Game Theory with Computer Science Applications

Homework 1

April 12, 2021

Problem 1. Show that the two-player game illustrated in the following has a unique equilibrium. (Hint: Show that it has a unique pure-strategy equilibrium; then show that player 1, say, cannot put positive weight on both U and M; then show that player 1, say, cannot put positive weight on both U and D, but not on M, for instance.)

$$\begin{pmatrix} L & M & R \\ U & 1, -2, & -2, 1 & 0, 0 \\ M & -2, 1 & 1, -2 & 0, 0 \\ D & 0, 0 & 0, 0 & 1, 1 \end{pmatrix}$$

Problem 2. [Cournot Competition] Consider two companies, say company 1 and company 2, which produce identical products. In the Cournot model of competition, companies decide the amount they produce and the market determines a price depending on the total amounts of the products available in the market. The price is higher if the amount of the product is smaller. Let a_i (i = 1, 2) $\in [0, \infty)$ denote the amount of the product produced by company i. Assume that producing one unit of the product costs each company \$1, and the sales price per unit of the product is determined as $[2 - (a_1 + a_2)]^+$. Thus, the payoffs of company 1 and company 2 are given by

$$u_1(a_1, a_2) = a_1[2 - (a_1 + a_2)]^+ - a_1$$
$$u_2(a_1, a_2) = a_2[2 - (a_1 + a_2)]^+ - a_2,$$

respectively. Fine a pure Nash Equilibrium for this game.

Problem 3. [Bertrand Competition] The Bertrand model is an alternative to the Cournot model of competition. In the Bertrand model, again we consider two companies only, but now each company sets a price and the demand for the product is a function of the lower of the two companies' prices. More precisely, each company *i* sets a price p_i for the product. The demand for the product is a function of the prices as follows: if company i sets its price lower than that of the other company, i.e., $p_i < p_{-i}$, the demand for the product of company *i* is given by $f(p_i)$ units, and the demand for the product of the other company is zero. If $p_i = p_{-i}$, then the demand is $f(p_i)/2$ for both companies. Let c_i be the cost for company i to product one unit of the product. Then, the payoff for company *i* is given by

$$u_i(p_i, p_{-i}) = \begin{cases} f(p_i)(p_i - c_i) & \text{if } p_i < p_{-i}, \\ f(p_i)(p_i - c_i)/2 & \text{if } p_i = p_{-i} \\ 0 & \text{otherwise,} \end{cases}$$

show that when $c_1 = c_2 = c$, $p_1 = p_2 = c$ is the unique NE. **Problem 4.** Find all the NE of the following two-person nonzero-sum game

	b_1	b_2	b_3	b_4
a_1	(-2, 2)	(0, -4)	(11, -5)	(5, -6)
a_2	(-4, 0)	(-1, -1)	(11, -2)	(4, -3)
a_3	(-5, 3)	(-5, 2)	(10, 0)	(3, 1)
a_4	(-6, 2)	(-7, 1)	(1,0)	(2,3)

Problem 5. Consider the following nonzero game. Let (x^*, y^*) and (\hat{x}, \hat{y}) be two mixed strategy Nash equilibria of this game. Show that (x^*, \hat{y}) and (\hat{x}, y^*) are also Nash equilibria. (Hint: Consider the sum of the payoffs of the two players.)

$$\begin{array}{ccc} L & R \\ U & (4,-2) & (-3,5) \\ D & (10,-8) & (0,2) \end{array}$$

Problem 6. Prove Farka's Lemma. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m \times 1}$. Then exactly one of the following two conditions holds:

(1) $\exists x \in \mathbb{R}^{n \times 1}$ such that $AX = b, x \ge 0$; (2) $\exists y \in \mathbb{R}^{1 \times m}$ such that $A^T y \ge 0, y^T b < 0$;