based on this convergence bound, we formalize the sampling
optimization problem for mobility-aware device sampling, aiming
to minimize the convergence error under time-averaged cost
constraints, while taking the limited device-edge wireless channel
capacity into account. Next, we introduce the MACH algorithm,
consisting of two underlying components: experience updating
and edge sampling. Experience updating utilizes an upper con-
fidence bound method to estimate device statistical information
online, and edge sampling customizes a sampling strategy on each
edge based on the estimated device statistical information. Finally,
extensive experimental results through real-world mobile device
trajectories validate that MACH can reduce the time required to
achieve a target accuracy by 25.00%− 56.86%.

I. INTRODUCTION

Hierarchical federated learning (HFL) is a typical imple-

mentation of federated learning (FL) in mobile edge com-

puting (MEC) [1]–[3]. Under such a network paradigm, a

cluster of edges serves as relays between mobile devices and

the cloud server, which can coordinate mobile devices within

clusters and communicate with the cloud server [4], [5]. In this

way, FL is also implemented with a hierarchical aggregation

structure [3], [6]. Edges first aggregate local models from the

coordinated mobile devices to form an edge model1, and the

cloud server periodically aggregates these edge models into a

global model [7], [8].

However, the statistical heterogeneity of data on mobile

devices and then on edges still hinders the convergence of

HFL, resulting in instability and slow model convergence

progress [9], [10]. The non-independent identical (Non-IID)

data distributions across devices create the Non-IID data

distribution across edges, causing edge models to be trained

1The term edge model, local model and global model refer to the models
on edge, device and cloud, respectively.

in various directions, and potentially deviating from the global

optimization directions. To overcome the statistical hetero-

geneity in traditional server-to-client FL, device sampling is

considered as a standard approach [11]–[15]. Device sam-

pling assigns a fixed sampling probability to each device

individually, allowing devices that contribute more to global

model convergence to participate more in training, which

helps reduce the impact of statistical heterogeneity. Some

typical device sampling approaches have been demonstrated

to be effective in mitigating the statistical heterogeneity in

general FL through rigorous theoretical analysis, such as class-

balance sampling [14] or gradient-norm based sampling [11],

[15]. However, in HFL, mobile devices are geographically

distributed, exhibiting natural mobility patterns, introducing

time-varying devices coordinated by each edge [16], [17].

Since the edge models are always optimized according to the

current data within the edge [18], it further leads to edge

models being optimized toward dynamic directions. It makes

traditional device sampling strategies fail to apply to HFL

with mobile devices, and designing a specific device sampling

strategy for device mobility in HFL is necessary.

Developing an appropriate sampling strategy in HFL with

mobile devices is non-trivial, and has the following two

challenges. The first and fundamental challenge lies in deriving

an analytical model convergence bound for HFL with mobile

devices for any arbitrary device sampling probabilities. Given

the device mobility, each edge coordinates different devices to

participate in edge model training during every training round,

causing the edge model to be updated along the dynamic

optimization direction. Additionally, the edge communicates

periodically with the cloud server, and the current updated

edge model will serve as the starting point for the next edge

training round. Therefore, a comprehensive assessment of the

impact of all devices involved in edge model training, from the

last global aggregation to the current time, is essential when

analyzing the model convergence bound for HFL with mobile

devices. Moreover, when designing the sampling strategy for

each edge, it is crucial to consider the communication capacity.

All of these factors become critical in ensuring effective

customization of the sampling process.

The second challenge is determining the optimal device

sampling solution based on the above new HFL model con-

vergence bound. Some recent works leverage device training

experiences to facilitate device selection [19]–[21]. However,

656

2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDCS60910.2024.00067

20
24

 IE
EE

 4
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

Sy
st

em
s (

IC
DC

S)
 |

 9
79

-8
-3

50
3-

86
05

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DC
S6

09
10

.2
02

4.
00

06
7

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

in HFL with mobile devices, devices dynamically participate

in the model training processes of different edges, generating

various training experiences. Furthermore, the convergence

bound in FL heavily relies on certain assumptions concerning

the statistical heterogeneity of devices’ data [11], [22], such as

the upper bounds of local stochastic gradient norms. However,

these assumptions introduce unknown parameters that cannot

be directly observed before model training. This raises two

unsolved issues: 1) whether training experiences from different

edges can be shared across edges, and 2) how to leverage

these training experiences to accurately estimate the unknown

parameters, facilitating the derivation of the device sampling

strategy. Addressing the challenge of evaluating unknown

parameters in the HFL convergence bound during the training

process becomes crucial.
In this work, we address the above two challenges by

proposing MACH, which is a Mobility-Aware deviCe sam-

pling algorithm in Hierarchical federated learning, aiming

to overcome the notorious statistical heterogeneity in HFL

with mobile devices. We first formalize the general scenario

of mobile devices participating in HFL, and derive a new

HFL convergence bound for non-convex loss functions with

arbitrary mobile device sampling probabilities. Our new bound

indicates that each edge can independently maintain a specific

edge sampling strategy based on the devices within that edge

to facilitate the convergence of the global model. Considering

the communication constraints among edges in hierarchical

wireless networks and the newly derived convergence bound,

we tailor a sampling optimization problem, aiming to dy-

namically adjust the current edge sampling strategy within

each edge to minimize the convergence error subject to time-

averaged cost constraints. To solve the proposed optimiza-

tion problem, we introduce an online mobility-aware device

sampling algorithm MACH. A key advantage of MACH is

that it requires no prior knowledge of device data statistical

information, and MACH can customize the edge sampling

strategy based on the currently accessible devices within the

edge. MACH comprises two components: experience updating

and edge sampling. The experience updating maintains a

training experience buffer on each device, utilizing the upper

confidence bound (UCB) method to estimate device statistical

information for edge sampling strategies. On the other hand,

edge sampling is employed by each edge to individually

customize device sampling probabilities for the devices within

that edge to solve the proposed optimization problem.
We summarize our key contributions in this work as follows:

• We investigate the mobility-aware device sampling in

HFL, which is the first work to consider device sampling

in the context of HFL with mobile devices, and regulate

edge model training using device sampling probabilities

to address statistical heterogeneity.

• We derive a new HFL convergence bound with arbitrary

device sampling probabilities, based on which, we for-

mulate an optimization problem of device sampling to

minimize the convergence error of model training.

• We proposed MACH, an online mobility-aware device

CloudoudClo

Device Movement

Cloud-to-Edge Communication

Edge-to-Device Communication

Edge

Device

Fig. 1: Hierarchical Wireless Networks with Mobile Devices.

sampling algorithm. MACH employs the UCB method

to perform online experience updating, which relies on

no prior knowledge of device data statistics, and inde-

pendently makes edge sampling strategies for each edge.

• The extensive data-driven simulations with various learn-

ing tasks and real-world Telecom datasets demonstrate

that MACH can significantly reduce the time required to

achieve a target accuracy by 25.00%−56.86% compared

to other competitive sampling algorithms.

II. PRELIMINARIES

In this section, we first introduce the architecture of hierar-

chical wireless networks with mobile devices in MEC. Then,

we describe the implementation of HFL in such a scenario

with arbitrary device sampling probability.

