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Linear Programming (LP)

maxx cTx
s.t., Ax ≤ b

x ≥ 0

The above linear programming also calls primal problem.
Interpretation from economics.
- xj: amount of product j produced.
- cj: profit from 1 unit of product j.
- bi: amount of raw materials of type i available.
- ai,j: amount of raw materials i used to produce 1 unit of product j.
Thus, the LP is the problem of maximizing profit subject to resource
constraints.
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Duality of LP

miny bTy
s.t., ATy ≥ c

y ≥ 0

How much would someone be willing to pay for each unit of raw
material i ? If the constraints are not satisfied, the seller would not
sell the products.
Intuitively, cTx∗ = bTy∗, i.e., the optimal objectives of the primal and
dual are equal.
Otherwise, the seller won’t sell or buyer won’t buy.
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Strong Duality Theorem for LPs

Strong Duality
If the primal and dual of LPs are feasible, then both have the same
optimal objective value.

To prove strong duality, we need the following result called Farkas’s lemma.

Farkas’s Lemma
Let A ∈ Rm×n and b ∈ Rm×1, one of the following statements is true:
- (1) ∃x ≥ 0, s.t., Ax = b;
- (2) ∃y: yTA ≥ 0 and yTb < 0.

Farkas’ Lemma is an example of a theorem of alternative. It states that
exactly one of two statements is true, but not both.
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Geometric interpretation of Farkas lemma

The geometric interpretation of Farkas lemma illustrates the
connection to the separating hyperplane theorem.
Let a1 and a2 be the columns of A. Define

Q = cone(a1, a2) = {s ∈ R2 : s = λ1a1 + λ2a2, λ1 ≥ 0, λ2 ≥ 0}.

If b /∈ cone(a1, a2), then we can separate it from the cone with a
hyperplane.
The geometric interpretation of Farkas lemma is either b is in the
cone(a1, a2), or we can find a hyperplane to separate b and
cone(a1, a2).
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Proof of LP duality

First, we will prove that if x is feasible for the primal and y is feasible
for the dual, then we have cTx ≤ bTy.
To see this, we have

cTx = xTc
⇒ cTx ≤ xTATy
⇒ cTx ≤ by

The first inequality comes from ATy ≥ c and x ≥ 0, and the second
inequality comes from Ax ≤ b and y ≥ 0.
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Proof of LP duality (continued)

We will next prove that cTx∗ ≥ bTy∗ for optimal x∗ (primal) and y∗
(dual).
Let cTx∗ = ∆ . This implies that ∄x, s.t.,

cTx ≥ ∆+ ϵ, (for any ϵ > 0)
Ax ≤ b,

x ≥ 0.

⇔ −cTx + γ0 = −∆− ϵ,

Ax + γ = b
γ0, γ, x ≥ 0.

⇔
(
−cT 1 0

A 0 I

) x
γ0
γ

 =

(
−∆− ϵ

b

)
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Proof of LP duality (continued)

By Farkas’ Lemma, ∃λ0, λ1:
−cTλ0 + λT

1 A ≥ 0, λ0 ≥ 0, λT
1 ≥ 0.

and −(∆ + ϵ)λ0 + λ1b < 0.
We can have

λT
1

λ0
A ≥ cT,

λT
1

λ0
≥ 0, λT

1
λ0

b < ∆+ ϵ.

Letting y =
λT

1
λ0

, that is ∃y, s.t.,

yTb < ∆+ ϵ

yTA ≥ cT,

y ≥ 0,
Thus, for each ϵ > 0, ∃ dual feasible y, s.t., yTb < ∆+ ϵ. Since the
dual is a min problem, we can have dual optimal objective
< ∆+ ϵ,∀ϵ > 0, that is dual optimal objective ≤ ∆.
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Remarks for LP duality

Dual can also be defined for problems with a mixture of equality and
inequality constraints, as well as some variables are unconstrained.
Another Interpretation of LP duality.

maxx cTx
s.t., Ax ≤ b

x ≥ 0
can always be written as

maxx cTx
s.t., aT

1 x ≤ b1
...
aT

n x ≤ bn

x ≥ 0,
where ai’s are the columns of A.
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Remarks for LP duality (continued)
Suppose we want to get an upper bound on the optimal objective of the
above LP. We can proceed as follows. Let y1, · · · , yn ≥ 0. Then

(
∑

i
yiaT

i )x ≤
∑

i
biyi.

