Game Theory with Computer Science Applications Lecture 3: Existence of a Nash Equilibrium

Zhenzhe Zheng

Department of Computer Science and Engineering Shanghai Jiao Tong University

zhengzhenzhe@sjtu.edu.cn

March 27, 2021

- Pure Strategy for agent *i*: $x_i \in X_i$ (discrete, finite set).
- Mixed Strategy for agent *i*: $p_i(x_i) = Pr(agent i plays action x_i)$.
- Utility to *i*: $U_i(x_i, \mathbf{x}_{-i})$ and $U_i(p_i, \mathbf{p}_{-i})$.
- Some concepts: closed set, bounded set, convex set, continuous functions.

The Nash's Theorem

Any finite strategic game has a mixed strategy Nash Equilibrium.

Brouwer Fixed Point Theorem

Let $C \subseteq \mathbb{R}^n$ be a **compact (closed and bounded)** and **convex** set. Let $f: C \to C$ be a continuous function. Then f has a fixed pointed in C, *i.e.*, $x \in C$, *s.t.*, x = f(x).

Proof.

For the one-dimensional case. When n = 1, the convex and compact sets are closed intervals [a, b]. Let $f: [a, b] \leftarrow [a, b]$. If f(a) = a or f(b) = b we are done. Suppose f(a) > a and f(b) < b. Consider g(x) = f(x) - x. Then g(a) > 0, g(b) < 0. g is continuous because f is continuous. The *intermediate value theorem* tells us that there is some $a < x^* < b$, such that $g(x^*) = 0$.

Proof for Nash Theorem using Brouwer FP Theorem

- Let (p_1, p_2, \cdots, p_n) be a set of strategies.
- Define $r_i(x_i) = (U_i(x_i, p_{-i}) U_i(p_i, p_{-i}))^+$, i.e., $r_i(x_i)$ is the amount by which the expected utility to *i* can be increased by changing strategy from p_i to x_i .
- Define

$$f_i(p_i(x_i)) = rac{p_i(x_i) + r_i(x_i)}{\sum_x (p_i(x) + r_i(x))}.$$

- (p_1, p_2, \dots, p_n) is a convex and compact set. $f(p) = (f_1(p_1), f_2(p_2), \dots, f_n(p_n))$ is a continuous function. Homework.
- We then have a fixed point p:

$$p_i(x_i) = \frac{p_i(x_i) + r_i(x_i)}{\sum_x (p_i(x) + r_i(x))}.$$

Proof for Nash Theorem using Brouwer (continued)

• We will now show that for such a fixed point,

$$r_i(x_i) = 0 \quad \forall i, x_i.$$

i.e., no increase in utility is possible by changing strategy from p_i to x_i . Thus, such a fixed point is a NE.

First, we claim that for each *i*, ∃x_i, s.t., r_i(x_i) = 0. We will prove this by contradiction. Suppose for some *i*, r_i(x_i) > 0, ∀x_i. Then,

$$\begin{array}{ll} & U_i(x_i,p_{-i}) > U_i(p_i,p_{-i}), & \forall x_i. \\ \Rightarrow & \displaystyle \sum_{x_i} p_i(x_i) U_i(x_i,p_{-i}) > U_i(p_i,p_{-i}), \\ \Rightarrow & \displaystyle U_i(p_i,p_{-i}) > U_i(p_i,p_{-i}), \end{array}$$

which is a contradiction.

• Fix *i*, let x_i be s.t., $r_i(x_i) = 0$. Then,

$$p_i(x_i) = \frac{p_i(x_i)}{\sum_x (p_i(x) + r_i(x))}$$

$$\Rightarrow \qquad \sum_x p_i(x) + \sum_x r_i(x) = 1$$

$$\Rightarrow \qquad \sum_x r_i(x) = 0$$

$$\Rightarrow \qquad r_i(x) = 0, \forall x \in A_i.$$

This completes the proof.

Kakutani Fixed-point Theorem

Let *C* be a convex and compact subset of \mathbb{R}^n . Let *f* be a correspondence mapping each point in *C* to a subset of a *C*, i.e., $f: C \to 2^C$. Suppose the following three conditions hold:

-
$$f(x) \neq \emptyset$$
, $\forall x$,

- f(x) is a convex set, $\forall x$,

- f has a closed graph: if $\{x_n, y_n\} \rightarrow \{x, y\}$ with $y_n \in f(x_n)$, then $y \in f(x)$. Then f has a fixed point in C.

Weierstrass's Theorem

Let A be a non-empty, compact subset of \mathbb{R}^n and let $f: A \to \mathbb{R}$ be a continuous function. Then, there exists an optimal solution to the optimization problem *Min* f(x), $x \in A$.

• We will apply Kakutani's fixed point theorem to establish the existence of a solution to

$$p \in BP(p),$$

where $p = (p_1, p_2, \dots, p_n)$ and $BP(p) = (BP(p_{-1}), \dots, BP(p_{-n}))$.