A. Hierarchical Wireless Networks with Mobile Devices

Wireless networks usually introduced edges (e.g., base

stations, routers and switches) as relays between the cloud

and mobile devices, forming a three-layer device-edge-cloud

architecture, as shown in Figure 1. We consider discrete time

steps, and mobile devices can move across edges over different

time steps2. All mobile devices follows a simple clustering

scheme based on physical accessibility, i.e., mobile devices

tend to select the nearest edge to access according to their

geographical locations3. The cloud coordinates all edges and

mobile devices to satisfy a customized service requirement.

We introduce the important variables and equations used in

this work as follows. Let N be the set of all edges, and M
the set of all devices. In the hierarchical wireless network, |N |
edges and |M| devices are considered, where |·| represents the

cardinality of a set. In each time step t ∈ T , mobile devices

can move across edges while performing local tasks.

Mobile Devices: Each mobile device m ∈ M holds a

local dataset Dm of size |Dm|. The devices are geographically

2The time steps align with the iterations in FL training process, i.e., time
step t is also the basic unit of local model training and all mobile devices
can complete local training within a time step.

3The mobile device accesses the nearest edge to reduce communication
latency and obtain higher quality of service.

657

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

distributed and mobile, connecting to different edges in various

time steps. To capture this characteristic, we introduce a

binary indicator Bt
n,m ∈ {0, 1} to represent whether device m

accesses edge n at time step t. When we have sufficient prior

knowledge about device mobility at each time step, obtaining

Bt
n,m ∈ {0, 1} is straightforward. If we are uncertain about

device mobility in future time steps and need to make predic-

tions, we can utilize classical mobility models such as Markov

mobility model to capture device locations [23], [24]. For

instance, we can set a variable P t
n,m ∈ [0, 1] as the probability

that device m is accessed to edge n at time step t. Considering

the modeling and predicting device trajectories have been

extensively studied [25], [26], we consider Bt
n,m ∈ {0, 1}

to be a known quantity [27], [28], and emphasize that our

solution is orthogonal to them.

Edges: At each time step t, each edge n can coordinate

the mobile devices that access it. Edge n examines all the

mobile devices connected to it at the current time step, and

let Mt
n be the set of devices within the edge n at time step t,

i.e., Mt
n =

{
m|Bt

n,m = 1, ∀m ∈M
}

. Considering that each

mobile device can only connect to the nearest edge, it has:

Mt
n ∩Mt

n′ = ∅, ∪
n∈N

Mt
n =M, ∀t ∈ T , ∀n, n′ ∈ N . (1)

With device mobility, the set of mobile devicesMt
n associated

with edge n changes over time.

B. Mobility-aware HFL based on Arbitrary Sampling

Based on the above hierarchical wireless network in MEC,

the HFL is implemented to perform a specific classification

learning task to get a global cloud model by solving the

following optimization problem:

min
w

f (w) =
1

|M|
∑

m∈M
Fm (w) , (2)

which is derived from the general FL algorithm FedAvg [29],

and Fm(·) represents the local loss function of device m. The

average can also be replaced by a weighted average [30], and

we consider a simplified scenario where the number of local

dataset is the same across all devices. Then, the cloud, edge

n ∈ N and device m ∈ M iteratively update the global

model wt, edge model wt
n and local model wt

m, respectively.

The HFL model training is performed over the sequential time

steps T , which contains the following main steps:

1) Device Sampling: Due to the resource cost in wireless

networks, requiring all devices participating in the FL training

is unrealistic [31], [32]. The edge n need to select a subset

of devices for training, and each device has an arbitrary

probability of being sampled to participate in FL training,

denoted as qtm,n ∈ [0, 1] for device m sampled by edge n
at time step t. Let 1t

m,n ∈ {0, 1} be an indicator function

to denote whether device m is sampled in time step t, and

qtm,n := Pr{1t
m,n = 1}. 1t

m,n and 1t
m′,n are independent for

m �= m′. Due to the channel capacity of the edge, each edge

n ∈ N expects that only Kn devices can participate in the

edge model training in each time step, denoted by:

E

⎡
⎣ ∑
m∈Mt

n

1t
m,n

⎤
⎦ ≤ Kn. (3)

Finally, the global sampling strategy in each time step t is

represented by Qt =
{
qtm,n|m ∈M

}
.

2) Local Updating: When mobile device m ∈ M are

sampled to participate the training within the current edge,

the device m ∈ M first downloads the edge model wt
n from

the accessed edge n at the beginning of time step t. Then,

the device m trains the local model based on its local data

samples by running I local updates:

wt+1
m = wt

n − γ
I−1∑
τ=0

gm
(
wt,τ

m , ξt,τm

)
, (4)

where wt
m is the local model of the device m at time step t,

wt,τ
m is the interim model during local updating and wt,0

m =
wt

n, ξt,τm is the randomly selected data samples from device

m at each local updating, γ is the learning rate, and gm (·) is

the stochastic gradient of Fm (·).
3) Edge Aggregation: The edge aggregate the new edge

model wt+1
n for the next time step when receiving the updated

local model wt+1
m from all devices:

wt+1
n =

∑
m∈Mt

n

1

|Mt
n|

1t
m,n

qtm,n

wt+1
m . (5)

Notice that each device’s aggregation weight is inversely

proportional to its probability of being selected, which ensures

the gradient updates remain unbiased. After every Tg time

steps, the edge communicates with the cloud server. The device

sampling probability qtm,n in edge n constitutes the edge

sampling strategy Qt
n =

{
qtm,n|m ∈Mt

n

}
at time step t.

4) Edge-to-Cloud Communication: The cloud server aggre-

gates all uploaded edge models to obtain the global model

wt+1 in each edge-to-cloud communication time step, i.e.,
t mod Tg = 0:

wt+1 =
∑
n∈N

|Mt
n|

|M| w
t+1
n . (6)

Then, the cloud distributes the new global model wt+1 to all

edges and devices. Similar to the classical FL, the cloud server

aims to obtain the optimal global model w∗ by solving the

optimization problem in Eq. (2).

III. MOBILITY-AWARE DEVICE SAMPLING

In this section, we first derive the HFL convergence bound

in terms of the mobility patterns of devices and device sam-

pling probabilities, and formulate a new optimization problem,

which minimizes the HFL convergence bound by adjusting

the device sampling strategy. Then, based on insights inspired

by the new proposed convergence bound, we analyze and

design MACH, which involves two underlying components:

experience updating and edge sampling.

658

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

A. Convergence Analysis

We first provide an analysis of the convergence bound

on the mobility-aware HFL for arbitrary device sampling

probabilities. To ensure a tractable convergence analysis, we

stick to the following assumptions:

Assumption 1 L-smooth: Fm(w) is L−Lipschitz smoothness
for each device m ∈ M, i.e., ‖∇Fm(w) − ∇Fm(w′)‖ ≤
L ‖w − w′‖2 for any two parameter model w and w′.

Assumption 2 Unbiased local gradient: The local stochas-
tic gradient on each device m ∈ M is unbiased, i.e.,
Eξm∼Dm

[gm (w, ξm)] = ∇Fm (w) for any parameter model
w.

Assumption 3 Bounded local gradient: The expected squared
norm of stochastic gradients on each device m ∈ M is
bounded, i.e., E‖gm(w, ξm)‖2 ≤ G2

m for any parameter model
w and randomly selected local data ξm.