If
∑

i yiaT
i ≥ cT(element wise), then gives an upper bound to the objective,

cTx ≤ (
∑

i
yiaT

i )x ≤
∑

i
biyi = bTy.

Thus, the highest upper bound is obtained by solving
miny bTy
s.t.,

∑
i

aiyi ≥ c (or ATy ≥ c)

y ≥ 0.
This is the dual. LP duality says that this is not just an upper bound, but
in fact equal to the optimal objective of the original LP.
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Zero-sum Game

Two players P1 and P2.
A(i, j): Utility to P1 when P1 takes action i and P2 takes action j.
Mixed Strategy: x is probability distribution over P1’s actions; y is
probability distribution over P2’s actions.
Utility to P1 when P1 takes strategy x and P2 takes strategy y.

U1(x, y) =
∑

i,j
A(i, j)× xi × yj = xTAy.

From zero-sum game, we can have U2(x, y) = −U1(x, y).
A NE (x∗, y∗) satisfies

x∗TAy∗ ≥ x∗TAy∗ ∀x,

and x∗TAy∗ ≤ x∗TAy ∀y,
That is (x∗, y∗) constitutes a saddle point.
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Minimax Theorem

Minimax Theorem (Von Neumann)
The following three statements are true.
(i) minymaxxxTAy = maxxminyxTAy This is called the value of the game.
(ii) Suppose x∗ solves

maxx(minyxTAy) (1)

and y∗ solves
minx(maxyxTAy) (2)

x∗TAy∗ is the value of the game, and (x∗, y∗) constitutes a NE.
(iii) If (x∗, y∗) is a NE, then x∗TAy∗ is the value of the game, and x∗ solves
(1), and y∗ solves (2).
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Proof for MiniMax Theorem (i)

Suppose wants to maximize its worst-case payoff
maxxminyxTAy = maxxminj(xTA).

The above equality comes from that yj ≥ 0 and
∑

j yj = 1.
This is equivalent to

maxx,v1 v1 (LP1)
s.t., v1 ≤ (xTA)j ∀j, and x ≥ 0.

Similarly, P2’s problem is
maxy,v2 v2 (LP2)

s.t., v2 ≥ (Ay)i ∀i, and y ≥ 0.
It can be verified that problem (LP2) is the dual of (LP1). Thus, by
strong duality, we have v∗1 = v∗2 or

maxxminyxTAy = minymaxxxTAy.
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Proof for MiniMax Theorem (ii)

Let x∗ be a solution to LP1. From the constraints

v∗1 ≤ (x∗TA)j ∀j
⇒

∑
j v∗1 × y∗j ≤

∑
j
(x∗TA)j × y∗j

⇒ v∗1 ≤ (x∗TA)y∗

where y∗ is a solution to LP2. Similarly, we can show that

v∗2 ≥ x∗TAy∗.

Since v∗1 = v∗2, we have

x∗TAy∗ = minymaxxxTAy = maxxminyxTAy
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Proof for MiniMax Theorem (ii) (continued)

Recall that x∗ solves
maxx(minyxTAy),

and y∗ solves
miny(maxxxTAy),

and by (i), we have maxmin = minmax. Thus,

minyx∗TAy = maxxminyxTAy = minymaxxxTAy
= maxxxTAy∗

≥ x∗TAy∗

⇒ y∗ solves minyx∗TAy. Similarly, we can show that x∗ solves maxxxTAy∗.
⇒ (x∗, y∗) is a SP.
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Proof for MiniMax Theorem (iii)

Since (x∗, y∗) is a NE, we have

x∗TAy∗ = minyx∗TAy ≤ maxxminyxTAy.

Similarly, we have

x∗TAy∗ = maxxxAy∗ ≥ minymaxxxTAy.

We then have

minymaxxxTAy ≤ x∗TAy∗ ≤ maxxminyxTAy. (3)

We also have
min max ≥ max min.

Thus, equality holds throughout in (3) above.
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Proof for MiniMax Theorem (iii) (continued)

Note that since (x∗, y∗) is a NE, we have

minyx∗TAy = x∗TAy∗

= maxxminyxTAy
≥ minyxTAy, ∀x.

We thus have x∗ maximizes miny(xTAy).
Similarly, y∗ maximizes maxx(xTAy).
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