- We will verify the mapping *BP* satisfies the conditions required in the Kakutani's fixed-point theorem.
- (1) BP(p) is a non-empty set for each p. This is because max_{pi∈∆Xi} U_i(p_i, p_{-i}) is a maximization problem of a continuous function over the set of the probability distribution over X_i, which is a compact set. The result follows from Weierstrass' extreme value theorem.

• (2) For each *p*, *BP*(*p*) is a convex set. We recall that

$$U_i(p_i, p_{-i}) = \sum_{x} p_1(x_1) \times \cdots \times p_n(x_n) \times U_i(x_i, x_{-i}).$$

So if $p_i^*, \widetilde{p}_i \in BP(p_{-i})$, as $U_i(p_i^*, p_{-i}) = U_i(\widetilde{p}_i, p_{-i})$, we can verify that

$$U_i(\alpha \times p_i^* + (1 - \alpha) \times \tilde{p}_i, p_{-i}) = U_i(p_i^*, p_{-i}), \quad \forall \alpha \in [0, 1]$$

Hence, we have $\alpha \times p_i^* + (1 - \alpha) \times \tilde{p}_i \in BP(p_{-i})$

Proof for Nash Theorem using Kakutani (continued)

• (3) We will now show that BP has a closed graph. Let $(p_i^n, p_{-i}^n) \rightarrow (p_i, p_{-i})$ with $p_i^n \in BP(p_{-i}^n)$. Suppose that $p_i \notin BP(p_{-i})$. Then $\exists \tilde{p}_i$ and $\epsilon > 0$ s.t.,

$$U_i(\tilde{p}_i, p_{-i}) \geq U_i(p_i, p_{-i}) + \epsilon.$$

- We next show that \tilde{p}_i is a better response for p_{-i}^n (for some *n*) than p_i^n , and thus contradicts $p_i^n \in BP(p_{-i}^n)$.
- For sufficiently large n,

$$U_i(\tilde{p}_i, p_{-i}^n) \geq U_i(\tilde{p}_i, p_{-i}) - \frac{\epsilon}{2}$$
 (1)

$$\geq U_{i}(p_{i}, p_{-i}) + \epsilon - \frac{\epsilon}{2}$$

$$\geq U_{i}(p_{i}^{n}, p_{-i}^{n}) - \frac{\epsilon}{4} + \frac{\epsilon}{2}$$

$$= U_{i}(p_{i}^{n}, p_{-i}^{n}) + \epsilon$$
(4)

$$= U_i(p_i^n, p_{-i}^n) + \frac{c}{4}.$$
 (4)

- (1) comes from that $p_{-i}^n \to p_{-i}$ and U_i is continuous. (3) comes from that for sufficiently large n, $(p_i^n, p_{-i}^n) \to (p_i, p_{-i})$ and U_i is continuous.
- The above result contradicts pⁿ_i ∈ BP(pⁿ_{-i}). Thus, BP has a closed graph.
- Nash's Theorem follows from the Kakutani fixed point theorem.

Games with infinite strategies

- N agents.
- Strategy in x_i ∈ X_i ⊆ ℝ^{n_i}, X_i contains typically an uncountable number of points.
- Utility/Payoff to agent *i*: $u_i(x_i, \mathbf{x}_{-i})$.
- Two types of constraints would be imposed on strategy profile x.
- Coupled constraints:

$$\mathbf{x} \in \Omega \subseteq \mathbb{R}^{n_1+n_2+\cdots+n_N}.$$

E.g., N = 2, $3 \times x_1 + 2 \times x_2 \le 6$., and $x_1 \ge 0$, $x_2 \ge 0$. Here, the constraints on x_1 and x_2 are coupled, i.e., if $x_1 = 1$, then if it results $0 \le x_2 \le 3/2$.

• Uncoupled constraints:

$$x_i \in X_i \subseteq \mathbb{R}^{n_i}$$
, and $\Omega = X_1 \times X_2 \times X_n$.

E.g., N=2, $0 \le x_1 \le 2$ and $0 \le x_2 \le 3$. The choice of x_i does not affect the constraints on x_{-i} .

Zhenzhe Zheng (SJTU)

Glicksberg Theorem

Consider the uncoupled constraint, i.e., $x_i \in X_i$ and $\Omega = X_1 \times X_2 \cdots X_N$. Suppose

- each X_i is non-empty and compact,
- and that $u_i(x_i, \mathbf{x}_{-i})$ is continuous on Ω .

Then, there exists a mixed strategy NE for this game.

Proof.

Intuition behind the proof:

- Discrete the strategy space, and consider the resulting finite-strategy game.

- By Nash's Theorem, a mixed Nash Equilibrium (NE) exists for the discrete game.

- Show that as the discretization becomes finer and finer, the NE converges to a NE of the continuous games.

Conditions for Existence of Pure NE

Rosen's Theorem

Let Ω be a coupled constraint set. Assume that

- Ω is a convex and compact set,
- and that $u_i(x_i, \mathbf{x}_{-i})$ is continuous on Ω .
- Further, suppose that $u_i(x_i, \mathbf{x}_{-i})$ is concave in x_i for each \mathbf{x}_{-i} . Then, there exist a pure NE.