Assumptions 1-3 are standard in the classical theoretical

analysis of FL algorithms [22], [33], [34]. Assumption 3 sets

an upper bound on the gradient norm for each device m.

As Assumption 3 holds for any parameter model w and is

solely dependent on local data on each device, it reflects

the statistical heterogeneity of devices, informing our optimal

device sampling design. Furthermore, an additional virtual

global model wt+1 is introduced to represent the aggregation

of local models after time step t+ 1:

wt+1 =
∑
n∈N

|Mt
n|

|N |
∑

m∈Mt
n

1

|Mt
n|

1t
m,n

qtm,n

wt+1
m . (7)

wt+1 is equal to wt+1 at the time step when the edge

communicates with the cloud server, i.e., t mod Tg = 0.

Lemma 1 (Unbiasedness of Global Gradient Updating). With
the global sampling strategy Qt, we have:

E
[
wt|Qt

]
=

1

M
∑

m∈M
wt

m. (8)

Proof Since qtm,n = Pr{1t
m,n = 1}, and 1t

m,n are indepen-
dent ∀m ∈M, we can derive Eq.(8) by taking the expectation
over the virtual global model. �

We present the main convergence result on mobility-aware

HFL for arbitrary device sampling probability in Theorem 1.

Theorem 1 (Convergence Upper Bound). Let Assumptions 1-
3 hold, for given device sampling strategy Qt, the HFL with
mobile devices satisfies that:

1

T

T−1∑
t=0

E
∥∥∇f

(
wt

)∥∥2 ≤ 2
(
f0 − f∗

)
γIT

+ (9)

T−1∑
t=0

γLI (2 + γLI) + 4(1 + |M|)T 2
gL

2γ2

2|M|T
∑
n∈N

∑
m∈Mt

n

G2
m

qtm,n

,

where f∗ represents the optimal solution to Eq.(2).

Proof We omit the detailed proof due to page limitation, but
a proof sketch can be found in Appendix A. �
Remark 1 This convergence bound characterizes the effect
under the arbitrary device sampling probabilities. It shows that
the more often devices participate, the less time steps will be
required to converge. The device mobility mainly influences the
HFL convergence bound by term

∑
n∈N

∑
m∈Mt

n

G2
m

qtm,n
. Each

edge can adjust the edge sampling strategy Qt
n and minimize∑

m∈Mt
n

G2
m

qtm,n
to accelerate the convergence.

However, due to the channel capacity of edges, it is im-

practical for all mobile devices to access the edge nodes

and participate in training simultaneously. Based on Eq. (3),

the maximum expected number of accessed devices for each

edge n ∈ N , we can formulate an optimization problem to

minimize the convergence bound in Eq. (9) by designing a new

sampling strategy, i.e., the mobility-aware device sampling in

HFL can be solved through the following problem:

Problem 1

min
1

T

T−1∑
t=0

E
∥∥∇f

(
wt

)∥∥2
, (10)

s.t.
∑

m∈Mt
n

qtm,n ≤ Kn, (11)

qtm,n ∈ [0, 1] , ∀m ∈M, ∀n ∈ N . (12)

By solving Problem P1, we can get the theoretical optimal

sampling strategy.

Remark 2 The optimal sampling strategy at different time
steps is independent, and each edge n ∈ N maintains a
independent optimal sampling strategy. For device m ∈ Mt

n,
without considering the value ranges of qtm,n (Eq. (12)), the
optimal device sampling probability qt∗m,n follows:

qt∗m,n =
KnG

2
m∑

m′∈Mt
n
G2

m′
, (13)

which can be easily solved by the method of Lagrange mul-
tipliers in closed form. It indicates that the edge sampling
strategy Qt

n for each edge is solely determined based on the
devices within the current edge. The parameter G2

m represents
the upper bound of the local gradient for each device m ∈M,
and it is essential to assign higher sampling probabilities to
devices with larger gradient norms within each edge.

However, directly observing the local stochastic gradient

�2-norm G2
m of each device m ∈ Mt

n is difficult. In the

following, we propose MACH, which achieves mobility-aware

device sampling in HFL by online estimating device stochastic

gradient norms and solving the formulated Problem P1.

B. Design of MACH

In this section, we will provide a comprehensive presenta-

tion of the principles and design details of MACH. The design

of MACH has to address the following two questions: 1) How

to evaluate the unknown �2-norm of local stochastic gradient

659

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: MACH

Input: Initial global model w0, device sampling

probability{qtm,n}, learning rate γ, local

updating epochs I , total training rounds T
Output: Final Global Aggregated Model wT

1 for t← 0, ..., T − 1 do
2 for Edge n ∈ N in parallel do
3 Qt

n ← EdgeSampling({G̃2
m|m ∈Mt

n});
4 for Device m ∈Mt

n in parallel do
// Device Sampling

5 Sampled 1t
m,n ∼ qtm,n, ∀m ∈Mt

n ;

// Local Updating when 1t
m,n = 1

6 wt,0
m ← wt

n;

7 for τ ← 0, ..., I − 1 do
8 wt,τ+1

m ← wt,τ
m − γgm (wt,τ

m , ξt,τm);

9 wt+1
m ← wt,I

m ;

10 G̃2
m, Gt+1

m ← ExperienceUpdat-
ing

(
{gm (wt,τ

m , ξt,τm)} , G̃2
m

)
;

// Edge Aggregation

11 wt+1
n ←∑

m∈Mt
n

1
|Mt

n|
1t
m,n

qtm,n
wt+1

m ;

// Edge-to-Cloud Communication
12 if t mod Tg = 0 then
13 wt+1 ←∑

n∈N
|Mt

n|
|N | w

t+1
n ;

14 Return final global model wT ;

for each device m, i.e., G2
m, during the training process?

2) How does each edge make a sampling strategy to solve

Problem P1 based on the estimated gradient norm?

Although typical FL sampling approaches have proposed the

estimation approaches to address the first question [11], [15], it

is unpractical in HFL with mobile devices. Because the mobile

devices dynamically participate in the training of different

edges, which makes estimating the value of G2
m difficult.

Therefore, mobility-aware device sampling should not only

update the device training experience when the mobile device

dynamically participates in different edge training processes,

but also solve independent edge sampling strategies for edges.

Based on the above principles, the MACH can be achieved

by introducing two underlying components: experience updat-

ing and edge sampling. Algorithm 1 summarizes the process of

MACH. At each time step t ∈ T , each edge n ∈ N performs

training in parallel. Firstly, based on the devices in the current

edge, each edge n generates the edge sampling strategy Qt
n to

solve Problem P1 (Line 3). Then, each device m ∈Mt
n com-

pletes device sampling and local updating (Lines 5-9). Further,

to obtain the �2-norm of the local stochastic gradient for each

mobile device m during the FL process, we formulate the

online experience updating as a bandit learning problem, and

each device m employs a UCB method to get the estimated

maximum gradient norm G̃2
m. Upon receiving all uploaded

local models, each edge n aggregates the new edge models

Algorithm 2: Experience Updating

Input: Local gradients {gm (wt,τ
m , ξt,τm)}, the estimated

maximum gradient norm G̃2
m

Output: The updated gradient experience buffer Gt
m,

the new estimated G̃2
m

1 Gt+1
m ← Gt

m ∪ {‖gm (wt,τ
m , ξt,τm) ‖2|τ = 0, .., I − 1};

2 if t mod Tg = 0 then
3 G̃2

m ← max
{
1t′
m,nAvg

(
Gt′
m

)
|t′ = 0, .., t

}
+√

log(t)∑t
t′=0

1t′
m,n

;

4 Gt+1
m ← ∅;

5 Return G̃2
m, Gt

m;

wt+1
n (Line 11). Finally, the cloud and edges communicate

periodically to update the global model wt (Lines 12-13).

