Game Theory with Computer Science Applications

Homework 1

April 12, 2021

Problem 1. Show that the two-player game illustrated in the following has a unique equilibrium. (Hint: Show that it has a unique pure-strategy equilibrium; then show that player 1 , say, cannot put positive weight on both U and M; then show that player 1 , say, cannot put positive weight on both U and D, but not on M, for instance.)

$$
\left(\begin{array}{cccc}
& L & M & R \\
U & 1,-2, & -2,1 & 0,0 \\
M & -2,1 & 1,-2 & 0,0 \\
D & 0,0 & 0,0 & 1,1
\end{array}\right)
$$

Problem 2. [Cournot Competition] Consider two companies, say company 1 and company 2, which produce identical products. In the Cournot model of competition, companies decide the amount they produce and the market determines a price depending on the total amounts of the products available in the market. The price is higher if the amount of the product is smaller. Let $a_{i}(i=1,2) \in[0, \infty)$ denote the amount of the product produced by company i. Assume that producing one unit of the product costs each company $\$ 1$, and the sales price per unit of the product is determined as $\left[2-\left(a_{1}+a_{2}\right)\right]^{+}$. Thus, the payoffs of company 1 and company 2 are given by

$$
\begin{aligned}
& u_{1}\left(a_{1}, a_{2}\right)=a_{1}\left[2-\left(a_{1}+a_{2}\right)\right]^{+}-a_{1} \\
& u_{2}\left(a_{1}, a_{2}\right)=a_{2}\left[2-\left(a_{1}+a_{2}\right)\right]^{+}-a_{2},
\end{aligned}
$$

respectively. Fine a pure Nash Equilibrium for this game.

Problem 3. [Bertrand Competition] The Bertrand model is an alternative to the Cournot model of competition. In the Bertrand model, again we consider two companies only, but now each company sets a price and the demand for the product is a function of the lower of the two companies' prices. More precisely, each company i sets a price p_{i} for the product. The demand for the product is a function of the prices as follows: if company i sets its price lower than that of the other company, i.e., $p_{i}<p_{-i}$, the demand for the product of company i is given by $f\left(p_{i}\right)$ units, and the demand for the product of the other company is zero. If $p_{i}=p_{-i}$, then the demand is $f\left(p_{i}\right) / 2$ for both companies. Let c_{i} be the cost for company i to product one unit of the product. Then, the payoff for company i is given by

$$
u_{i}\left(p_{i}, p_{-i}\right)=\left\{\begin{aligned}
f\left(p_{i}\right)\left(p_{i}-c_{i}\right) & \text { if } p_{i}<p_{-i} \\
f\left(p_{i}\right)\left(p_{i}-c_{i}\right) / 2 & \text { if } p_{i}=p_{-i} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

show that when $c_{1}=c_{2}=c, p_{1}=p_{2}=c$ is the unique NE.
Problem 4. Find all the NE of the following two-person nonzero-sum game

	b_{1}	b_{2}	b_{3}	b_{4}
a_{1}	$(-2,2)$	$(0,-4)$	$(11,-5)$	$(5,-6)$
a_{2}	$(-4,0)$	$(-1,-1)$	$(11,-2)$	$(4,-3)$
a_{3}	$(-5,3)$	$(-5,2)$	$(10,0)$	$(3,1)$
a_{4}	$(-6,2)$	$(-7,1)$	$(1,0)$	$(2,3)$

Problem 5. Consider the following nonzero game. Let $\left(x^{*}, y^{*}\right)$ and (\hat{x}, \hat{y}) be two mixed strategy Nash equilibria of this game. Show that (x^{*}, \hat{y}) and $\left(\hat{x}, y^{*}\right)$ are also Nash equilibria. (Hint: Consider the sum of the payoffs of the two players.)

$$
\begin{array}{ccc}
& L & R \\
U & (4,-2) & (-3,5) \\
D & (10,-8) & (0,2)
\end{array}
$$

Problem 6. Prove Farka's Lemma. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m \times 1}$. Then exactly one of the following two conditions holds:
(1) $\exists x \in \mathbb{R}^{n \times 1}$ such that $A X=b, x \geq 0$;
(2) $\exists y \in \mathbb{R}^{1 \times m}$ such that $A^{T} y \geq 0, y^{T} b<0$;