Proof: Consider the function defined over $\Omega \times \Omega$:

$$L(\mathbf{v},\mathbf{x})=\sum_{i=1}^{N}u_{i}(v_{i},\mathbf{x}_{-i}).$$

We first note that if there exists a strategy profile x s.t.,

$$L(\mathbf{x}, \mathbf{x}) \ge L(\mathbf{v}, \mathbf{x}), \forall v \in \Omega.$$
(5)

Then \mathbf{x} must be a NE. We can see this by proving a contradiction.

Proof (continued)

Suppose **x** satisfies (5), but is not a NE, i.e., $\exists i \text{ s.t.}$,

$$u_i(v_i, \mathbf{x}_{-i}) > u_i(x_i, \mathbf{x}_{-i}), \quad \forall (v_i, \mathbf{x}_{-i}) \in \Omega.$$

Then

$$u_i(v_i, \mathbf{x}_{-i}) + \sum_{j \neq i} u_j(x_j, \mathbf{x}_{-j}) > u_i(x_i, \mathbf{x}_{-i}) + \sum_{j \neq i} u_j(x_j, \mathbf{x}_{-j})$$

$$\Rightarrow \qquad L(\widehat{\mathbf{v}}, \mathbf{x}) > L(\mathbf{x}, \mathbf{x}),$$

where $\widehat{\mathbf{v}} = (x_1, \cdots, x_{i-1}, v_i, x_{i+1}, \cdots, x_N) \in \Omega$. This contradicts to (5). We next show that if there exists a strategy profile \mathbf{x} s.t.,

 $\mathbf{x} \in argmax_{v \in \Omega} L(\mathbf{v}, \mathbf{x}),$

then such a x satisfies (5), and hence would be a NE.

Proof (continued)

- Let $g(\mathbf{x}) = argmax_{v \in \Omega} L(\mathbf{v}, \mathbf{x})$. We note that $g(\mathbf{x})$ is a set, and thus is a correspondence, not a function.
- We now show that g(x) has a fixed point, i.e., ∃x, s.t., x ∈ g(x). We prove this by using the Kakutani's fixed point theorem.
- Ω is assumed to be **convex** and **compact** as required by Kakutani's theorem.
- For each $\mathbf{x} \in \Omega$, $g(\mathbf{x})$ is non-empty and convex.

- $g(\mathbf{x})$ is non-empty comes from that $L(\mathbf{v}, \mathbf{x})$ is a continuous function of \mathbf{v} and Ω is a compact set. Continuous functions over compact sets have a max by Weirstrass's theorem.

- $L(\mathbf{v}, \mathbf{x})$ is a sum of concave functions, and thus is concave in \mathbf{v} .

Let \mathbf{v}^1 and \mathbf{v}^2 be two elements of $g(\mathbf{x})$. And we have

$$L(\alpha \times \mathbf{v}^1 + (1 - \alpha) \times \mathbf{v}^2, \mathbf{x}) \ge \alpha \times L(\mathbf{v}^1, \mathbf{x}) + (1 - \alpha) \times L(\mathbf{v}^2, \mathbf{x}), \forall \alpha \in [0, 1].$$

Thus, $\alpha \times \mathbf{v}^1 + (1 - \alpha) \times \mathbf{v}^2$ also maximizes $L(\mathbf{v}, \mathbf{x})$ over $\mathbf{x} \in \Omega$. And $g(\mathbf{x})$ is a convex set.

Zhenzhe Zheng (SJTU)

- $g(\mathbf{x})$ is a closed graph can be established as in Nash's theorem.
- With the above three conditions, we can apply Kakutani's fixed point theorem.
- Thus, $g(\mathbf{x})$ has a fixed point, i.e., there exist an \mathbf{x} , s.t., $\mathbf{x} \in g(\mathbf{x})$.
- Such an **x** is a NE for this game.

Remark on Rosen's Theorem

- What is the reason to introduce the function $L(\mathbf{v}, \mathbf{x})$?
- Instead, suppose we follow the best responses' proof in Nash's Theorem. That is $g_1(\mathbf{x}_{-1})$ the BP of agent 1,

$$g_1(\mathbf{x}_{-1}) \in \operatorname{argmax}_{(x_1,\mathbf{x}_{-1})\in\Omega} u_1(x_1,\mathbf{x}_{-1}).$$

Similarly,

$$g_2(\mathbf{x}_{-2}) \in argmax_{(x_2,\mathbf{x}_{-2})\in\Omega}u_2(x_2,\mathbf{x}_{-2}).$$

and so on.

For simplicity, there are two agents, i.e., N = 2. In this case, $\mathbf{x}_{-1} = x_2$ and $\mathbf{x}_{-2} = x_1$. We know that

$$egin{aligned} &(g_1(x_2),x_2)\in\Omega\quad \forall g_1(x_2).\ &(x_1,g_2(x_1))\in\Omega\quad \forall g_2(x_1). \end{aligned}$$

But if we consider the mapping, $\mathbf{x} \to (g_1(x_2), g_2(x_1)) \in \Omega$ It is not clear if $(g_1(x_2), g_2(x_1)) \in \Omega$. So, it is not obvious how to apply the FP theorem here.

Zhenzhe Zheng (SJTU)