1) Experience Updating: In this part, each mobile device

m captures the estimated maximum gradient norm G̃2
m during

the online FL process.

However, achieving online experience updating is not trivial

and involves addressing two key issues. First, in the initial

stages of FL training, the cloud server has limited knowledge

about the truth value of the expected stochastic gradient norm

G2
m for each mobile device m, and requires a period of

training to explore the estimated maximum gradient norm

G̃2
m for edge sampling decision-making. Simply relying on

insufficient experiential exploration will fail to accurately

assess the gradient update differences caused by the statistical

heterogeneity of devices, and mislead the edge into making

suboptimal decisions when making edge sampling decisions.

Therefore, balancing the exploration and exploitation of the

estimated maximum gradient norm G̃2
m in the FL training

process is a challenge that needs to be addressed. Second,

when mobile devices move across edges and dynamically par-

ticipate in FL training from different edges, all mobile devices

download different edge models from different edges, which

can lead to biases in the evaluation of the estimated maximum

gradient norm G̃2
m at the same time step. Moreover, due to

the inherent Non-IID data distribution across devices and the

random local training sampling, biases in local data sampling

can introduce randomness to the estimated maximum gradient

norm G̃2
m. Particularly, the limited computing resources of

mobile devices result in smaller batch sizes for local training,

further increasing the randomness of the estimation. As a

consequence, directly utilizing training experiences from each

time step to evaluate the estimated norm G̃2
m is imprecise.

To address these issues, the cloud server employs a classical

bandit learning approach for online experience updating, and

each device m independently maintains a gradient experience

buffer Gt
m, which stores all training experiences between

sequential edge-to-cloud communications. By utilizing the

mean of these experiences, each mobile device update the

estimated maximum gradient norm G̃2
m by exploring the UCB

score. The procedure of experience updating is summarized

660

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

in Algorithm 2. After device m completes its local update, it

updates the gradient experience buffer Gt
m with the training

experience based on the gradients from the current training

round (Line 1):

Gt+1
m = Gt

m ∪
{∥∥gm (

wt,τ
m , ξt,τm

)∥∥2 |τ = 0, .., I − 1
}
. (14)

Before the next edge-to-cloud communication begins, the

UCB score of the estimated maximum gradient norm G̃2
m is

calculated as follows (Line 3):

G̃2
m = max

{
1
t′
m,nAvg

(
Gt′
m

)
|t′ = 0, .., t

}
︸ ︷︷ ︸

A

+

√
log (t)∑t
t′=0 1

t′
m,n︸ ︷︷ ︸

B

,

(15)

where Avg (·) is a function used to calculate the mean of the

gradient experience buffer Gt
m. Terms A and B are commonly

denoted as the exploitation and exploration terms, respectively.

Exploration term B also represents the corresponding confi-

dence radius of the online estimation. When mobile device

m is not sufficiently sampled for exploring and updating the

G̃2
m value, it leads to an high score for term B, thereby

increasing the sampling frequency of mobile device m. Finally,

the gradient experience buffer Gt
m will be cleared (Line 4).

2) Edge Sampling: In this part, based on the HFL conver-

gence bound and Problem P1, each edge n ∈ N individual

generates the current edge sampling strategy.

According to Remark 2, each edge should assign higher

sampling probabilities to devices with larger gradient norms.

However, when considering the edge channel constraint Eq.

(11), directly solving the joint Eq. (11) and (13) may result

in some sampling probabilities exceeding their valid range.

Moreover, during the initial training stages, the estimated

G̃2
m may be inaccurate and subject to significant randomness,

due to insufficient training. As a consequence, inaccurate

estimation of G̃2
m may lead to extreme values of the device

sampling probability qtm,n, which in turn can result in training

failures. When a device with an extremely small sampling

probability qtm,n → 0 is selected, the edge aggregation step

can cause an explosive increase in the norm of the parameters

of the aggregated edge model in the current training round,

leading to gradient vanishing. Therefore, when leveraging the

estimated G̃2
m to solve Problem P1, it is necessary to apply

appropriate scaling to the theoretically optimal solution.

The procedure of edge sampling is summarized in Algo-

rithm 3, and each edge n maintains its sampling strategy Qt
n

through the following steps. Based on the estimated maximum

gradient norm G̃2
m and Remark 2, each edge can calculate a

virtual sampling probability q̂tm,n for each device m (Line 2):

q̂tm,n =
KnG̃

2
m∑

m′∈Mt
n
G̃2

m′
, ∀m ∈Mt

n. (16)

We note that it is possible for q̂tm,n > 1. To constrain the range

of the actual sampling probability q̂tm,n and avoid significant

variance in all device sampling probabilities among edges,

Edge

…

CloudCl CloudCl

𝑤௡௧ , 𝒬௡௧
𝟙௠ᇱ,௡௧ ൌ 0𝟙௠,௡௧ ൌ 1

Local
Updating

 Update 𝐺௠ଶ௠

1 𝑎𝑇௚ 𝑇𝑡… … …In a Single
Time Step

ሼ𝑤௠௧ାଵሽ

Edge-to-Cloud
Communication

Fig. 2: The Framework of MACH.

we employ an transfer function S (·) to smooth the sampling

probabilities qtm,n within each edge (Line 3):

S
(
q̂tm,n

)
= 1 + α

(
1

1 + eβq̂
t
m,n

− 1

2

)
, (17)

where α and β are task-specific control coefficients, depending

on the current neural network architecture and training task.

During the early stages of training, α and β should be small to

ensure that G̃2
m can be adequately estimated through random

sampling. By leveraging transfer function S (·), the values of

S
(
q̂tm,n

)
are constrained to be close to 1.

Finally, considering the edge channel constraints in Eq. (11),
each edge n ∈ N maintains its sampling strategy Qt

n at the
current time step t as follows (Line 5):

qtm,n =
KnS

(
q̂tm,n

)
∑

m′∈Mt
n
S
(
q̂tm′,n

) , Qt
n =

{
qtm,n|m ∈Mt

n

}
. (18)

Based on the above, Figure 2 presents the implementation

process of MACH in HFL with mobile devices. In each

edge-to-cloud communication, all edge models are aggregated

in the cloud and then redistributed to edges and devices.

Subsequently, at each time step t ∈ T , the edge generates

an edge sampling strategy Qt
n based on the devices within

the current edge. The edge model wt
n and the current edge

sampling strategy Qt
n are sent to the coordinated devices

m ∈Mt
n. Each devices m performs local training and updates

the estimated G̃2
m. In this way, the experience updating and

edge sampling in MACH alternate to achieve mobility-aware

device sampling in HFL with mobile devices.

