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Game Setting and related Concepts

Pure Strategy for agent i: xi ∈ Xi (discrete, finite set).
Mixed Strategy for agent i: pi(xi) = Pr(agent i plays action xi).
Utility to i: Ui(xi, x−i) and Ui(pi,p−i).
Some concepts: closed set, bounded set, convex set, continuous
functions.
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The Nash’s Theorem

The Nash’s Theorem
Any finite strategic game has a mixed strategy Nash Equilibrium.
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Brouwer Fixed Point Theorem

Brouwer Fixed Point Theorem
Let C ⊆ Rn be a compact (closed and bounded) and convex set. Let
f : C→ C be a continuous function. Then f has a fixed pointed in C, i.e.,
x ∈ C, s.t., x = f(x).

Proof.
For the one-dimensional case. When n = 1, the convex and compact sets
are closed intervals [a, b]. Let f : [a, b]← [a, b]. If f(a) = a or f(b) = b we
are done. Suppose f(a) > a and f(b) < b. Consider g(x) = f(x)− x. Then
g(a) > 0, g(b) < 0. g is continuous because f is continuous. The
intermediate value theorem tells us that there is some a < x∗ < b, such
that g(x∗) = 0.
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Proof for Nash Theorem using Brouwer FP Theorem

Let (p1, p2, · · · , pn) be a set of strategies.
Define ri(xi) = (Ui(xi, p−i)− Ui(pi, p−i))+, i.e., ri(xi) is the amount by
which the expected utility to i can be increased by changing strategy
from pi to xi.
Define

fi(pi(xi)) =
pi(xi) + ri(xi)∑
x(pi(x) + ri(x))

.

(p1, p2, · · · , pn) is a convex and compact set.
f(p) = (f1(p1), f2(p2), · · · , fn(pn)) is a continuous function.
Homework.
We then have a fixed point p:

pi(xi) =
pi(xi) + ri(xi)∑
x(pi(x) + ri(x))

.
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Proof for Nash Theorem using Brouwer (continued)

We will now show that for such a fixed point,

ri(xi) = 0 ∀i, xi.

i.e., no increase in utility is possible by changing strategy from pi to
xi. Thus, such a fixed point is a NE.
First, we claim that for each i, ∃xi, s.t., ri(xi) = 0. We will prove
this by contradiction. Suppose for some i, ri(xi) > 0, ∀xi. Then,

Ui(xi, p−i) > Ui(pi, p−i), ∀xi.

⇒
∑

xi

pi(xi)Ui(xi, p−i) > Ui(pi, p−i),

⇒ Ui(pi, p−i) > Ui(pi, p−i),

which is a contradiction.
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Proof for Nash Theorem using Brouwer (continued)

Fix i, let xi be s.t., ri(xi) = 0. Then,

pi(xi) =
pi(xi)∑

x(pi(x) + ri(x))
⇒

∑
x

pi(x) +
∑

x
ri(x) = 1

⇒
∑

x
ri(x) = 0

⇒ ri(x) = 0,∀x ∈ Ai.

This completes the proof.
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Kakutani Fixed-point Theorem

Kakutani Fixed-point Theorem
Let C be a convex and compact subset of Rn. Let f be a correspondence
mapping each point in C to a subset of a C, i.e., f : C→ 2C. Suppose the
following three conditions hold:
- f(x) ̸= ∅, ∀x,
- f(x) is a convex set, ∀x,
- f has a closed graph: if {xn, yn} → {x, y} with yn ∈ f(xn), then y ∈ f(x).
Then f has a fixed point in C.

Weierstrass’s Theorem
Let A be a non-empty, compact subset of Rn and let f : A→ R be a
continuous function. Then, there exists an optimal solution to the
optimization problem Min f(x), x ∈ A.
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Proof for Nash Theorem using Kakutani

We will apply Kakutani’s fixed point theorem to establish the
existence of a solution to

p ∈ BP(p),

where p = (p1, p2, · · · , pn) and BP(p) = (BP(p−1), · · · ,BP(p−n)).
We will verify the mapping BP satisfies the conditions required in the
Kakutani’s fixed-point theorem.
(1) BP(p) is a non-empty set for each p.
This is because maxpi∈∆Xi Ui(pi, p−i) is a maximization problem of a
continuous function over the set of the probability distribution over
Xi, which is a compact set. The result follows from Weierstrass’
extreme value theorem.
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Proof for Nash Theorem using Kakutani (continued)

(2) For each p, BP(p) is a convex set.
We recall that

Ui(pi, p−i) =
∑

x
p1(x1)× · · · × pn(xn)× Ui(xi, x−i).

So if p∗i , p̃i ∈ BP(p−i), as Ui(p∗i , p−i) = Ui(p̃i, p−i), we can verify that

Ui(α× p∗i + (1− α)× p̃i, p−i) = Ui(p∗i , p−i), ∀α ∈ [0, 1].

Hence, we have α× p∗i + (1− α)× p̃i ∈ BP(p−i)
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Proof for Nash Theorem using Kakutani (continued)

(3) We will now show that BP has a closed graph.
Let (pn

i , pn
−i)→ (pi, p−i) with pn

i ∈ BP(pn
−i). Suppose that

pi /∈ BP(p−i). Then ∃p̃i and ϵ > 0 s.t.,

Ui(p̃i, p−i) ≥ Ui(pi, p−i) + ϵ.

We next show that p̃i is a better response for pn
−i (for some n) than

pn
i , and thus contradicts pn

i ∈ BP(pn
−i).

