Game Theory with Computer Science Applications

Homework 2

May 13, 2021

Problem 1. Let X and Y be subsets of some vector space. Let $f(x, y)$ be a function from $X \times Y$ to \mathbb{R}. Show that

$$
\sup _{x \in X} \inf _{y \in Y} f(x, y) \leq \inf _{y \in Y} \sup _{x \in X} f(x, y)
$$

Problem 2. Find a saddle point and the value of the following zero-sum game:

$$
\left(\begin{array}{llll}
4 & 3 & 1 & 4 \\
2 & 5 & 6 & 3 \\
1 & 0 & 7 & 0
\end{array}\right)
$$

Please show all the steps you used in obtaining the saddle point, such as the relevant LPs. If you used a computer program, please attach a copy of the program.
Problem 3. Repeat Problem 2 for the following matrix:

$$
\left(\begin{array}{ccc}
0 & 5 & -2 \\
-3 & 0 & 4 \\
6 & -4 & 0
\end{array}\right)
$$

Problem 4. Suppose n random variables Z_{i} 's follow i.i.d. normal distribution, i.e., $Z_{i} \sim$ $N(0,1), \forall i=\{1,2$, cdots, $n\}$, Prove the following two statements.
(1) $\lim _{n \rightarrow \infty} \mathbb{E}\left(\frac{\min _{i} Z_{i}}{\sqrt{2 \ln n}}\right)=1$.
(2) $\mathbb{E}\left(\max _{i} Z_{i}\right) \leq \sqrt{2 \ln n}$.

Problem 5. Consider the following Pigou network: show that the price of anarchy (POA) when $C_{B}(x)$ is of the form $a x^{2}+b x+c, a, b, c>0$ is upper bounded by $\frac{3 \sqrt{3}}{3 \sqrt{3}-2}$.
Problem 6. Consider an undirected graph with n nodes and one player at each node. Player i selects a label $x_{i} \in\{-1,1\}$ for node i and incurs a reward

$$
u i\left(x_{i} ; x_{-i}\right)=\sum_{j \neq i} w_{i j} \times x_{i} \times x_{j}
$$

where $w_{i j}$ is the weight of the edge between i and j . Note that $w_{i j}$'s can be positive or negative or zero (when there's no edge between i and j), and each $w_{i j}$ represents the desire of each node to havethe same label as its neighbors or not. Show that there exists a pure strategy Nash equilibrium $\left(x_{1}^{*}, x_{2}^{*}, \cdots, x_{n}^{*}\right)$ for this game. Hint: There is an exact potential function for this game.
Problem 7. Consider a player whose goal is to predict the bits of an infinite binary sequence $B_{1}, B_{2}, B_{3}, \cdots$, with $B_{i} \in\{0,1\}$. Assume that
(1) The player has access to n experts. Each expert i provides a prediction bit of B_{t} before it is revealed based on $H_{t}=\left\{B_{1}, \cdots, B_{t-1}, b_{1,1}, \cdots, b_{1, t-1}, \cdots, b_{n, 1}, \cdots, b_{n, t-1}\right\}$.
(2) The player predicts B_{t} based on $\left\{H_{t}, b_{1, t}, \cdots, b_{n, t}\right\}$.
(3) There exists at least one expert which predicts the entire sequence correctly.

Show that there exists an algorithm for the player such that it makes no more than $\lceil\log 2(n) e\rceil$ mistakes. Hint: Consider a majority vote among experts who have been correct so far.