IV. EVALUATION RESULTS

In this section, we evaluate MACH through the real-world

Telecom datasets and extensive numerical experiments. We

first introduce the experiment settings, and then provide the

experimental results with corresponding analysis.

661

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

(a) MNIST (b) FMNIST (c) CIFAR10

Fig. 3: Time-to-accuracy performance over all learning tasks.

Algorithm 3: Edge Sampling

Input: The estimated gradient norm {G̃2
m|m ∈Mt

n}
Output: The current edge sampling strategy

Qt
n ←

{
qtm,n|m ∈Mt

n

}
1 for Device m ∈Mt

n in parallel do
2 Calculate virtual sampling probability:

q̂tm,n ← KnG̃
2
m∑

m′∈Mt
n
G̃2

m′
;

3 Smooth sampling probability:

S
(
q̂tm,n

)
← 1 + α

(
1

1+e
βq̂tm,n

− 1
2

)
;

4 for Device m ∈Mt
n in parallel do

5 qtm,n ←
KnS(q̂tm,n)∑

m′∈Mt
n
S
(
q̂t
m′,n

) ;

6 Return Qt
n ←

{
qtm,n|m ∈Mt

n

}
;

A. Experiment Settings

1) Dataset: We used the Shanghai Telecom dataset to

simulate the trajectory of mobile users moving between base

stations [35]–[37]. The dataset contains 9,481 mobile devices

with over 7.2 million records of dynamic access to 3,233 base

stations over 6 consecutive months. Each record in the dataset

contains detailed timestamps of when each mobile user started

and ended their access to a specific base station. Considering

the limited mobile data at some base stations, neighboring base

stations cluster together to form several main base stations.

The FL training process is performed using three open source

datasets, including MNIST, FMNIST and CIFAR10, which are

commonly used in image classification tasks and extensively

employed to validate FL research work. Each dataset consists

of ten image classes.

2) Parameter Settings: To validate the proposed MACH,

we simulate 10 edges and 100 mobile devices. We assume 50%
of the devices participating in training at each time step,i.e.,
the average of all edge channel capacity Kn is 5 in the case

of 10 edges. The data distribution of all mobile devices is

set to be Non-IID. Both the global and the devices’ data

distribution follow a long-tailed distribution. The initial state

of the edge data distribution is not assumed and is random.

The MNIST and FMNIST are trained on the convolutional

neural network (CNN) with 2 convolutional layers and 2

fully connected layers with the edge-to-cloud communication

interval Tg = 5 and an initial learning rate of 0.002 on devices.

The CIFAR10 is trained on the convolutional neural network

with 3 convolutional layers and 2 fully connected layers with

the edge-to-cloud communication interval Tg = 10 and an

initial learning rate of 0.02 on devices. The local updating

epochs I is set as 10. The convergence speed of different

algorithms is reflected in the time steps of reaching the target

accuracy, which are set as 0.75, 0.65, and 0.75 for MNIST,

FMNIST, and CIFAR10, respectively.

3) Benchmarks: We compare MACH with three other

benchmarks. Firstly, we consider three typical and theoreti-

cally guaranteed sampling algorithms, uniform sampling [22],

class-balance sampling [38] and statistical sampling [14],

[39]. Additionally, we assume that the training experiences

for each device in every time step are known, i.e., without

online experience updating, denoted as MACH-P. We conduct

each set of experiments three times and take the average

for smoothing. Each edge independently makes sampling

strategies based on the devices within the current edge.

B. Experimental Results and Analysis

1) Overall Performance: First, a set of experiments is

conducted to verify the performance of MACH over various

learning tasks. In Figure 3, MACH outperforms the basic

sampling methods by 25.00% to 56.86% on all learning tasks.

By maintaining an edge-specific sampling strategy, MACH

enables each edge to better customize its sampling approach

based on the current devices within the edge. This allows for

more effective adjustments to the optimization direction of

the edge model, making it more conducive to global aggrega-

tion. In Figures 3(b) and 3(c), the performance of statistical

sampling is slightly better than the other two basic sampling

methods. This indicates that statistical sampling remains a

viable approach to address device statistical heterogeneity in

662

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

(a) MNIST (b) FMNIST (c) CIFAR10

Fig. 4: When to get the target accuracy over different number of edges.

0.4 0.5 0.6 0.7
The Proportion of Participating Devices

100

160

220

280

340

Ti
m

e
St

ep
 t

o
G

et
 T

ar
ge

t
A

cc
ur

ac
y

(a) MNIST

0.4 0.5 0.6 0.7
The Proportion of Participating Devices

110

160

210

260

310

Ti
m

e
St

ep
 t

o
G

et
 T

ar
ge

t
A

cc
ur

ac
y

(b) FMNIST

0.4 0.5 0.6 0.7
The Proportion of Participating Devices

1600

2200

2800

3400

4000

Ti
m

e
St

ep
 t

o
G

et
 T

ar
ge

t
A

cc
ur

ac
y

(c) CIFAR10

Fig. 5: Time to achieve the target accuracy under different device participation proportions.

HFL. Moreover, the superior performance of MACH over

basic sampling methods across all learning tasks highlights the

importance of maintaining a unique edge sampling strategy

in HFL. Comparing the experimental results of MACH and

MACH-P in Figures 3(b) and 3(c), it is evident that MACH-

P performs better than MACH in the initial training stages.

However, as training progresses, the gap between MACH and

MACH-P gradually narrows. This demonstrates the effective-

ness of the experience updating step in MACH, which can

estimate training experiences during training and use them

to adjust edge training strategies. The comparison with all

benchmarks demonstrates the significance of the two com-

ponents, experience updating and edge sampling, in MACH.

The experience updating allows for effective iterative updates

of training experiences, while the edge sampling effectively

addresses the issue of data statistical heterogeneity in HFL.

2) Performance under different edge numbers: We compare

the training speeds of MACH on all learning tasks under

different edge numbers to validate the necessity of each

edge maintaining an edge-specific sampling strategy and the

advantages of our proposed MACH. Specifically, we measure

the training time cost of achieving the target accuracy as a per-

formance metric for training speed. In Figure 4, we present the

experimental results for edge numbers of 2, 5, and 10, while

the edge channel capacity is adjusted to ensure approximately

50% device participation in each group of experiments. As the

number of edges decreases, the training speeds of all methods

seem to accelerate, but the improvement is not significantly

evident from direct observation of the experimental results.

Only the class-balanced sampling exhibits a noticeable trend in

all learning tasks. We specifically mark the training time saved

by MACH compared to the best-performing basic sampling

method in each group of experiments. Across all training

tasks in Figure 4, the improvement of MACH decreases

monotonically as the number of edges decreases, e.g., from

29.03% to 21.43% in Figure 4(a). This is because HFL tends

to transform towards a simpler server-client two-layer structure

with fewer edges, reducing the necessity for edges to maintain

edge-specific sampling strategies. Additionally, in Figure 4(a),

we notice that the training speeds of MACH and MACH-P

are nearly identical. Because MNIST is a relatively simple

dataset for handwritten digit recognition, experience updating

can effectively capture training experiences for subsequent

generating edge sampling strategies.