For sufficiently large n,

Ui(p̃i, pn
−i) ≥ Ui(p̃i, p−i)−

ϵ

2 (1)

≥ Ui(pi, p−i) + ϵ− ϵ

2 (2)

≥ Ui(pn
i , pn

−i)−
ϵ

4 +
ϵ

2 (3)

= Ui(pn
i , pn

−i) +
ϵ

4 . (4)
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Proof for Nash Theorem using Kakutani (continued)

(1) comes from that pn
−i → p−i and Ui is continuous.

(3) comes from that for sufficiently large n, (pn
i , pn

−i)→ (pi, p−i) and
Ui is continuous.
The above result contradicts pn

i ∈ BP(pn
−i). Thus, BP has a closed

graph.
Nash’s Theorem follows from the Kakutani fixed point theorem.
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Games with infinite strategies

N agents.
Strategy in xi ∈ Xi ⊆ Rni , Xi contains typically an uncountable
number of points.
Utility/Payoff to agent i: ui(xi, x−i).
Two types of constraints would be imposed on strategy profile x.
Coupled constraints:

x ∈ Ω ⊆ Rn1+n2+···+nN .

E.g., N = 2, 3× x1 + 2× x2 ≤ 6., and x1 ≥ 0, x2 ≥ 0. Here, the
constraints on x1 and x2 are coupled, i.e., if x1 = 1, then if it results
0 ≤ x2 ≤ 3/2.
Uncoupled constraints:

xi ∈ Xi ⊆ Rni , and Ω = X1 × X2 × Xn.

E.g., N=2, 0 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ 3. The choice of xi does not
affect the constraints on x−i.
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Existence of Nash Equilibrium for Infinite Games

Glicksberg Theorem
Consider the uncoupled constraint, i.e., xi ∈ Xi and Ω = X1 × X2 · · ·XN.
Suppose
- each Xi is non-empty and compact,
- and that ui(xi, x−i) is continuous on Ω.
Then, there exists a mixed strategy NE for this game.

Proof.
Intuition behind the proof:
- Discrete the strategy space, and consider the resulting finite-strategy
game.
- By Nash’s Theorem, a mixed Nash Equilibrium (NE) exists for the
discrete game.
- Show that as the discretization becomes finer and finer, the NE
converges to a NE of the continuous games.
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Conditions for Existence of Pure NE

Rosen’s Theorem
Let Ω be a coupled constraint set. Assume that
- Ω is a convex and compact set,
- and that ui(xi, x−i) is continuous on Ω.
- Further, suppose that ui(xi, x−i) is concave in xi for each x−i.
Then, there exist a pure NE.

Proof: Consider the function defined over Ω× Ω:

L(v, x) =
N∑

i=1
ui(vi, x−i).

We first note that if there exists a strategy profile x s.t.,

L(x, x) ≥ L(v, x),∀v ∈ Ω. (5)

Then x must be a NE. We can see this by proving a contradiction.
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Proof (continued)

Suppose x satisfies (5), but is not a NE, i.e., ∃i s.t.,

ui(vi, x−i) > ui(xi, x−i), ∀(vi, x−i) ∈ Ω.

Then

ui(vi, x−i) +
∑

j ̸=i uj(xj, x−j) > ui(xi, x−i) +
∑

j ̸=i uj(xj, x−j)

⇒ L(v̂, x) > L(x, x),

where v̂ = (x1, · · · , xi−1, vi, xi+1, · · · , xN) ∈ Ω. This contradicts to (5).
We next show that if there exists a strategy profile x s.t.,

x ∈ argmaxv∈ΩL(v, x),

then such a x satisfies (5), and hence would be a NE.
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Proof (continued)

Let g(x) = argmaxv∈ΩL(v, x). We note that g(x) is a set, and thus is
a correspondence, not a function.
We now show that g(x) has a fixed point, i.e., ∃x, s.t., x ∈ g(x). We
prove this by using the Kakutani’s fixed point theorem.
Ω is assumed to be convex and compact as required by Kakutani’s
theorem.
For each x ∈ Ω, g(x) is non-empty and convex.
- g(x) is non-empty comes from that L(v, x) is a continuous function
of v and Ω is a compact set. Continuous functions over compact sets
have a max by Weirstrass’s theorem.
- L(v, x) is a sum of concave functions, and thus is concave in v.
Let v1 and v2 be two elements of g(x). And we have

L(α×v1+(1−α)×v2, x) ≥ α×L(v1, x)+(1−α)×L(v2, x), ∀α ∈ [0, 1].

Thus, α× v1 + (1− α)× v2 also maximizes L(v, x) over x ∈ Ω. And
g(x) is a convex set.
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Proof (continued)

g(x) is a closed graph can be established as in Nash’s theorem.
With the above three conditions, we can apply Kakutani’s fixed point
theorem.
Thus, g(x) has a fixed point, i.e., there exist an x, s.t., x ∈ g(x).
Such an x is a NE for this game.
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Remark on Rosen’s Theorem

What is the reason to introduce the function L(v, x)?
Instead, suppose we follow the best responses’ proof in Nash’s
Theorem. That is g1(x−1) the BP of agent 1,

g1(x−1) ∈ argmax(x1,x−1)∈Ωu1(x1, x−1).

Similarly,
g2(x−2) ∈ argmax(x2,x−2)∈Ωu2(x2, x−2).

and so on.
For simplicity, there are two agents, i.e., N = 2. In this case, x−1 = x2
and x−2 = x1. We know that

(g1(x2), x2) ∈ Ω ∀g1(x2).

(x1, g2(x1)) ∈ Ω ∀g2(x1).

But if we consider the mapping, x→ (g1(x2), g2(x1)) ∈ Ω It is not
clear if (g1(x2), g2(x1)) ∈ Ω. So, it is not obvious how to apply the
FP theorem here.
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