3) Performance under different device participation propor-
tions: We compare the training performance under different

device participation proportions. According to the conclusion

of Remark 1, the newly proposed HFL convergence bound

indicates that more devices participating in training can effec-

tively accelerate model convergence even in HFL with mobile

663

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The time steps consumed under different local updating epochs I when reaching different accuracies.4

Dataset
Target Local Time Steps to Get the Target Accuracy

- Time Steps %
Accuracy Updating Epochs MACH US CS SS

MNIST

70% Target

0.8I 35 60 80 65 41.67%

I 30 55 60 50 40.00%

1.2I 30 45 55 50 33.33%

Target

0.8I 110 160 245 185 31.25%

I 110 155 255 180 29.03%

1.2I 110 140 245 170 21.43%

FMNIST

70% Target

0.8I 35 80 90 100 56.25%

I 30 50 60 65 40.00%

1.2I 25 40 55 50 37.50%

Target

0.8I 140 320 285 190 26.32%

I 135 280 285 180 25.00%

1.2I 125 245 250 165 24.24%

CIFAR10

70% Target

0.8I 710 1460 1280 1060 33.02%

I 670 1200 1040 880 23.86%

1.2I 600 1000 870 720 16.67%

Target

0.8I 2420 4220 3870 3250 25.54%

I 2100 3600 3310 2810 25.27%

1.2I 1800 3080 2830 2350 23.40%

device participation. To investigate the relationship between

the number of participating devices and the convergence speed

of the global model in HFL, we adjusted the average edge

channel capacity under the setting of 10 edges. As shown in

Figure 5, most sampling strategies can effectively reduce the

time cost to achieve the target accuracy as the proportion of

participating devices increases. However, the results of statis-

tical sampling in Figure 5(c) contradict our intuition, which

may be due to the increase in statistical variance caused by the

increase in the number of participating devices, hindering the

training process. Moreover, in Figure 5, two additional con-

clusions were verified. MACH consistently outperforms other

basic sampling strategies but is slightly inferior to MACH-P.

From Figures 5(a) to 5(c), the class-balance sampling shows

more significant improvement in reducing training time on

more complex datasets. As the proportion of participating

devices increases, the performance improvement of MACH

compared to baseline sampling gradually diminishes.

4) Performance under different local updating epochs:
Finally, we count the time steps consumed by different

sampling methods under different local updating epochs I
for different learning tasks to reach 70% and 100% target

accuracy, as shown in Table I. Based on the experimental

results, we have an intuitive observation: for different testing

tasks, all sampling methods consume fewer time steps as the

local updating epochs I increase, representing the convergence

speed increases. We further compared the MACH saved time

step percentage compared to the best benchmark in different

experiments. As local updating epochs I increase, the saved

time step percentage gradually decreases. Because the data

distribution of different devices is set to be Non-IID, as local

training goes on, each local device has a more biased gradient

updating, affecting the online experience updating of MACH

and thereby reducing the convergence speed. Furthermore, for

the MNIST and FMNIST, MACH’s saved time step percentage

when reaching the 70% target accuracy is significantly higher

than when reaching the final target accuracy. This indicates

that in the early stages of training, by maintaining a distinct

edge sampling strategy and selecting devices that contribute

more to global convergence for training, each edge can more

effectively accelerate HFL convergence.

V. RELATED WORK

A. Hierarchical Federated Learning

HFL is widely regarded as a typical implementation of FL

in MEC, where the master aggregator dynamically schedules

multiple aggregators to scale and update training steps based

on the number of devices [1], [34], [40]. From the perspective

of model gradient divergence, Wang et al. [34] rigorously

analyzed and demonstrated why hierarchical aggregation ac-

celerates the convergence of the global model. Zhong et

al. [41] and Wang et al. [7] early proposed improving system

efficiency and convergence speed in wireless networks through

hierarchical aggregation by leveraging base stations. However,

in MEC, clients are often mobile devices capable of randomly

moving across different edges. Addressing this characteristic,

Feng et al. [42] formulated it as a system reliability problem in

HFL, where device mobility may lead to disconnection from

the currently associated edge and hinder HFL convergence.

Based on device mobility, Fan et al. [43] proposed a device

scheduling and resource allocation algorithm for HFL across

multiple base stations, aiming to minimize training latency

under limited communication resources. Considering the in-

crease in energy consumption by devices for communication

due to device mobility, Farcas et al. [44] proposed a dynamic

device community selection algorithm in HFL, which can

enhance the energy efficiency of the FL system and improve

4The term US, CS and SS refer to the uniform sampling, class-balance
sampling and statistical sampling, respectively. The best benchmark in each
experiment is marked with the underline.

664

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

FL training performance. Peng et al. [45] and Chen et al. [46]

leveraged the dynamic distribution of data samples within

each edge, which results from device cross-edge mobility

in HFL, mitigating data heterogeneity to enhance learning

performance. However, they have not formally constructed the

HFL convergence bound under arbitrary sampling probabilities

when mobile devices are involved.

B. Device Sampling

Device sampling is an approach in FL used to handle the

statistical heterogeneity of devices [11]–[14]. Most device

sampling algorithms are designed based on various optimiza-

tion objectives, striving to develop unbiased global gradient

updating and aggregation algorithms utilizing device sampling

probabilities. Luo et al. [11] considered the system wall-clock

time to customize the device sampling strategy to enhance

FL training efficiency, which leverages the assumption of

strong convexity in machine learning. Perazzone et al. [12]

addressed the challenge of communication-efficient device

sampling while accounting for the associated energy cost of

communication. Wang et al. [13] took a comprehensive ap-

proach by jointly considering infrequent model transmission,

device sampling, and model compression in FL, proposing a

flexible control decision algorithm to address this series of in-

terconnected problems. Zhang et al. [38] proposed accelerating

the convergence speed by reducing the class imbalance in the

selected client groups, where actively chosen clients generate

more balanced grouped datasets with theoretical guarantees.

Cho et al. [14] proposed an analysis of biased client selection

in federated learning convergence and quantifies how this bias

affects FL training efficiency.

VI. CONCLUSION

In this work, we highlight the challenge of device data

statistical heterogeneity when implementing FL in MEC, and

propose MACH, a mobility-aware device sampling algorithm,

to tackle this issue. First, we formalize the general form of

HFL with mobile devices under arbitrary sampling probabil-

ities and derive a new HFL convergence bound. Based on

the derived convergence bound, we customize an optimization

problem for arbitrary device sampling probabilities, aiming

to dynamically adjust the current edge sampling strategy to

minimize the convergence error under time-averaged cost

constraints. Then, to solve the proposed optimization problem,

we introduce MACH, which is composed of two underlying

components: experience updating and edge sampling. Finally,

we validate the effectiveness of MACH through real-world

mobile device trajectories and various FL training tasks.

ACKNOWLEDGMENT

This work was supported in part by National Key R&D

Program of China (No. 2022ZD0119100), in part by China

NSF grant No. 62322206, 62132018, U2268204, 62025204,

62272307, 62372296. The opinions, findings, conclusions,

and recommendations expressed in this paper are those of

the authors and do not necessarily reflect the views of the

funding agencies or the government. Zhenzhe Zheng is the

corresponding author.

APPENDIX A

PROOF SKETCH OF THEOREM 1

For the ease of notations, we define gm (wt,τ
m) :=

gm (wt,τ
m , ξt,τm) for any w. First, based on Lemma 1, we have:

Ef
(
wt+1)

(19)

=Ef

⎛
⎝wt − γ

∑
n∈N

|Mt
n|

|M|
∑

m∈Mt
n

1

|Mt
n|

1t
m,n

qtm,n

I−1∑
τ=0

gm
(
wt,τ

m

)⎞⎠
(a)

≤Ef (
wt)+ γ2L

2
E

∥∥∥∥∥∥
∑
n∈N

|Mt
n|

|M|
∑

m∈Mt
n

1

|Mt
n|

1t
m,n

qtm,n

I−1∑
τ=0

gm
(
wt,τ

m

)∥∥∥∥∥∥
2

− γE

〈
∇f

(
wt) , ∑

n∈N

|Mt
n|

|M|
∑

m∈Mt
n

1

|Mt
n|

1t
m,n

qtm,n

I−1∑
τ=0

gm
(
wt,τ

m

)〉
.

where (a) is a proposition of Assumption 1. For the last term
in Eq. (19), we have:

− γE

〈
∇f

(
wt) , ∑

n∈N

|Mt
n|

|M|
∑

m∈Mt
n

1

|Mt
n|

1t
m,n

qtm,n

I−1∑
τ=0

gm
(
wt,τ

m

)〉

=− γ

I−1∑
τ=0

E

〈
∇f

(
wt) , ∑

n∈N

|Mt
n|

|M|
∑

m∈Mt
n

1

|Mt
n|gm

(
wt,τ

m

)〉

=γ

I−1∑
τ=0

E

〈
∇f

(
wt) ,±∇f

(
wt)− 1

|M|
∑

m∈M
gm

(
wt,τ

m

)〉
(20)

− γ

I−1∑
τ=0

E
∥∥∇f

(
wt)∥∥2

(a)

≤ γL2

2|M|
I−1∑
τ=0

∑
m∈M

E
∥∥wt − wt,τ

m

∥∥2 − γI

2
E
∥∥∇f

(
wt)∥∥2

.

where (a) comes from 〈a, b〉 ≤ a2

2 + b2

2 , ∇f
(
wt

)
=∑

m∈M
1
|M|∇Fm

(
wt

)
and Assumption 1. For the second

term in Eq. (19), it has:

γ2L

2
E

∥∥∥∥∥∥
∑
n∈N

|Mt
n|

|M|
∑

m∈Mt
n

1

|Mt
n|

1t
m,n

qtm,n

I−1∑
τ=0

gm
(
wt,τ

m

)∥∥∥∥∥∥
2

≤γ2LI2

2|M|
∑
n∈N

∑
m∈Mt

n

1

qtm,n

G2
m,

(21)

which comes from Jensen’s inequality and Assumption 3.

By plugging Eq. (21) and (20) into Eq. (19), we can get the

rearranged:

E
∥∥∇f

(
wt)∥∥2 ≤ 2

(
Ef

(
wt

)− Ef
(
wt+1

))
γI

+

γLI

|M|
∑

m∈M

G2
m

qtm,n

+
L2

|M|I
I−1∑
τ=0

∑
m∈M

E
∥∥wt − wt,τ

m

∥∥2
.

(22)

665

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

Then, we will proof L2

|M|I
∑I−1

τ=0

∑
m∈M E

∥∥wt − wt,τ
m

∥∥2
:

L2

|M|I
I−1∑
τ=0

∑
m∈M

E
∥∥wt − wt,τ

m

∥∥2

=
L2

I

I−1∑
τ=0

∑
n∈M

1

|M|E
∥∥wt ± wt

n − wt,τ
m

∥∥2

=L2
∑
n∈N

|Mt
n|

|M| E
∥∥wt − wt

n

∥∥2
(23)

+
L2

I

I−1∑
τ=0

∑
n∈N

|Mt
n|

|M|
∑

m∈Mt
n

1

|Mt
n|E

∥∥wt
n − wt,τ

m

∥∥2

+
2L2

|M|
I−1∑
τ=0

∑
n∈N

|Mt
n|

|M|
∑

m∈Mt
n

1

|Mt
n|E

〈
wt − wt

n, w
t
n − wt,τ

m

〉
.

For the last term in Eq. (23), it is equal to 0 due to Lemma

1. Then, for the first term in Eq. (23), we have:

L2
∑
n∈N

|Mt
n|

|M| E
∥∥wt − wt

n

∥∥2

≤
2(1 + |M|)T 2

gL
2γ2

|M|
∑
n∈N

∑
m∈Mt

n

G2
m

qtm,n

,

(24)

which can be demonstrated by
∥∥∑

l∈L xl

∥∥2 ≤∑
l∈L L ‖xl‖2,

|Mt
n|

|M||Mt′
n |
≤ 1 (∀t �= t′) and Assumption 3. Then, we can prove

the upper bound of the second term of (23) by Assumption 3,

and:

L2

I

I−1∑
τ=0

∑
n∈N

|Mt
n|

|M|
∑

m∈Mt
n

1

|Mt
n|
E
∥∥wt

n − wt,τ
m

∥∥2

≤γ2L2I2

2|M|
∑
n∈N

∑
m∈Mt

n

G2
m

qtm,n

.

(25)

Finally, plugging Eq. (23), Eq. (24) and Eq. (25) into Eq.

(22) and taking the average over time, the Theorem 1 can be

proved.

REFERENCES

[1] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan et al.,
“Towards federated learning at scale: System design,” Proceedings of
MLSys, vol. 1, pp. 374–388, 2019.

[2] T. Castiglia, A. Das, and S. Patterson, “Multi-level local sgd: Distributed
sgd for heterogeneous hierarchical networks,” in Proceedings of ICLR,
2021.

[3] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[4] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[6] Y. Li, W. Liang, J. Li, X. Cheng, D. Yu, A. Y. Zomaya, and S. Guo,
“Energy-aware, device-to-device assisted federated learning in edge
computing,” IEEE Transactions on Parallel and Distributed Systems,
2023.

[7] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-
efficient federated learning with hierarchical aggregation in edge com-
puting,” in Proceedings of INFOCOM, 2021, pp. 1–10.

[8] W. Y. B. Lim, J. S. Ng, Z. Xiong, D. Niyato, C. Miao, and D. I. Kim,
“Dynamic edge association and resource allocation in self-organizing
hierarchical federated learning networks,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 12, pp. 3640–3653, 2021.

[9] Y. Kang, B. Li, and T. Zeyl, “Fedrl: Improving the performance of
federated learning with non-iid data,” in Proceedings of GLOBECOM,
2022, pp. 3023–3028.

[10] S. Liu, G. Yu, X. Chen, and M. Bennis, “Joint user association and
resource allocation for wireless hierarchical federated learning with iid
and non-iid data,” IEEE Transactions on Wireless Communications,
vol. 21, no. 10, pp. 7852–7866, 2022.

[11] B. Luo, W. Xiao, S. Wang, J. Huang, and L. Tassiulas, “Tackling system
and statistical heterogeneity for federated learning with adaptive client
sampling,” in Proceedings of INFOCOM, 2022, pp. 1739–1748.

[12] J. Perazzone, S. Wang, M. Ji, and K. S. Chan, “Communication-efficient
device scheduling for federated learning using stochastic optimization,”
in Proceedings of INFOCOM, 2022, pp. 1449–1458.

[13] S. Wang, J. Perazzone, M. Ji, and K. Chan, “Federated learning with
flexible control,” in Proceedings of INFOCOM, 2023.

[14] Y. J. Cho, J. Wang, and G. Joshi, “Towards understanding biased client
selection in federated learning,” in Proceedings of AISTATS, 2022, pp.
10 351–10 375.

[15] W. Chen, S. Horvath, and P. Richtarik, “Optimal client sampling for
federated learning,” Transactions on Machine Learning Research, pp.
1–32, 2022.

[16] F. Li, J. Zhao, D. Yu, X. Cheng, and W. Lv, “Harnessing con-
text for budget-limited crowdsensing with massive uncertain workers,”
IEEE/ACM Transactions on Networking, vol. 30, no. 5, pp. 2231–2245,
2022.

[17] Y. Ma, W. Liang, J. Li, X. Jia, and S. Guo, “Mobility-aware and delay-
sensitive service provisioning in mobile edge-cloud networks,” IEEE
Transactions on Mobile Computing, vol. 21, no. 1, pp. 196–210, 2020.

[18] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[19] C. Li, X. Zeng, M. Zhang, and Z. Cao, “Pyramidfl: A fine-grained client
selection framework for efficient federated learning,” in Proceedings of
MobiCom, 2022, pp. 158–171.

[20] Q. Wu, X. Chen, T. Ouyang, Z. Zhou, X. Zhang, S. Yang, and J. Zhang,
“Hiflash: Communication-efficient hierarchical federated learning with
adaptive staleness control and heterogeneity-aware client-edge associa-
tion,” IEEE Transactions on Parallel and Distributed Systems, vol. 34,
no. 5, pp. 1560–1579, 2023.

[21] Y. Jin, L. Jiao, Z. Qian, S. Zhang, S. Lu, and X. Wang, “Resource-
efficient and convergence-preserving online participant selection in fed-
erated learning,” in Proceedings of ICDCS, 2020, pp. 606–616.

[22] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” in Proceedings of ICLR, 2019.

[23] T. Higashino, H. Yamaguchi, A. Hiromori, A. Uchiyama, and T. Umedu,
“Re-thinking: Design and development of mobility aware applications
in smart and connected communities,” in Proceedings of ICDCS, 2018,
pp. 1171–1179.

[24] H. Wang, S. Zeng, Y. Li, and D. Jin, “Predictability and prediction
of human mobility based on application-collected location data,” IEEE
Transactions on Mobile Computing, vol. 20, no. 7, pp. 2457–2472, 2020.

[25] Z. Wang, L. Gao, and J. Huang, “Travel with your mobile data plan: A
location-flexible data service,” in Proceedings of INFOCOM, 2020, pp.
1738–1747.

[26] N. Liu, M. Liu, J. Cao, G. Chen, and W. Lou, “When transportation
meets communication: V2p over vanets,” in Proceedings of ICDCS,
2010, pp. 567–576.

[27] M. Karaliopoulos, O. Telelis, and I. Koutsopoulos, “User recruitment
for mobile crowdsensing over opportunistic networks,” in Proceedings
of INFOCOM, 2015, pp. 2254–2262.

[28] Z. Xu, S. Wang, S. Liu, H. Dai, Q. Xia, W. Liang, and G. Wu, “Learning
for exception: Dynamic service caching in 5g-enabled mecs with bursty
user demands,” in Proceedings of ICDCS, 2020, pp. 1079–1089.

[29] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of AISTATS, 2017, pp. 1273–1282.

666

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

[30] S. Wang and M. Ji, “Alightweight method for tackling un-
known participation statistics in federated averaging,” arXiv preprint
arXiv:2306.03401, 2024.

[31] W. Luping, W. Wei, and L. Bo, “Cmfl: Mitigating communication
overhead for federated learning,” in Proceedings of ICDCS, 2019, pp.
954–964.

[32] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning design,” in Proceedings of INFOCOM, 2021, pp. 1–
10.

[33] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communi-
cation efficient momentum sgd for distributed non-convex optimization,”
in Proceedings of ICML, 2019, pp. 7184–7193.

[34] J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Demystifying why local
aggregation helps: Convergence analysis of hierarchical sgd,” in Pro-
ceedings of AAAI, 2022, pp. 8548–8556.

[35] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A rein-
forcement learning approach,” IEEE Transactions on Mobile Computing,
vol. 20, no. 3, pp. 939–951, 2019.

[36] Y. Li, A. Zhou, X. Ma, and S. Wang, “Profit-aware edge server
placement,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 55–67,
2021.

[37] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C.-H. Hsu, “User
allocation-aware edge cloud placement in mobile edge computing,”
Software: Practice and Experience, vol. 50, no. 5, pp. 489–502, 2020.

[38] J. Zhang, A. Li, M. Tang, J. Sun, X. Chen, F. Zhang, C. Chen, Y. Chen,
and H. Li, “Fed-cbs: A heterogeneity-aware client sampling mechanism
for federated learning via class-imbalance reduction,” in Proceedings of

ICML, 2023, pp. 41 354–41 381.
[39] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient

federated learning via guided participant selection,” in Proceedings of
OSDI, 2021, pp. 19–35.

[40] Z. Jiang, W. Wang, B. Li, and Q. Yang, “Towards efficient synchronous
federated training: A survey on system optimization strategies,” IEEE
Transactions on Big Data, vol. 9, no. 2, pp. 437–454, 2022.

[41] Z. Zhong, Y. Zhou, D. Wu, X. Chen, M. Chen, C. Li, and Q. Z. Sheng,
“P-fedavg: Parallelizing federated learning with theoretical guarantees,”
in Proceedings of INFOCOM, 2021, pp. 1–10.

[42] C. Feng, H. H. Yang, D. Hu, Z. Zhao, T. Q. Quek, and G. Min,
“Mobility-aware cluster federated learning in hierarchical wireless net-
works,” IEEE Transactions on Wireless Communications, vol. 21, no. 10,
pp. 8441–8458, 2022.

[43] K. Fan, W. Chen, J. Li, X. Deng, X. Han, and M. Ding, “Mobility-aware
joint user scheduling and resource allocation for low latency federated
learning,” arXiv preprint arXiv:2307.09263, 2023.

[44] A.-J. Farcas, M. Lee, R. R. Kompella, H. Latapie, G. De Veciana, and
R. Marculescu, “Mohawk: Mobility and heterogeneity-aware dynamic
community selection for hierarchical federated learning,” in Proceedings
of IoTDI, 2023, pp. 249–261.

[45] Y. Peng, X. Tang, Y. Zhou, Y. Hou, J. Li, Y. Qi, L. Liu, and H. Lin,
“How to tame mobility in federated learning over mobile networks?”
IEEE Transactions on Wireless Communications, vol. 22, no. 12, pp.
9640–9657, 2023.

[46] T. Chen, J. Yan, Y. Sun, S. Zhou, D. Gunduz, and Z. Niu, “Data-
heterogeneous hierarchical federated learning with mobility,” arXiv
preprint arXiv:2306.10692, 2023.

667

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 28,2024 at 15:49:58 UTC from IEEE Xplore. Restrictions apply.

